Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2016 Oct 31;25(5):1251–1257. doi: 10.1007/s10068-016-0198-0

Nutritional evaluation of processing discards from tiger tooth croaker, Otolithes ruber

Vijayakumar Renuka 1,, Abubacker Aliyamveetil Zynudheen 2, Satyen Kumar Panda 2, Chandragiri Nagaraja Rao Ravishankar 2
PMCID: PMC6049277  PMID: 30263402

Abstract

Processing discards from tiger tooth croaker, such as head, viscera, and swim bladder, were analyzed for proximate, biochemical, fatty acid, and mineral composition. The proximate analysis showed high protein content (21.04%) in the swim bladder and high fat content (4.10%) and ash content (2.26%) in the head. The biochemical quality indices such as non-protein nitrogen, total volatile base, trimethylamine, free fatty acids, peroxide value, and thiobarbituric acid reactive substances in the viscera were higher than those in the head and swim bladder. Gas chromatographymass spectrometry analysis of fatty acids composition showed high polyunsaturated fatty acids in the head (58.82%), followed by the viscera (45.80%) and the swim bladder (35.57%). The major available saturated fatty acid, i.e., palmitic acid, was higher in the swim bladder (30.49%). Mineral and heavy metals analyzed via inductively coupled plasma-optical emission spectrometer showed high calcium, sodium, and magnesium contents in the head region (346.80, 62.55, and 14.89 mg/kg respectively). Heavy metal levels were within the permissible limit.

Keywords: tiger tooth croaker, omega-3 fatty acid, biochemical quality index, fish processing discard, mineral

References

  • 1.MPEDA. MPEDA press release export statistics 2014-15 and RGCA. Marine Product Export Development Authority, Cochin, India (2015)
  • 2.CMFRI. CMFRI annual report 2014-2015. Central Marine Fisheries Research Institute, Cochin, India (2015)
  • 3.FAO. The State of World Fisheries and Aquaculture. Food and Agriculture Organization of the United Nations, Rome, Italy (2014)
  • 4.Dekkers E, Raghavan S, Kristinsson HG, Marshall MR. Oxidative stability ofMahi mahi red muscle dipped in tilapia protein hydrolysates. Food Chem. 2011;124:640–645. doi: 10.1016/j.foodchem.2010.06.088. [DOI] [Google Scholar]
  • 5.Chakraborty SK, Devadoss P, Manojkumar PP. The fishery biology and stock assessment of jew fish resources of India. In: Pillai VN, Menon NG, editors. Marine Fisheries Research and Management. 2000. pp. 604–616. [Google Scholar]
  • 6.Siriwardhana N, Kalupahana NS, Moustaid-Moussa N. Health benefits of n-3 polyunsaturated fatty acids: Eicosapentaenoic acid and docosahexaenoic acid. Adv. Food Nutr. Res. 2012;65:211–222. doi: 10.1016/B978-0-12-416003-3.00013-5. [DOI] [PubMed] [Google Scholar]
  • 7.AOAC. Official methods of analysis of AOAC Intl. 19th ed. Methods 938.08, 940.25, 948.16, and 950.46 Association of Official Analytical Chemists, Gaithersburg, MD, USA (2012)
  • 8.Conway EJ, Byrne A. An absorption apparatus for the micro-determination of certain volatile substances. Biochem. J. 1933;27:419–429. [PMC free article] [PubMed] [Google Scholar]
  • 9.Shantha NC, Decker EA. Rapid, sensitive, iron-based spectrophotometric methods for determination of peroxide values of food lipids. J. AOAC Int. 1994;77:421–424. [PubMed] [Google Scholar]
  • 10.Raghavan S, Hultin HO. Oxidative stability of a cod-canola oil model system: Effect of order addition of tocopherol and canola oil to washed, minced cod muscle. J. Aquat. Food Prod. T. 2006;158:37–45. doi: 10.1300/J030v15n02_04. [DOI] [Google Scholar]
  • 11.Folch J, Lees M, Sloane-Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957;226:497–509. [PubMed] [Google Scholar]
  • 12.Metcalfe LD, Schmitz AA. The rapid preparation of fatty acid esters for gas chromatographic analysis. Anal. Chem. 1961;33:363–364. doi: 10.1021/ac60171a016. [DOI] [Google Scholar]
  • 13.Dolan SP, Capar SG. Multi-elements analysis of food by microwave digestion and inductively coupled plasma atomic emission spectroscopy. J. Food Compos. Anal. 2002;15:593–615. doi: 10.1016/S0889-1575(02)91064-1. [DOI] [Google Scholar]
  • 14.Hulting HO, Kelleher SD. Surimi Proceeding from Dark Muscle Fish. In: Park JW, editor. Surimi and Surimi Seafood. New York, NY, USA: Marcel Dekker Inc.; 2000. pp. 59–77. [Google Scholar]
  • 15.Palanikumar M R, Annathai A J, Shakila R, Shanmugam SA. Proximate and major mineral composition of 23 medium sized marine fin fishes landed in the thoothukudi coast of India. J. Nutr. Food. Sci. 2014;4:1–7. [Google Scholar]
  • 16.Ersoy B H S. The proximate composition and fatty acid profiles of edible parts of two freshwater mussels. Turk. J. Fish. Aquat. Sc. 2010;10:71–74. [Google Scholar]
  • 17.Nazeer RA, Kumar NSS. Fatty acid composition of horse mackerel (Magalaspis cordyla) and croaker (Otolithes ruber) Asian Pac. J. Trop. Dis. 2012;2:S933–S936. doi: 10.1016/S2222-1808(12)60294-1. [DOI] [Google Scholar]
  • 18.Shalini R, Shakila RJ, Jeyasekaran G, Jeevithan E. Sensory, biochemical and bacteriological properties of octopus (Cistopus indicus) stored in ice. J. Food Sci. Technol. 2015;52:6763–6769. doi: 10.1007/s13197-015-1751-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Ninan G, Zynudheen AA. Evaluation of quality and shelf life of two commercially important fish species viz., tiger tooth croaker (Otolithes ruber Bloch and Schneider) and flathead grey mullet (Mugil cephalus Linnaeus) in iced conditions. P. Natl. A. Sci. India B. 2014;84:1035–1042. doi: 10.1007/s40011-014-0325-8. [DOI] [Google Scholar]
  • 20.Ross CF, Smith DM. Use of volatiles as indicators of lipid oxidation in muscle foods. Compr. Rev. Food Sci. F. 2006;5:18–25. doi: 10.1111/j.1541-4337.2006.tb00077.x. [DOI] [PubMed] [Google Scholar]
  • 21.Connell JJ. Intrinsic quality. In: Connell JJ, editor. Control of Fish Quality. Oxford, London: Fishing News Books Ltd; 1995. pp. 5–36. [Google Scholar]
  • 22.Ozogul Y, Ozyurt G, Ozogul F, Kuley E, Polat A. Freshness assessment of European eel (Anguilla anguilla) by sensory, chemical and microbiological methods. Food Chem. 2005;92:745–751. doi: 10.1016/j.foodchem.2004.08.035. [DOI] [Google Scholar]
  • 23.Sharifian S, Zakipour E, Mortazavi MS, Arshadi A. Quality assessment of tiger tooth croaker (Otolithes ruber) during ice storage. Int. J. Food Prop. 2011;14:309–318. doi: 10.1080/10942910903177822. [DOI] [Google Scholar]
  • 24.Santiago PA. Lipid damage detection during the frozen storage of an underutilized fish species. Food Res. Int. 1999;32:497–502. doi: 10.1016/S0963-9969(99)00123-4. [DOI] [Google Scholar]
  • 25.Ladikos D, Lougovois V. Lipid oxidation in muscle foods: A review. Food Chem. 1990;35:295–314. doi: 10.1016/0308-8146(90)90019-Z. [DOI] [Google Scholar]
  • 26.Jalili S, Zoriasatein N, Pour F. Habitat effects on nutritional quality of two marine fish fillets, tiger tooth croaker (Otelithes ruber); Four finger threadfins (Eleutheronema tetradactylium) Int. J. Ecosyst. 2014;4:119–123. [Google Scholar]
  • 27.Celick M, Diler A, Küçükgülmez A. A comparison of the proximate compositions and fatty acid profiles of zander (Sander lucioperca) from two different regions and climatic conditions. Food Chem. 2005;92:637–641. doi: 10.1016/j.foodchem.2004.08.026. [DOI] [Google Scholar]
  • 28.Magalhães BS, Fiamoncini J, Deschamps FC, Curi R, Silva LP. Comparison of fatty acid composition in nine organs of the sympatric Antarctic teleost fish species Notothenia coriiceps and Notothenia rossii (Perciformes: Nototheniidae) Comp. Biochem. Phys. B. 2010;155:132–137. doi: 10.1016/j.cbpb.2009.10.012. [DOI] [PubMed] [Google Scholar]
  • 29.Berto A, Da Silva AF, Visentainer JV, Matsushita M, de Souza NE. Proximate compositions, mineral contents and fatty acid compositions of native Amazonian fruits. Food Res. Int. 2015;77:441–449. doi: 10.1016/j.foodres.2015.08.018. [DOI] [Google Scholar]
  • 30.Aburto NJ, Ziolkovska A, Hooper L, Elliott P, Cappuccio FP, Meerpohl JJ. Effect of lower sodium intake on health: Systematic review and meta-analyses. Brit. Med. J. 2013;346:1–20. doi: 10.1136/bmj.f1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Morgano MA, Rabonato LC, Milani RF, Miyagusku L, Balian SC. Assessment of trace elements in fishes of Japanese foods marketed in São Paulo (Brazil) Food Control. 2011;22:778–785. doi: 10.1016/j.foodcont.2010.11.016. [DOI] [Google Scholar]
  • 32.Commission of the European Communities, 2001._Commission Regulation (EC) n. 221/2002 of the 6 February 2002 amending regulation (EC) n. 466/2002 setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Communities, Brussels, Belgium (2002)
  • 33.Otten JJ, Hellwig JP, Meyers LD. Dietary reference intakes: The essential guide to nutrient requirements. Washington DC, USA: The National Academy Press.; 2006. [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES