Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2016 Feb 29;25(1):165–171. doi: 10.1007/s10068-016-0025-7

Antifungal activities of anthocyanins from purple sweet potato in the presence of food preservatives

Huiliang Wen 1,, Jingjing Kang 1, Dandan Li 1, Wen Wen 1, Fubin Yang 1, Haiwei Hu 1, Chongbo Liu 2
PMCID: PMC6049351  PMID: 30263253

Abstract

Effects of anthocyanins from purple sweet potato (APSP) against the fungal growth of Geotrichum candidum and Candida albicans were assessed. Response surface methodology was applied for optimization of proportions of sodium benzoate, potassium sorbate, and APSP. Optimum concentrations against G. candidum were 0.300 mg/mL of sodium benzoate, 0.290mg/mL of potassium sorbate, and 13.9mg/mL of APSP. Optimum concentrations against C. albicans were 0.380 mg/mL of sodium benzoate, 0.240 mg/mL of potassium sorbate, and 3.56 mg/mL of APSP. APSP exhibited enhanced antifungal properties in the presence of food preservatives.

Keywords: anthocyanins from purple sweet potato (APSP), food preservative, antifungal compound, antifungal activity, response surface methodology (RSM)

References

  • 1.Lv XL, Ma SQ, Ma LQ. Bioinformatics and Biomedical Engineering. 2009. Anthocyanins from purple sweet potato are hypolipidemic and antioxidative in rats; pp. 1–4. [Google Scholar]
  • 2.Lila MA. Anthocyanins and human health: An in vitro investigative approach. BioMed Res. Int. 2004;5:306–313. doi: 10.1155/S111072430440401X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Fernandes I, Marques F, de Freitas V, Mateus N. Antioxidant and antiproliferative properties of methylated metabolites of anthocyanins. Food Chem. 2013;141:2923–2933. doi: 10.1016/j.foodchem.2013.05.033. [DOI] [PubMed] [Google Scholar]
  • 4.Mejuto JC, Garrido J. Influence of wine-making protocol and fining agents on the evolution of the anthocyanin content, colour and general organoleptic quality of Vinhao wines. Food Chem. 2006;97:130–136. doi: 10.1016/j.foodchem.2005.03.030. [DOI] [Google Scholar]
  • 5.Gonnet JF, Fenet B. Cyclamen red colors based on a macrocyclic anthocyanin in carnation flowers. J. Agr. Food Chem. 2000;48:22–26. doi: 10.1021/jf9907642. [DOI] [PubMed] [Google Scholar]
  • 6.Francis FJ, Markakis PC. Food colorants: Anthocyanins. Crit. Rev. Food Sci. 1989;28:273–314. doi: 10.1080/10408398909527503. [DOI] [PubMed] [Google Scholar]
  • 7.Rice-Evans CA, Packer L. Flavonoids in health and disease. Antioxidants in Health and Diseas. 1998;7:111–136. [Google Scholar]
  • 8.Smith MAL, Marley KA, Seigler D, Singletary KW, Meline B. Bioactive properties of wild blueberry fruits. J. Food Sci. 2000;65:352–356. doi: 10.1111/j.1365-2621.2000.tb16006.x. [DOI] [Google Scholar]
  • 9.Wang CJ, Wang JM, Lin WL, Chu CY, Chou FP, Tseng TH. Protective effect of Hibiscus anthocyanins against tert-butyl hydroperoxide-induced hepatic toxicity in rats. Food Chem. Toxicol. 2000;38:411–416. doi: 10.1016/S0278-6915(00)00011-9. [DOI] [PubMed] [Google Scholar]
  • 10.Cheng CL, Wang ZY. Bacteriostasic activity of anthocyanin of Malva sylvestris. J. For. Res.-JP. 2006;17:83–85. doi: 10.1007/s11676-006-0020-6. [DOI] [Google Scholar]
  • 11.Zhao X, Zhang C, Guigas C, Ma Y, Corrales M, Tauscher B, Hu X. Composition, antimicrobial activity, and antiproliferative capacity of anthocyanin extracts of purple corn (Zea mays L.) from China. Eur. Food Res. Technol. 2009;228:759–765. doi: 10.1007/s00217-008-0987-7. [DOI] [Google Scholar]
  • 12.Holzapfel WH, Geisen R, Schillinger U. Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes. Int. J. Food Microbiol. 1995;24:343–362. doi: 10.1016/0168-1605(94)00036-6. [DOI] [PubMed] [Google Scholar]
  • 13.Lee JY, Kim YS, Shin DH. Antimicrobial synergistic effects of linolenic acid in combination with preservatives against foodborne bacteria. Food Sci. Biotechnol. 2004;13:323–327. doi: 10.1201/9780203970140.ch7. [DOI] [Google Scholar]
  • 14.Tsukui A, Suzuki A, Komaki K, Terahara N, Yamakawa O, Hayashi K. Stability and composition ratio of anthocyanin pigments from Ipomoea batatas Poir. J. Jpn. Soc. Food Sci. 1999;46:148–154. doi: 10.3136/nskkk.46.148. [DOI] [Google Scholar]
  • 15.Xu J, Wang W, Liang H, Zhang Q, Li Q. Optimization of ionic liquid based ultrasonic assisted extraction of antioxidant compounds from Curcuma longa L. using response surface methodology. Ind. Crop. Prod. 2015;76:487–493. doi: 10.1016/j.indcrop.2015.07.025. [DOI] [Google Scholar]
  • 16.Ahmed M, Akter M, Eun JB. Optimisation of drying conditions for the extraction of β-carotene, phenolic and ascorbic acid content from yellowfleshed sweet potato using response surface methodology. Int. J. Food Sci. Tech. 2011;46:1356–1362. doi: 10.1111/j.1365-2621.2011.02612.x. [DOI] [PubMed] [Google Scholar]
  • 17.Ku CS, Mum SP. Optimization of the extraction of anthocyanin from Bokbunja (Rubus coreanus Miq) marc produced during traditional wine processing and characterization of the extracts. Bioresource Technol. 2008;99:8325–8330. doi: 10.1016/j.biortech.2008.03.013. [DOI] [PubMed] [Google Scholar]
  • 18.Mundra P, Desai K, Lele SS. Application of response surface methodology to cell immobilization for the production of palatinose. Bioresource Technol. 2007;98:2892–2896. doi: 10.1016/j.biortech.2006.09.046. [DOI] [PubMed] [Google Scholar]
  • 19.Lapornik B, Prosek M, Golc Wondra A. Comparison of extracts prepared from plant by-products using different solvents and extraction time. J. Food Eng. 2005;71:214–222. doi: 10.1016/j.jfoodeng.2004.10.036. [DOI] [Google Scholar]
  • 20.Fan G, Han Y, Gu Z, Chen D. Optimizing conditions for anthocyanins extraction from purple sweet potato using response surface methodology (RSM) LWTFood Sci. Technol. 2008;41:155–160. [Google Scholar]
  • 21.Tsukui A, Kuwano K, Mitamura T. Anthocyanin pigment isolated from purple root of sweet potato. Kaseigaku Zassh. 1983;34:153–159. [Google Scholar]
  • 22.Kang DH, Siragusa GR. A rapid twofold dilution method for microbial enumeration and resuscitation of uninjured and sublethally injured bacteria. Lett. Appl. Microbiol. 2001;33:232–236. doi: 10.1046/j.1472-765x.2001.00988.x. [DOI] [PubMed] [Google Scholar]
  • 23.Lestari ES, Severin JA, Filius PM, Kuntaman K, Offra Duerink D, Hadi U, Wahjono H, Verbrugh HA. 'Antimicrobial Resistance in Indonesia: Prevalence and Prevention' (AMRIN). Comparison of the accuracy of disk diffusion zone diameters obtained by manual zone measurements to that by automated zone measurements to determine antimicrobial susceptibility. J. Microbiol. Meth. 2008;75:177–181. doi: 10.1016/j.mimet.2008.05.020. [DOI] [PubMed] [Google Scholar]
  • 24.Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966;45:493–496. [PubMed] [Google Scholar]
  • 25.Rauter AP, Lucas S, Almeida T, Sacoto D, Ribeiro V, Justino J, Neves A, Silva FV, Oliveira MC, Ferreira MJ, Santos MS, Barbosa E. Synthesis, surface active and antimicrobial properties of new alkyl 2,6-dideoxy-L-arabino-hexopyranosides. Carbohydr. Res. 2005;340:191–201. doi: 10.1016/j.carres.2004.11.020. [DOI] [PubMed] [Google Scholar]
  • 26.Liu X, Mu T, Sun H, Zhang M, Chen J. Optimisation of aqueous two-phase extraction of anthocyanins from purple sweet potatoes by response surface methodology. Food Chem. 2013;141:3034–3041. doi: 10.1016/j.foodchem.2013.05.119. [DOI] [PubMed] [Google Scholar]
  • 27.He MX, Li HY, Mo XQ. Optimization of application parameters of soil seed bank in vegetation recovery via response surface methodology. Ecol. Eng. 2015;84:362–369. doi: 10.1016/j.ecoleng.2015.09.009. [DOI] [PubMed] [Google Scholar]
  • 28.Liyana-Pathirana C, Shahidi F. Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem. 2005;93:47–56. doi: 10.1016/j.foodchem.2004.08.050. [DOI] [Google Scholar]
  • 29.Cai W, Gu X, Tang J. Extraction, purification, and characterization of the polysaccharides from Opuntia milpa alta. Carbohyd. Polym. 2008;71:403–410. doi: 10.1016/j.carbpol.2007.06.008. [DOI] [Google Scholar]
  • 30.Qiao D, Kea C, Hu B, Luoa J, Yea H, Suna Y, Yana X, Zenga X. Antioxidant activities of polysaccharides from Hyriopsis cumingii. Carbohyd. Polym. 2009;78:199–204. doi: 10.1016/j.carbpol.2009.03.018. [DOI] [Google Scholar]
  • 31.Ravikumar K, Ramalingam S, Krishnan S, Balu K. Application of response surface methodology to optimize the process variables for reactive red and acid brown dye removal using a novel adsorbent. Dyes Pigment. 2006;70:18–26. doi: 10.1016/j.dyepig.2005.02.004. [DOI] [Google Scholar]
  • 32.Cacace JE, Mazza G. Optimization of extraction of anthocyanins from black currants with aqueous ethanol. J. Food Sci. 2003;68:240–248. doi: 10.1111/j.1365-2621.2003.tb14146.x. [DOI] [Google Scholar]
  • 33.Muralidhar RV, Chirumamilla RR, Ramachandran VN, Marchant R, Nigam P. Racemic resolution of RS-baclofen using lipase from Candida cylindracea. Mededelingen (Rijksuniversiteit te Gent) Fakulteit van de Landbouwkundige en Toegepaste Biologische Wetenschappen. 2001;66:227. [PubMed] [Google Scholar]
  • 34.Zhong K, Wang Q. Optimization of ultrasonic extraction of polysaccharides from dried longan pulp using response surface methodology. Carbohyd. Polym. 2010;80:19–25. doi: 10.1016/j.carbpol.2009.10.066. [DOI] [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES