Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2016 Oct 31;25(5):1337–1343. doi: 10.1007/s10068-016-0210-8

Calcium-alginate microparticles for sustained release of catechin prepared via an emulsion gelation technique

Eun Suh Kim 1, Ji-Soo Lee 1, Hyeon Gyu Lee 1,
PMCID: PMC6049279  PMID: 30263414

Abstract

Catechin-loaded Ca-alginate beads and microparticles were prepared by an emulsion gelation method using sunflower oil for efficient sustained release of catechin. The emulsion was prepared by sequential mixing of alginate, oil, and oleic acid ester as an emulsifier. Encapsulation efficiency (EE) and inhibition of catechin release of the beads were significantly increased approximately to 453.83 and 148.71% by the emulsion gelation technique, respectively (p<0.05). For the microparticles, the highest inhibition of catechin release after 1 h of incubation (78.82%) was observed at the microparticles prepared by 5% (w/w) oil, 3% (w/w) alginate, 4% (w/v) CaCl2, and 200 mg catechin with the most hydrophilic emulsifier, decaglycerol mono-ester. Moreover, the catechin release was sustained at acidic conditions and increased with increase in pH of release medium. These results suggest that catechin encapsulation within Ca-alginate particles by emulsion gelation method can be an effective delivery system for catechin.

Keywords: catechin, calcium alginate microparticle, ionic gelation, release property, emulsion gelation technique

