Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2016 Feb 29;25(1):283–291. doi: 10.1007/s10068-016-0041-7

Comparative analysis of phytochemicals and polar metabolites from colored sweet potato (Ipomoea batatas L.) tubers

Soo-Yun Park 1, So Young Lee 1, Jung Wook Yang 2, Joon-Seol Lee 2, Sung-Dug Oh 1, Seonwoo Oh 1, Si Myung Lee 1, Myung-Ho Lim 1, Soon Ki Park 3, Jae-Seon Jang 4, Hyun Suk Cho 1, Yunsoo Yeo 1,
PMCID: PMC6049344  PMID: 30263269

Abstract

We determined the phytochemical diversity, including carotenoids, flavonoids, anthocyanins, and phenolic acids, in sweet potatoes (Ipomoea batatas L.) with distinctive flesh colors (white, orange, and purple) and identified hydrophilic primary metabolites. Carotenoid content was considerably higher in orange-fleshed sweet potatoes, wherein β-carotene was the most plentiful, and anthocyanins were detected only in purple-fleshed sweet potatoes. The levels of phenolic acids and flavonoids were relatively higher in purple-fleshed sweet potatoes than those in the other two varieties. Forty-one primary and 18 secondary metabolite profiles were subjected to multivariate statistical analyses, which fully distinguished among the varieties and separated orange- and purple-fleshed sweet potatoes from white-fleshed sweet potatoes based on the high levels of sugars, sugar alcohols, and secondary metabolites. This is the first study to determine comprehensive metabolic differences among different color-fleshed sweet potatoes and provides useful information for genetic manipulation of sweet potatoes to influence primary and secondary metabolism.

Keywords: carotenoid, metabolomics, partial least squares discriminant analysis, phenolic acid, sweet potato

References

  • 1.Art ICW, Hollman PCH. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr. 2005;81:317–325. doi: 10.1093/ajcn/81.1.317S. [DOI] [PubMed] [Google Scholar]
  • 2.Prakash D, Gupta KR. The antioxidant phytochemicals of nutraceutical importance. Open Nutraceut. J. 2009;2:20–35. doi: 10.2174/1876396000902010020. [DOI] [Google Scholar]
  • 3.Luo C, Wang X, Gao G, Wang L, Li Y, Sun C. Identification and quantification of free, conjugate and total phenolic compounds in leaves of 20 sweet potato cultivars by HPLC-DAD and HPLC-ESI-MS/MS. Food Chem. 2013;141:2697–2706. doi: 10.1016/j.foodchem.2013.05.009. [DOI] [PubMed] [Google Scholar]
  • 4.Bovell-Benjamin AC. Sweet potato: A review of its past, present, and future role in human nutrition. Adv. Food Nutr. Res. 2007;52:1–59. doi: 10.1016/S1043-4526(06)52001-7. [DOI] [PubMed] [Google Scholar]
  • 5.Lee JJ, Kim YH, Kwak YS, An JY, Kim PJ, Lee BH, Kumar V, Park KW, Chang ES, Jeong JC, Lee HS, Kwak SS. A comparative study of proteomic differences betweenpencil and storage roots of sweet potato (Ipomoea batatas (L.) Lam.) Plant Physiol. Biotech. 2015;87:92–101. doi: 10.1016/j.plaphy.2014.12.010. [DOI] [PubMed] [Google Scholar]
  • 6.Carreno-Quintero N, Acharjee A, Maliepaard C, Bachem CW, Mumm R, Bouwmeester H, Visser RG, Keurentjes JJ. Untargeted metabolic quantitative trait loci analyses reveal a relationship between primary metabolism and potato tuber quality. Plant Physiol. 2012;158:1306–1318. doi: 10.1104/pp.111.188441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Kim JK, Park SY, Lim SH, Yeo Y, Cho HS, Ha SH. Comparative metabolic profiling of pigmented rice (Oryza sativa L.) cultivars reveals primary metabolites are correlated with secondary metabolites. J. Cereal Sci. 2013;57:14–20. doi: 10.1016/j.jcs.2012.09.012. [DOI] [Google Scholar]
  • 8.Park SY, Lim SH, Ha SH, Yeo Y, Park WT, Kwon DY, Park SU, Kim JK. Metabolite profiling approach reveals the interface of primary and secondary metabolism in colored cauliflowers (Brassica oleracea L. ssp. botrytis) J. Agr. Food Chem. 2013;61:6999–7007. doi: 10.1021/jf401330e. [DOI] [PubMed] [Google Scholar]
  • 9.Park SY, Choi SR, Lim SH, Yeo Y, Kweon SJ, Bae YS, Kim KW, Im KH, Ahn SK, Ha SH, Park SU, Kim JK. Identification and quantification of carotenoids in paprika fruits and cabbage, kale, and lettuce leaves. J. Korean Soc. Appl. Bi. 2014;57:355–358. doi: 10.1007/s13765-014-4081-5. [DOI] [Google Scholar]
  • 10.Kim JK, Lee SY, Chu SM, Lim SH, Suh SC, Lee YT, Cho HS, Ha SH. Variation and correlation analysis of flavonoids and carotenoids in Korean pigmented rice (Oryza sativa L.) cultivars. J. Agr. Food Chem. 2010;58:12804–12809. doi: 10.1021/jf103277g. [DOI] [PubMed] [Google Scholar]
  • 11.Park SY, Kim JK, Lee SY, Oh SD, Lee SM, Jang JS, Yang CI, Won YJ, Yeo Y. Comparative analysis of phenolic acid profiles of rice grown under different regions using multivariative analysis. Plant Omics J. 2014;7:430–437. [Google Scholar]
  • 12.Kimura M, Kobori CN, Rodriguez-Amaya DB, Nestel P. Screening and HPLC methods for carotenoids in sweet potato, cassava and maie for plant breeding trials. Food Chem. 2007;100:1734–1746. doi: 10.1016/j.foodchem.2005.10.020. [DOI] [Google Scholar]
  • 13.Simonne AH, Kays SJ, Koehler PE, Eitenmiller RR. Assessment of β-carotene content in sweet potato breeding lines in relation to dietary requirements. J. Food Compos. Anal. 1993;6:336–345. doi: 10.1006/jfca.1993.1037. [DOI] [Google Scholar]
  • 14.Grace MH, Yousef GG, Gustafson SJ, Truong VD, Yencho GC, Lila MA. Phytochemical changes in phenolics, anthocyanins, ascorbic acid, and carotenoids associated with sweet potato storage and impacts on bioactive properties. Food Chem. 2014;145:717–724. doi: 10.1016/j.foodchem.2013.08.107. [DOI] [PubMed] [Google Scholar]
  • 15.Teow CC, Truong VD, McFeeters RF, Thompson RL, Pecoa KV, Yencho GC. Antioxidant activities, phenolic and β-carotene contents of sweet potato genotypes with varying flesh colours. Food Chem. 2007;103:829–838. doi: 10.1016/j.foodchem.2006.09.033. [DOI] [Google Scholar]
  • 16.Ojong PB, Njiti V, Guo Z, Gao M, Besong S, Barnes SL. Variation of flavonoid content among sweet potato accessions. J. Am. Soc. Hortic. Sci. 2008;133:819–824. [Google Scholar]
  • 17.Li H, Deng Z, Zhu H, Hu C, Liu R, Young JC, Tsao R. Highly pigmented vegetables: Anthocyanin compositions and their role in antioxidant activities. Food Res. Int. 2012;46:250–259. doi: 10.1016/j.foodres.2011.12.014. [DOI] [Google Scholar]
  • 18.Lee MJ, Park JS, Choi DS, Jung MY. Characterization and quantitation of anthocyanins in purple-fleshed sweet potatoes cultivated in Korea by HPLCDAD and HPLC-ESI-QTOF-MS/MS. J. Agr. Food Chem. 2013;61:3148–3158. doi: 10.1021/jf3055455. [DOI] [PubMed] [Google Scholar]
  • 19.Montilla EC, Hillebrand S, Butschbach D, Baldermann S, Watanabe N, Winterhalter P. Preparative isolation of anthocyanins from Japanese purple sweet potatp (lpomoea batatas L.) varieties by high-speed countercurrent chromatography. J. Agr. Food Chem. 2010;58:9899–9904. doi: 10.1021/jf101898j. [DOI] [PubMed] [Google Scholar]
  • 20.Park SY, Park WT, Park YC, Ju JI, Park SU, Kim JK. Metabolomics for the quality assessment of Lycium chinense fruits. Biosci. Biotech. Bioch. 2012;76:2188–2194. doi: 10.1271/bbb.120453. [DOI] [PubMed] [Google Scholar]
  • 21.Padda MS, Picha DH. Quantification of phenolic acids and antioxidant activity in sweet potato genotypes. Sci. Hortic.-Amsterda. 2008;119:17–20. doi: 10.1016/j.scienta.2008.07.008. [DOI] [Google Scholar]
  • 22.Li X, Kim JK, Park SY, Zhao S, Kim YB, Lee S, Park SU. Comparative analysis of flavonoids and polar metabolite profiling of Tanno-original and Tanno-high rutin buckwheat. J. Agr. Food Chem. 2014;62:2701–2708. doi: 10.1021/jf4049534. [DOI] [PubMed] [Google Scholar]
  • 23.Brereton RG. Validation and optimization. 2009. pp. 129–149. [Google Scholar]
  • 24.Eriksson L, Byrne T, Johansson E, Jm Trygg Vikström C. Multi-and megavariate data analysis: Basic principles and applications. Umetrics Academy. 2013. pp. 425–468. [Google Scholar]
  • 25.Kim JK, Choi SR, Lee J, Park SY, Song SY, Na J, Kim SW, Kim SJ, Nou IS, Lee YH, Park SU, Kim HR. Metabolic diffetentiation of diamondback moth (Plutella xylostella (L.)) resistance in cabbage (Brassica oleracea L. ssp. capitata) J. Agr. Food Chem. 2013;61:11222–11230. doi: 10.1021/jf403441t. [DOI] [PubMed] [Google Scholar]
  • 26.El Far MMM, Taie HAA. Antioxidant activities, total anthocyanins, phenolics and flavonoids contents of some sweet potato genotypes under stress of different concentrations of sucrose and sorbitol. Aus. J. Basic. Appl. Sci. 2009;3:3609–3616. [Google Scholar]
  • 27.Lee S, Do SG, Kim SY, Kim J, Jin Y, Lee CH. Mass spectrometry-based metabolite profiling and antioxidant activity of Aloe vera (Aloe barbadensis Miller) in different growth stages. J. Agr. Food Chem. 2012;60:11222–11228. doi: 10.1021/jf3026309. [DOI] [PubMed] [Google Scholar]
  • 28.Steuer R. On the analysis and interpretation of correlations in metabolomic data. Brief. Bioinform. 2006;7:151–158. doi: 10.1093/bib/bbl009. [DOI] [PubMed] [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES