Abstract
This survey was performed to estimate the levels of pathogenic microorganisms, antibiotic residues, and heavy metals in seven Korean freshwater aquaculture species including Anguilla japonica, Cyprinus carpio nudus, Oncorhynchus mykiss, Pseudobagrus fulvidraco, Semisulcospira coreana, Silurus asotus, and Trionyxs sinensis. None of the ten foodborne pathogens tested in this study were found in any of the species collected from any of the aquaculture farms. Furthermore, no banned chemicals or antibiotic residues were found in any of the species collected from any of the aquaculture farms, except enrofloxacin, which was below guideline limits (0.1 mg/kg). Finally, no species had lead, cadmium, total arsenic, or total mercury concentrations above the Ministry of Food and Drug Safety (MSDF) guidelines (0.5, 0.5, 0.1, and 0.5 mg/kg, respectively). These results ensure the safety of freshwater aquaculture species and will be useful for developing consumption advisories of freshwater fishes.
Keywords: seven Korean freshwater aquaculture species, pathogenic microorganisms, antibiotic residues, heavy metals
References
- 1.Statistics Korea. Inland Fishery Production. Available from: http://kostat.go.kr Accessed Sep. 17, 2015.
- 2.Ministry of Ocean and Fisheries. Fisheries Production Statistics. Available from: http://www. fips.go.kr Accessed Jun. 20, 2015.
- 3.Lee JS, Kim DY. The current status and future directions of Korean inland freshwater aquaculture. J. Fish. Bus. Adm. 2006;37:1–24. [Google Scholar]
- 4.Harwanto D, Lee GH, Park SM, Choi JS, Kim MR, Hong YK. Oral administration of a hot water extract of the softshell turtle (Trionyx sinensis) improves exercise performance. Prev. Nutr. Food Sci. 2015;20:133–136. doi: 10.3746/pnf.2015.20.2.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Lee GH, Harwanto D, Park SM, Choi JS, Kim MR, Hong YK. Hot water extract of the leather carp Cyprinus carpionudus improves exercise performance. Prev. Nutr. Food Sci. 2015;20:246–252. doi: 10.3746/pnf.2015.20.4.246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Lee GH, Harwanto D, Choi JS, Kim MR, Jin DH, Jin HJ. Hong YK. Protein-rich extract of the bagrid catfish Pseudobagrus fulvidraco improves exercise performance and anti-fatigue. Curr. Nutr. Food Sci. 12: in press (2016)
- 7.Lee HC, Yoo CG. A study on the preferences and consumer behavior for inland water fishes. Research on inland fish preferences and consumer behavior patterns. J. Fish. Bus. Adm. 2011;28:1–18. [Google Scholar]
- 8.Cabello FC. Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for the environment. Environ. Microbiol. 2006;8:1137–1144. doi: 10.1111/j.1462-2920.2006.01054.x. [DOI] [PubMed] [Google Scholar]
- 9.Samanidou VF, Evaggelopoulou EN. Analytical strategies to determine antibiotic residues in fish. J. Sep. Sci. 2007;30:2549–2569. doi: 10.1002/jssc.200700252. [DOI] [PubMed] [Google Scholar]
- 10.Jo MR, Park K, Lee HJ, Lee TS, Jung SH, Lee DS, Yoon HD, Kim PH. Distribution of Fluoroquinolones in the Carp and Eel following their oral administration. J. Korean Fish. Soc. 2010;43:623–628. [Google Scholar]
- 11.Choi JS, Han JJ, Lee DH, Hong SY, Lim SR. Proceeding of the annual meeting and symposium of Korean Society of Fisheries and Aquatic Science. Busan, Korea: Korean Society of Fisheries and Aquatic Science; 2010. Monitoring of antibiotic residues in inland aquaculture fishes from Gyeonggi-do, Korea; p. 72. [Google Scholar]
- 12.Korea Food and Drug Administration (KFDA). Malachite green. Risk Profile. Seoul, Korea. pp. 1-70 (2010)
- 13.Kyunghyang Shinmum. Detection of malachite green in aquacultured catfish from Seoul Garak Market. Available from: http://news.khan.co.kr. Accessed Mar. 12, 2015.
- 14.Dhanakumar S, Solaraj G, Mohanraj R. Heavy metal partitioning in sediments and bioaccumulation in commercial fish species of three major reservoirs of river Cauvery delta region, India. Ecotox. Environ. Safe. 2015;13:145–151. doi: 10.1016/j.ecoenv.2014.11.032. [DOI] [PubMed] [Google Scholar]
- 15.Kim DH, Kim YG, Jang BK. Contents of lead, cadmium and zinc in bone, muscle and fin of Carassius carassius from middle stream of Nakdong river, Korea. Korean J. Prev. Med. 1988;21:307–319. [Google Scholar]
- 16.Choi Y, Kim DH. Contents of total and organic mercury in bone, muscle and fin of Carassius carassius from middle stream of Nakdong river, Korea. Korean J. Rural Med. 1993;18:131–140. [Google Scholar]
- 17.Kim IS, Han SH, Ou SK. A study on the heavy metal contents in Carassius auratus of Jeonlabuk-do area. J. Korean Soc. Food Sci. Nutr. 1993;22:484–488. [Google Scholar]
- 18.Shin MJ, Park YM, Lee JE, Seo EW. Heavy metal contents in tissues of fishes in Andong and Imha reservoirs. J. Life Sci. 2010;20:1378–1384. doi: 10.5352/JLS.2010.20.9.1378. [DOI] [Google Scholar]
- 19.Kim HY, Kim SY, Lee JH, Jang YM, Lee MS, Park JS, Lee KH, Kim JC. Monitoring of heavy metals in fishes in Korea-As, Cd, Cu, Pb, Mn, Zn, total Hg. Korean J. Food Sci. Technol. 2007;39:353–359. [Google Scholar]
- 20.Kim CK, Lee TW, Lee KT, Lee JH, Lee CB. Nationwide monitoring of mercury in wild and farmed fish from fresh and coastal waters of Korea. Chemosphere. 2012;89:1360–1368. doi: 10.1016/j.chemosphere.2012.05.093. [DOI] [PubMed] [Google Scholar]
- 21.Ministry of Food Drug Safety (MFDS), Food Code. Korean Foods Industry Association, Seoul, Korea (2014)
- 22.National Fisheries Research and Development (NFRDI), Analysis of antibiotic using HPLC for fishery product. Gudeok Press, Busan, Korea. pp. 1-99 (2006)
- 23.Gram L, Huss HH. Microbiological spoilage of fish and fish products. Int. J. Food Microbiol. 1996;33:121–137. doi: 10.1016/0168-1605(96)01134-8. [DOI] [PubMed] [Google Scholar]
- 24.Junior P A A, Baldin JC, Amaral LA. Microbiological quality of whole and filleted shelf-tilapia. Aquaculture. 2014;433:196–200. doi: 10.1016/j.aquaculture.2014.06.015. [DOI] [Google Scholar]
- 25.Suhalim RR, Huanga YW, Chen J. Interaction of Escherichia coli O157:H7 E318 cells with the mucus of harvested channel catfish (Ictalurus punctatus) LWTFood Sci. Technol. 2007;40:1266–1270. [Google Scholar]
- 26.El-Shafai SA, Gijzen HJ, Nasr FA, El-Gohary FA. Microbial quality of tilapia reared in fecal-contaminated ponds. Environ. Res. 2004;95:231–238. doi: 10.1016/j.envres.2004.01.002. [DOI] [PubMed] [Google Scholar]
- 27.Guzmán MC, de los Angeles Bistoni M, Tamagnini LM, González RD. Recovery of Escherichia coli in fresh water fish, Jenynsia multidentata and Bryconamericus iheringi. Water Res. 2004;38:2368–2374. doi: 10.1016/j.watres.2004.02.016. [DOI] [PubMed] [Google Scholar]
- 28.Kim TJ, Min JG, Park SM, Choi JS, Lee MS, Kim YM, Chung YH. Development of an Hazard Analysis Critical Control Point application model for a flatfish (Paralichthys olivaceus) aquaculture farm. J. Fish. Mar. Sci. Edu. 2013;25:1055–1067. [Google Scholar]
- 29.Kim YM, Lee MS, Chung YH. The Residues of antibiotics (tetracycline, oxolinic acid and ciplofloxacin) and malachite green in cultured rainbow trout. J. Fish. Mar. Sci. Edu. 2013;25:828–835. [Google Scholar]
- 30.Srivastava S, Sinha R, Roy D. Toxicological effects of malachite green. Aquat. Toxicol. 2004;66:319–329. doi: 10.1016/j.aquatox.2003.09.008. [DOI] [PubMed] [Google Scholar]
- 31.Lee JB, Kim HY, Jang YM, Song JY, Woo SM, Park MS, Lee HS, Lee SK, Kim M. Determination of malachite green and crystal violet in processed fish products. Food Addit. Contam. 2010;27:953–961. doi: 10.1080/19440041003705839. [DOI] [PubMed] [Google Scholar]
- 32.Maita M. HACCP system: A safety-ring for farmed fish. Fisheries Sci. 2002;68:S14781–S1484. [Google Scholar]
- 33.Abe N, Fuchino K. Survey of residual antibiotic agents in cultured fish and shellfish. Shokuhin Eiseigaku Zasshi. 2001;42:335–338. doi: 10.3358/shokueishi.42.335. [DOI] [PubMed] [Google Scholar]
- 34.Done HY, Halden RU. Reconnaissance of 47 antibiotics and associated microbial risks in seafood sold in the United States. J. Hazard. Mater. 2015;282:10–17. doi: 10.1016/j.jhazmat.2014.08.075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Hussain M, Muhammad S, Malik RN, Khan MU, Farooq U. Status of heavy metal residues in fish species of Pakistan. Rev. Environ. Contam. T. 2014;230:111–132. doi: 10.1007/978-3-319-04411-8_5. [DOI] [PubMed] [Google Scholar]
- 36.MacFarlane GR, Burchett MD. Cellular distribution of copper, lead and zinc in the grey mangrove, Avicennia marina (Forsk.) Vierh. Aquat. Bot. 2000;68:45–59. doi: 10.1016/S0304-3770(00)00105-4. [DOI] [Google Scholar]
- 37.Nussey G, van Vuren JHJ, du Preez HH. Bioaccumulation of chromium, manganese, nickel and lead in the tissues of the moggel, Labeo umbratus (Cyprinidae), from Witbank Dam, Mpumalanga. Water SA. 2000;26:269–284. [Google Scholar]
- 38.Kim YC, Han SH. A study on heavy metal contents of the fresh water fish, and the shellfish in Korea. J. Food Hyg. Saf. 1999;14:305–318. [Google Scholar]
- 39.Sheo HJ, Hong SS, Song CY, Jeon SR. A study on the contents of heavy metals in freshwater fishes of Yeong San river. J. Kor. Soc. Food Sci. Nutr. 1991;20:615–620. [Google Scholar]
- 40.Shon DH, Hong SG, Song CY, Jeon SR. A study on the total mercury contents in fresh-water fishes. Korean J. Food Sci. Technol. 1982;14:168–173. [Google Scholar]
- 41.Ward DM, Nislow KH, Chen CY, Folt CL. Rapid, efficient growth reduces mercury concentrations in stream-dwelling Atlantic salmon. Trans. Am. Fish. Soc. 2010;139:1–10. doi: 10.1577/T09-032.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Staudinger MD. Species-and size-specific variability of mercury concentrations in four commercially important finfish and their prey from the northwest Atlantic. Mar. Pollut. Bull. 2011;62:734–740. doi: 10.1016/j.marpolbul.2011.01.017. [DOI] [PubMed] [Google Scholar]