References

  • 1.Crespy V, Williamson G. A review of the health effects of green tea catechins in in vivo animal models. J. Nutr. 2004;134:3431S–3440S. doi: 10.1093/jn/134.12.3431S. [DOI] [PubMed] [Google Scholar]
  • 2.Cai Y, Anavy ND, Chow HS. Contribution of presystemic hepatic extraction to the low oral bioavailability of green tea catechins in rats. Drug Metab. Dispos. 2002;30:1246–1249. doi: 10.1124/dmd.30.11.1246. [DOI] [PubMed] [Google Scholar]
  • 3.Zhu QY, Zhang A, Tsang D, Huang Y, Chen ZY. Stability of green tea catechins. J. Agr. Food Chem. 1997;45:4624–4628. doi: 10.1021/jf9706080. [DOI] [Google Scholar]
  • 4.Fang Z, Bhandari B. Encapsulation of polyphenols-a review. Trends Food Sci. Tech. 2010;21:510–523. doi: 10.1016/j.tifs.2010.08.003. [DOI] [Google Scholar]
  • 5.Haidong L, Fang Y, Zhihong T, Changle R. Study on preparation of ß-cyclodextrin encapsulation tea extract. Int. J. Biol. Macromol. 2011;49:561–566. doi: 10.1016/j.ijbiomac.2011.06.013. [DOI] [PubMed] [Google Scholar]
  • 6.Peres I, Rocha S, Gomes J, Morais S, Pereira MC, Coelho M. Preservation of catechin antioxidant properties loaded in carbohydrate nanoparticles. Carbohyd. Polym. 2011;86:147–153. doi: 10.1016/j.carbpol.2011.04.029. [DOI] [Google Scholar]
  • 7.Tønnesen HH, Karlsen J. Alginate in drug delivery systems. Drug Dev. Ind. Pharm. 2002;28:621–630. doi: 10.1081/DDC-120003853. [DOI] [PubMed] [Google Scholar]
  • 8.Schoubben A, Blasi P, Giovagnoli S, Rossi C, Ricci M. Development of a scalable procedure for fine calcium alginate particle preparation. Chem. Eng. J. 2010;160:363–369. doi: 10.1016/j.cej.2010.02.062. [DOI] [Google Scholar]
  • 9.Chan AW, Neufeld RJ. Modeling the controllable pH-responsive swelling and pore size of networked alginate based biomaterials. Biomaterials. 2009;30:6119–6129. doi: 10.1016/j.biomaterials.2009.07.034. [DOI] [PubMed] [Google Scholar]
  • 10.Bajpai S, Tankhiwale R. Investigation of dynamic release of vitamin B2 from calcium alginate/chitosan multilayered beads: Part II. React. Funct. Polym. 2006;66:1565–1574. doi: 10.1016/j.reactfunctpolym.2006.05.007. [DOI] [Google Scholar]
  • 11.Hansen LT, Allan-Wojtas P, Jin Y-L, Paulson A. Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiol. 2002;19:35–45. [Google Scholar]
  • 12.Sezer A, Akbuga J. Release characteristics of chitosan treated alginate beads: II.Sustained release of a low molecular drug from chitosan treated alginate beads. J. Microencapsul. 1999;16:687–696. doi: 10.1080/026520499289176. [DOI] [PubMed] [Google Scholar]
  • 13.Reis CP, Neufeld RJ, Vilela S, Ribeiro AJ, Veiga F. Review and current status of emulsion/dispersion technology using an internal gelation process for the design of alginate particles. J. Microencapsul. 2006;23:245–257. doi: 10.1080/02652040500286086. [DOI] [PubMed] [Google Scholar]
  • 14.Choudhury P, Kar M. Preparation of alginate gel beads containing metformin hydrochloride using emulsion-gelation method. Trop. J. Pharm. Res. 2007;4:489–493. doi: 10.4314/tjpr.v4i2.14624. [DOI] [Google Scholar]
  • 15.Sriamornsak P, Thirawong N, Puttipipatkhachorn S. Emulsion gel beads of calcium pectinate capable of floating on the gastric fluid: Effect of some additives, hardening agent or coating on release behavior of metronidazole. Eur. J. Pharm. Sci. 2005;24:363–373. doi: 10.1016/j.ejps.2004.12.004. [DOI] [PubMed] [Google Scholar]
  • 16.Sriamornsak P, Asavapichayont P, Nunthanid J L-a M, Limmatvapirat S, Piriyaprasarth S. Wax-incorporated emulsion gel beads of calcium pectinate for intragastric floating drug delivery. AAPS PharmSciTech. 2008;9:571–576. doi: 10.1208/s12249-008-9082-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Zhang ZQ, Pan C H, Chung D. Tannic acid c ross-linked g elatin–gu m arabic coacervate microspheres for sustained release of allyl isothiocyanate: Characterization and in vitro release study. Food Res. Int. 2011;44:1000–1007. doi: 10.1016/j.foodres.2011.02.044. [DOI] [Google Scholar]
  • 18.Joye IJ, McClements DJ. Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application. Curr. Opin. Colloid In. 2014;19:417–427. doi: 10.1016/j.cocis.2014.07.002. [DOI] [Google Scholar]
  • 19.Yoo SH, Song YB, Chang PS, Lee HG. Microencapsulation of a-tocopherol using sodium alginate and its controlled release properties. Int. J. Biol. Macromol. 2006;38:25–30. doi: 10.1016/j.ijbiomac.2005.12.013. [DOI] [PubMed] [Google Scholar]
  • 20.Dalluge JJ, Nelson BC. Determination of tea catechins. J. Chromatogr. A. 2000;881:411–424. doi: 10.1016/S0021-9673(00)00062-5. [DOI] [PubMed] [Google Scholar]
  • 21.Lee J-S, Kim EJ, Chung D, Lee HG. Characteristics and antioxidant activity of catechin-loaded calcium pectinate gel beads prepared by internal gelation. Colloid. Surface. B. 2009;74:17–22. doi: 10.1016/j.colsurfb.2009.06.018. [DOI] [PubMed] [Google Scholar]
  • 22.Cacace J, Reilly EE, Amann A. Comparison of the dissolution of metaxalone tablets (Skelaxin) using USP apparatus 2 and 3. AAPS PharmSciTech. 2004;5:29–31. doi: 10.1208/pt050106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Kumar A, Lahiri SS, Singh H. Development of PEGDMA: MAA based hydrogel microparticles for oral insulin delivery. Int. J. Pharm. 2006;323:117–124. doi: 10.1016/j.ijpharm.2006.05.050. [DOI] [PubMed] [Google Scholar]
  • 24.Shishikura Y, Khokhar S, Murray BS. Effects of tea polyphenols on emulsification of olive oil in a small intestine model system. J. Agr. Food Chem. 2006;54:1906–1913. doi: 10.1021/jf051988p. [DOI] [PubMed] [Google Scholar]
  • 25.Xu QY, Nakajima M, Nabetani H, Ichikawa S, Liu XQ. Factors affecting the properties of ethanol-in-oil emulsions. Food Sci. Technol. Res. 2002;8:36–41. doi: 10.3136/fstr.8.36. [DOI] [Google Scholar]
  • 26.Devani M, Ashford M, Craig DQ. The emulsification and solubilisation properties of polyglycolysed oils in self-emulsifying formulations. J. Pharm. Pharmacol. 2004;56:307–316. doi: 10.1211/0022357022872. [DOI] [PubMed] [Google Scholar]
  • 27.Chan ES. Preparation of Ca-alginate beads containing high oil content: Influence of process variables on encapsulation efficiency and bead properties. Carbohyd. Polym. 2011;84:1267–1275. doi: 10.1016/j.carbpol.2011.01.015. [DOI] [Google Scholar]
  • 28.Fan W, Yan W, Xu Z, Ni H. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloid. Surface. B. 2012;90:21–27. doi: 10.1016/j.colsurfb.2011.09.042. [DOI] [PubMed] [Google Scholar]
  • 29.Draget KI, Gåserød O, Aune I, Andersen PO, Storbakken B, Stokke BT, Smidsrød O. Effects of molecular weight and elastic segment flexibility on syneresis in Ca-alginate gels. Food Hydrocolloid. 2001;15:485–490. doi: 10.1016/S0268-005X(01)00046-7. [DOI] [Google Scholar]
  • 30.Chan L, Jin Y, Heng P. Cross-linking mechanisms of calcium and zinc in production of alginate microspheres. Int. J. Pharm. 2002;242:255–258. doi: 10.1016/S0378-5173(02)00169-2. [DOI] [PubMed] [Google Scholar]
  • 31.Yoncheva K, Vandervoort J, Ludwig A. Influence of process parameters of highpressure emulsification method on the properties of pilocarpine-loaded nanoparticles. J. Microencapsul. 2003;20:449–458. doi: 10.1080/0265204021000058429. [DOI] [PubMed] [Google Scholar]
  • 32.Yu CY, Zhang XC, Zhou FZ, Zhang XZ, Cheng SX, Zhuo RX. Sustained release of antineoplastic drugs from chitosan-reinforced alginate microparticle drug delivery systems. Int. J. Pharm. 2008;357:15–21. doi: 10.1016/j.ijpharm.2008.01.030. [DOI] [PubMed] [Google Scholar]
  • 33.Sriamornsak P, Thirawong N, Korkerd K. Swelling, erosion and release behavior of alginate-based matrix tablets. Eur. J. Pharm. Biopharm. 2007;66:435–450. doi: 10.1016/j.ejpb.2006.12.003. [DOI] [PubMed] [Google Scholar]
  • 34.Hiorth M, Versland T H J, Tho I, Sande SA. Immersion coating of pellets with calcium pectinate and chitosan. Int. J. Pharm. 2006;308:25–32. doi: 10.1016/j.ijpharm.2005.10.012. [DOI] [PubMed] [Google Scholar]
  • 35.Amancha KP, Balkundi S, Lvov Y, Hussain A. Pulmonary sustained release of insulin from microparticles composed of polyelectrolyte layer-by-layer assembly. Int. J. Pharm. 2014;466:96–108. doi: 10.1016/j.ijpharm.2014.02.006. [DOI] [PubMed] [Google Scholar]
  • 36.Calejo MT, Kjøniksen AL, Maleki A, Nyström B, Sande SA. Microparticles based on hydrophobically modified chitosan as drug carriers. J. Appl. Polym. Sci. 2014;131:1–11. doi: 10.1002/app.40055. [DOI] [Google Scholar]
  • 37.Pasparakis G, Bouropoulos N. Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate–chitosan beads. Int. J. Pharm. 2006;323:34–42. doi: 10.1016/j.ijpharm.2006.05.054. [DOI] [PubMed] [Google Scholar]
  • 38.Agarwal T, Narayana SGH, Pal K, Pramanik K, Giri S, Banerjee I. Calcium alginate-carboxymethyl cellulose beads for colon-targeted drug delivery. Int. J. Biol. Macromol. 2015;75:409–417. doi: 10.1016/j.ijbiomac.2014.12.052. [DOI] [PubMed] [Google Scholar]
  • 39.Remunan-Lopez C, Bodmeier R. Mechanical, water uptake and permeability properties of crosslinked chitosan glutamate and alginate films. J. Control. Release. 1997;44:215–225. doi: 10.1016/S0168-3659(96)01525-8. [DOI] [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES