Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2016 Feb 29;25(1):261–266. doi: 10.1007/s10068-016-0038-2

Combined effects of high-pressure and thermal treatments on lipid oxidation and enzymes in pork

Yechuan Huang 2,, Yanrong Wang 1, Zhaomin Wu 1, Feng Li 2
PMCID: PMC6049356  PMID: 30263266

Abstract

The relationship between lipid oxidation and related enzymes in pork during combined pressure-heat treatments was investigated. Minced pork was treated under a pressure range of 0.1-750 MPa and a temperature range of 30-60°C for 20 min. Thiobarbituric acid-reactive substances (TBARS) values and activities of acid lipase (AL), neutral lipase (NL), phospholipase (PL), and lipoxygenase (LOX) in pork were evaluated. NL and LOX were completely inactivated at 600 MPa-50°C and 450 MPa-60°C, and AL at 600MPa-55°C. PL had the greatest stability and was completely inactivated at 600 MPa-60°C and 750 MPa-50°C. PL activity was strongly related to lipid oxidation caused by high pressure, followed by AL and LOX. TBARS values at 600 and 750 MPa were strongly related to the inactivation rate and the ratio of PL during treatment. PL was the most important enzyme related to lipid oxidation induced by pressure.

Keywords: pork, high pressure, lipid oxidation, lipase, lipoxygenase

References

  • 1.Ma H. Combined high pressure and thermal treatents on the quality of postrigor beef muscle. 2004. [Google Scholar]
  • 2.Tanaka M, Xueyi Z, Nagashima Y, Taguchi T. Effect of high pressure on the lipid oxidation in sardine meat. Nippon Suisan Gakk. 1991;57:957–963. doi: 10.2331/suisan.57.957. [DOI] [Google Scholar]
  • 3.Angsupanich K, Ledward DA. High pressure treatment effects on cod (Gadus morhua) muscle. Food Chem. 1998;63:39–50. doi: 10.1016/S0308-8146(97)00234-3. [DOI] [Google Scholar]
  • 4.Cheah PB, Ledward DA. Catalytic mechanism of lipid oxidation following high pressure treatment in pork fat and meat. J. Food Sci. 1997;62:1135–1138. doi: 10.1111/j.1365-2621.1997.tb12229.x. [DOI] [Google Scholar]
  • 5.Defaye AB, Ledward DA. Pressure-induced dimerization of metmyoglobin. J. Food Sci. 1995;60:262–264. doi: 10.1111/j.1365-2621.1995.tb05651.x. [DOI] [Google Scholar]
  • 6.Orlien V, Hansen E, Skibsted LH. Lipid oxidation in high-pressure processed chicken breast muscle during chill storage: Critical working pressure in relation to oxidation mechanism. Eur. Food Res. Technol. 2000;211:99–104. doi: 10.1007/s002179900118. [DOI] [Google Scholar]
  • 7.Beltran E, Pla R, Yuste J, Mor-Mur M. Lipid oxidation of pressurized and cooked chicken: Role of sodium chloride and mechanical processing on TBARS and hexanal values. Meat Sci. 2003;64:19–25. doi: 10.1016/S0309-1740(02)00132-8. [DOI] [PubMed] [Google Scholar]
  • 8.Huang Y, He Z, Li H, Li F, Wu Z. Effect of antioxidant on the fatty acid composition and lipid oxidation of intramuscular lipid in pressurized pork. Meat Sci. 2012;91:137–141. doi: 10.1016/j.meatsci.2012.01.006. [DOI] [PubMed] [Google Scholar]
  • 9.Homma N, Ikeuchi Y, Suzuki A. Effect of high pressure treatment on proteolytic system in meat. Progr. Biotechnol. 1996;13:327–330. doi: 10.1016/S0921-0423(06)80054-7. [DOI] [Google Scholar]
  • 10.Ohmori T, Shigehisa T, Taji S, Hayashi R. Biochmecal effects of high hydrostatic pressure on the lysosome and proteases involved in it. Biosci. Biotech. Bioch. 1992;56:1285–1288. doi: 10.1271/bbb.56.1285. [DOI] [Google Scholar]
  • 11.Jung S, Ghoul M, de Lamballerie-Anton M. Changes in lysosomal enzyme activities and shear values of high pressure treated meat during ageing. Meat Sci. 2000;56:239–246. doi: 10.1016/S0309-1740(00)00048-6. [DOI] [PubMed] [Google Scholar]
  • 12.He H, Adams RM, Farkas DF, Morrissey MT. Use of high-pressure processing for oyster shucking and shelf-life extension. J. Food Sci. 2002;67:640–645. doi: 10.1111/j.1365-2621.2002.tb10652.x. [DOI] [Google Scholar]
  • 13.Yagiz Y, Kristinsson HG, Balaban MO, Welt BA, Ralat M, Marshall MR. Effect of high pressure processing and cooking treatment on the quality of Atlantic salmon. Food Chem. 2009;116:828–835. doi: 10.1016/j.foodchem.2009.03.029. [DOI] [Google Scholar]
  • 14.Wada S, Ogawa Y. High pressure effects on fish lipid degradation: Myoglobin change and water holding capacity. Progr. Biotechnol. 1996;13:351–356. doi: 10.1016/S0921-0423(06)80059-6. [DOI] [Google Scholar]
  • 15.Clariana M, Guerrero L, Sárraga C, Díaz I, Valero, García-Regueiro JA. Influence of high pressure application on the nutritional, sensory and microbiological characteristics of sliced skin vacuum packed dry-cured ham. Effects along the storage period. Innov. Food Sci. Emerg. 2011;12:456–465. doi: 10.1016/j.ifset.2010.12.008. [DOI] [Google Scholar]
  • 16.Huang Y, Li H, Huang T, Li F, Sun J. Lipolysis and lipid oxidation during processing of Chinese traditional smoke-cured bacon. Food Chem. 2014;149:31–39. doi: 10.1016/j.foodchem.2013.10.081. [DOI] [PubMed] [Google Scholar]
  • 17.Siu GM, Draper HH. A survey of malonaldehyde content of retail meats and fish. J. Food Sci. 1978;43:1147–1149. doi: 10.1111/j.1365-2621.1978.tb15256.x. [DOI] [Google Scholar]
  • 18.He Z, Huang Y, Li H, Qin G, Wang T, Yang J. Effect of high-pressure treatment on the fatty acid composition of intramuscular lipid in pork. Meat Sci. 2012;90:170–175. doi: 10.1016/j.meatsci.2011.06.022. [DOI] [PubMed] [Google Scholar]
  • 19.Lakshmanan R, Patterson MF, Piggott JR. Effects of high-pressure processing on proteolytic enzymes and proteins in cold-smoked salmon during refrigerated storage. Food Chem. 2005;90:541–548. doi: 10.1016/j.foodchem.2004.05.015. [DOI] [Google Scholar]
  • 20.Terefe NS, Yang YH, Knoerzer K, Buckow R, Versteeg C. High pressure and thermal inactivation kinetics of polyphenol oxidase and peroxidase in strawberry puree. Innov. Food Sci. Emerg. 2010;11:52–60. doi: 10.1016/j.ifset.2009.08.009. [DOI] [Google Scholar]
  • 21.Rodrigo D, Jolie R, Vay Loey A, Hendrickx M. Thermal and high pressure stability of tomato lipoxygenase and hydroperoxide lyase. J. Food Eng. 2007;79:423–429. doi: 10.1016/j.jfoodeng.2006.02.005. [DOI] [Google Scholar]
  • 22.Jin G, Zhang J, Yu X, Zhang Y, Lei Y, Wang J. Lipolysis and lipid oxidation in bacon during curing and drying-ripening. Food Chem. 2010;123:465–471. doi: 10.1016/j.foodchem.2010.05.031. [DOI] [Google Scholar]
  • 23.Seyderhelm I, Boguslawski S, Michaelis G, Knorr D. Pressure induced inactivation of selected food enzymes. J. Food Sci. 1996;61:308–310. doi: 10.1111/j.1365-2621.1996.tb14182.x. [DOI] [Google Scholar]
  • 24.Bang W, Chung H. Effect of high hydrostatic pressure on the enzyme activities in Saccharomyces cerevisiae and Escherichia coli. New Biotechnol. 2010;27:440–444. doi: 10.1016/j.nbt.2010.03.001. [DOI] [PubMed] [Google Scholar]
  • 25.Noël M, Lozano P, Combes D. Polyhydric alcohol protective effect on Rhizomucor miehei lipase deactivation enhanced by pressure and temperature treatment. Bioproc. Biosyst. Eng. 2005;27:375–380. doi: 10.1007/s00449-005-0417-1. [DOI] [PubMed] [Google Scholar]
  • 26.Heinisch O, Kowalski E, Goossens K, Frank J, Heremans K, Ludwig H, Tauscher B. Pressure effects on the stability of lipoxygenase: Fourier transform-infrared spectroscopy (FT-IR) and enzyme activity studies. Z. Lebensm. Unters. Forsch. 1995;201:562–565. doi: 10.1007/BF01201586. [DOI] [PubMed] [Google Scholar]
  • 27.Tedjo W, Eshtiaghi MN, Knorr D. Impact of supercritical carbon dioxide and high pressure on lipoxygenase and peroxidase activity. J. Food Sci. 2000;65:1284–1287. doi: 10.1111/j.1365-2621.2000.tb10597.x. [DOI] [Google Scholar]
  • 28.Riahi E, Ramaswamy HS. High pressure inactivation kinetics of amylase in apple juice. J. Food Eng. 2004;64:151–160. doi: 10.1016/j.jfoodeng.2003.09.025. [DOI] [Google Scholar]
  • 29.Indrawati AM, van Loey AM, Ludikhuyze LR, Hendrickx ME. Single, combined, or sequential action of pressure and temperature on lipoxygenase in green beans (Phaseolus vulgaris L.): A kinetic inactivation study. Biotechnol. Progr. 1999;15:273–277. doi: 10.1021/bp990007o. [DOI] [PubMed] [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES