Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2016 Oct 31;25(5):1399–1405. doi: 10.1007/s10068-016-0218-0

Functional beverage from fermented soymilk with improved amino nitrogen, β-glucosidase activity and aglycone content using Bacillus subtilis starter

Kyung Ha Lee 1,2, Sae Hun Kim 1, Koan Sik Woo 2, Hyun Joo Kim 2, Hye Sun Choi 2, Young Hoon Kim 4, Jin Song 3,
PMCID: PMC6049274  PMID: 30263422

Abstract

The bioactivity of soymilk was enhanced by fermentation with three strains of β-glucosidaseproducing Bacillus subtilis for 36 h at 37oC. The results indicated that protease, cellulase, and β-glucosidase activities were significantly (p<0.05) increased with increasing fermentation time. In addition, the amino-type nitrogen content in B. subtilis-fermented soymilk was increased to 121.1-140.7 mg% after 36 h of fermentation. Among the isoflavones in soymilk, the contents of β-glucosides or acetyl-glucosides were decreased, while aglycone content was increased by fermentation. In particular, the soymilk fermented with B. subtilis HJ18-9 had highest β-glucosidase activity and the largest increase in aglycone content. The total aerobic and anaerobic cell counts were increased with increasing fermentation time. Therefore, this study suggests that soy beverages fermented with β-glucosidase-producing B. subtilis have the potential to enhance the health and nutritional status of consumers.

Keywords: Bacillus subtilis, soymilk, fermentation, isoflavone, enzyme activity

References

  • 1.Tikkanena MJ, Adlercreutza H. Dietary soy-derived isoflavone phytoestrogens: Could they have a role in coronary heart disease prevention? Biochem. Pharmacol. 2000;60:1–5. doi: 10.1159/000028339. [DOI] [PubMed] [Google Scholar]
  • 2.Jassi HK, Jain A, Arora S, Chitra R. Effect of soy proteins vs soy isoflavones on lipid profile in postmenopausal women. Indian J. Clin. Biochem. 2010;25:201–207. doi: 10.1007/s12291-010-0036-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Reiter E, Gerster P, Jungbauer A. Red clover and soy isoflavone-an in vitro safety assessment. Gynecol. Endocrinol. 2011;27:1037–1042. doi: 10.3109/09513590.2011.588743. [DOI] [PubMed] [Google Scholar]
  • 4.Molla MDJ, Hidalgo-Mora JJ, Soteras MG. Phytotherapy as alternative to hormone replacement therapy. Front. Biosci. (Schol Ed) 2011;1:191–204. doi: 10.2741/s144. [DOI] [PubMed] [Google Scholar]
  • 5.Hsu C, Ho HW, Chang CF, Wang ST, Fang TF, Lee MH, Su NW. Soy isoflavonephosphate conjugates derived by cultivating Bacillus subtilis var. natto BCRC 80517 with isoflavone. Food Res. Int. 2013;53:487–495. doi: 10.1016/j.foodres.2013.05.027. [DOI] [Google Scholar]
  • 6.Islam MA, Punt A, Spenkelink B, Murk AJ, Leeuwen FXR, Rietjens IMCM. Conversion of major soy isoflavone glucosides and aglycones in in vitro intestinal models. Mol. Nutr. Food Res. 2014;58:503–515. doi: 10.1002/mnfr.201300390. [DOI] [PubMed] [Google Scholar]
  • 7.Youn KC, Kim DH, Kim JO, Park BJ, Yook HS, Cho JM, Byun MW. Quality characteristics of the chungkookjang fermented by the mixed culture of Bacillus natto and B. licheniformis. J. Korean Soc. Food Sci. Nutr. 2002;31:204–210. doi: 10.3746/jkfn.2002.31.2.204. [DOI] [Google Scholar]
  • 8.Brouns F. Soya isoflavones: A new and promising ingredient for the health foods sector. Food Res. Int. 2002;35:187–193. doi: 10.1016/S0963-9969(01)00182-X. [DOI] [Google Scholar]
  • 9.Marazza JA, Nazareno MA, Giori GS, Garro MS. Bioactive action of ß-glucosidase enzyme of Bifidobacterium longum upon isoflavone glucosides present in soymilk. Int. J. Food Sci. Tech. 2013;48:2480–2489. doi: 10.1111/ijfs.12239. [DOI] [Google Scholar]
  • 10.Donkor ON, Shah NP. Production of ß-glucosidase and hydrolysis of isoflavone phytoestrogens by Lactobacillus acidophilus, Bifidobacterium lactis and Lactobacillus casei in soymilk. J. Food Sci. 2008;73:15–20. doi: 10.1111/j.1750-3841.2007.00547.x. [DOI] [PubMed] [Google Scholar]
  • 11.Yeo KE, Kim WJ. Effects of acid hydrolysis on isoflavone of defatted soybean flour. Korean J. Food Sci. Technol. 2002;34:916–918. [Google Scholar]
  • 12.Villares A, Rostagno MA, García-Lafuente A, Guillamón E, Martínez JA. Content and profile of isoflavones in soy-based foods as a function of the production process. Food Bioprocess Tech. 2011;4:27–38. doi: 10.1007/s11947-009-0311-y. [DOI] [Google Scholar]
  • 13.Marazza JA, Garro MS, Savoy DG. Aglycone production by Lactobacillus rhamnosus CRL981 during soymilk fermentation. Food Microbiol. 2009;26:333–339. doi: 10.1016/j.fm.2008.11.004. [DOI] [PubMed] [Google Scholar]
  • 14.Wang LJ, Yin LJ, Li D, Zou L, Saito M, Tatsumi E, Li LT. Influences of processing and NaCl supplementation on isoflavone contents and composition during douchi manufacturing. Food Chem. 2007;101:1247–1253. doi: 10.1016/j.foodchem.2006.03.029. [DOI] [Google Scholar]
  • 15.Choi JM, Kim JH, Cho EJ. Protective activity of purple sweet potato extractadded soymilk fermented by Bacillus subtilis against oxidative stress. Food Sci. Biotechnol. 2010;19:457–462. doi: 10.1007/s10068-010-0064-4. [DOI] [Google Scholar]
  • 16.Seo K C, Kim M J, Hong SH, Cha SY, Noh J S, Kim M J, Song YO. The hypocholesterolemic effects of soymilk fermented with Bacillus subtilis compared to soymilk with cheonggukjang powder in apolipoprotein E knockout mice. Prev. Nutr. Food Sci. 2010;15:83–87. doi: 10.3746/jfn.2010.15.2.083. [DOI] [Google Scholar]
  • 17.Kuo LC, Cheng WY, Wu RY, Huang CJ, Lee KT. Hydrolysis of black soybean isoflavone glycosides by Bacillus subtilis natto. Appl. Microbiol. Biot. 2006;73:314–320. doi: 10.1007/s00253-006-0474-7. [DOI] [PubMed] [Google Scholar]
  • 18.Wang J, Wu R, Zhang W, Sun Z, Zhao W, Zhang H. Proteomic comparison of the probiotic bacterium Lactobacillus casei Zhang cultivated in milk and soy milk. J. Dairy Sci. 2013;96:5603–5624. doi: 10.3168/jds.2013-6927. [DOI] [PubMed] [Google Scholar]
  • 19.National Academy of Agricultural Science. Study about improving antidiabetic and liver function of fermented soy-food and technology development of ingredient. Available from: http://report.ndsl.kr/repDetail.do?cn=TRKO2015 00010551. Accessed Feb. 27, 2015
  • 20.Choi YB, Kim KS, Rhee JS. Hydrolysis of soybean isoflavone glucosides by lactic acid bacteria. Biotechnol. Lett. 2002;24:2113–2116. doi: 10.1023/A:1021390120400. [DOI] [Google Scholar]
  • 21.Kim JY, Lee SY, Park NY, Choi HS. Quality characteristics of black soybean paste (Daemaekjang) prepared with Bacillus subtilis HJ18-4. Korean J. Food Sci. Technol. 2012;44:743–749. doi: 10.9721/KJFST.2012.44.6.743. [DOI] [Google Scholar]
  • 22.Wang G, Kuan SS, Francis OJ, Ware GM, Carman AS. Simplified HPLC method for determination of phytoestrogens in soybean and its processed product. J. Agr. Food Chem. 1990;38:185–190. doi: 10.1021/jf00091a041. [DOI] [Google Scholar]
  • 23.Park JS. Histological changes of doenjang during the fermentation with different strains. Korean J. Food Sci. Technol. 1992;24:477–481. [Google Scholar]
  • 24.Nora NT, Esther S W, Kofi AA. The comparative ability of four isolates of Bacillus subtilis to ferment soybeans into dawadawa. Int. J. Food Microbiol. 2006;106:145–152. doi: 10.1016/j.ijfoodmicro.2005.05.021. [DOI] [PubMed] [Google Scholar]
  • 25.Odunfa SA. Biochemical changes in fermenting African locust bean (Parkia biglobosa) during ‘iru’ fermentation. Int. J. Food Sci. Tech. 1985;20:295–303. doi: 10.1111/j.1365-2621.1985.tb00379.x. [DOI] [Google Scholar]
  • 26.Marazza JA, Nazareno MA, Giori GS, Garro MS. Enhancement of the antioxidant capacity of soymilk by fermentation with Lactobacillus rhamnosus. J. Funct. Foods. 2012;4:594–601. doi: 10.1016/j.jff.2012.03.005. [DOI] [Google Scholar]
  • 27.Ewe JA, Wan-Abdullah WN, Alias AK, Liong MT. Ultraviolet radiation enhanced growth of lactobacilli and their bioconversion of isoflavones in biotinsupplemented soymilk. LWT-Food Sci. Technol. 2013;50:25–31. doi: 10.1016/j.lwt.2012.07.042. [DOI] [Google Scholar]
  • 28.King RA, Bignell CM. Concentrations of isoflavone phytoestrogens and their glucosides in Australian soya beans and soya foods. Aust. J. Nutr. Diet. 2000;57:70–78. [Google Scholar]
  • 29.Handa CL, Couto UR, Vicensoti AH, Georgetti SR, Ida EI. Optimisation of soy flour fermentation parameters to produce â-glucosidase for bioconversion into aglycones. Food Chem. 2014;152:56–65. doi: 10.1016/j.foodchem.2013.11.101. [DOI] [PubMed] [Google Scholar]
  • 30.Yang S, Wang L, Yan Q, Jiang Z, Li L. Hydrolysis of soybean isoflavone glycosides by a thermostable ß-glucosidase from Paecilomyces thermophila. Food Chem. 2002;115:1247–1252. doi: 10.1016/j.foodchem.2009.01.038. [DOI] [Google Scholar]
  • 31.Katekan D, Ekachai C, Arunee A, Richard AF. Enhanced aglycone production of fermented soybean products by Bacillus species. Acta Biologica. Szegediensis. 2009;53:93–98. [Google Scholar]
  • 32.Setchell KDR, Brown NM, Zimmer-Nechemias L, Brashear WT, Wolfe BE, Kirschner AS, Heubi JE. Evidence of lack of absorption of soy isoflavones in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am. J. Clin. Nutr. 2002;76:447–453. doi: 10.1093/ajcn/76.2.447. [DOI] [PubMed] [Google Scholar]
  • 33.Chen KI, Lo YC, Liu CW, Yu RC, Chou CC, Cheng KC. Enrichment of two isoflavone aglycones in black soymilk by using spent coffee grounds as an immobiliser for â-glucosidase. Food Chem. 2013;139:79–85. doi: 10.1016/j.foodchem.2013.01.093. [DOI] [PubMed] [Google Scholar]
  • 34.Lee BH, Lo YH, Pan TM. Anti-obesity activity of Lactobacillus fermented soy milk products. J. Funct. Foods. 2013;5:905–913. doi: 10.1016/j.jff.2013.01.040. [DOI] [Google Scholar]
  • 35.Xu X, Wang HJ, Murphy PA, Hendrich S. Neither background diet nor type of soy food affects short-term isoflavone bioavailability in women. J. Nutr. 2000;130:798–801. doi: 10.1093/jn/130.4.798. [DOI] [PubMed] [Google Scholar]
  • 36.Kano M, Takayanagi T, Harada K, Sawada S, Ishikawa F. Bioavailability of isoflavones after ingestion of soy beverages in healthy adults. J. Nutr. 2006;136:2291–2296. doi: 10.1093/jn/136.9.2291. [DOI] [PubMed] [Google Scholar]
  • 37.Chun J, Kim JS, Kim JH. Enrichment of isoflavone aglycones in soymilk by fermentation with single and mixed cultures of Streptococcus infantarius 12 and Weissella sp. 4. Food Chem. 2008;109:278–284. doi: 10.1016/j.foodchem.2007.12.024. [DOI] [PubMed] [Google Scholar]
  • 38.Jung S, Murphy P, Sala I. Isoflavone profiles of soymilk as affected by highpressure treatments of soymilk and soybeans. Food Chem. 2008;111:592–598. doi: 10.1016/j.foodchem.2008.04.025. [DOI] [Google Scholar]
  • 39.Baú TR, Ida EI. Soymilk processing with higher isoflavone aglycone content. Food Chem. 2015;183:161–168. doi: 10.1016/j.foodchem.2015.03.026. [DOI] [PubMed] [Google Scholar]
  • 40.Mann SY, Kim EA, Lee GY, Kim DY. Characteristics of chungkookjang produced by Bacillus subtilis MC31. Life Sci. 2013;23:560–568. doi: 10.5352/JLS.2013.23.4.560. [DOI] [Google Scholar]
  • 41.Lee LS, Jung KH, Choi UK, Cho CW, Kim KI, Kim YC. Isolation and identification of lactic acid producing bacteria from Kimchi and their fermentation properties of soymilk. J. Korean Soc. Food Sci. Nutr. 2013;42:1872–1877. doi: 10.3746/jkfn.2013.42.11.1872. [DOI] [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES