Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2016 Feb 29;25(1):267–273. doi: 10.1007/s10068-016-0039-1

Aged ginseng (Panax ginseng Meyer) reduces blood glucose levels and improves lipid metabolism in high fat diet-fed mice

Soo Im Chung 2, Su Jin Nam 2, Mingze Xu 2, Mi Young Kang 2, Sang Chul Lee 1,
PMCID: PMC6049365  PMID: 30263267

Abstract

Aged ginseng is unpeeled ginseng root that has been dried and heat-treated in an oven at 80°C for 14 days. The effects of aged ginseng, in comparison with white and red ginseng, on the lipid and glucose metabolism in high fat-fed mice were investigated. C57BL/6N mice were randomly divided into six dietary groups of normal control, high fat, and high fat supplemented with white, red, aged four-year old, and aged five-year old ginseng. After 8 weeks, ginseng counteracted high fat dietinduced body weight gain, hyperlipidemia, and hyperglycemia via a mechanism involving modulation of hepatic lipogenesis, adipokine production, and glucose-regulating enzyme activities. Aged ginseng showed greater antihyperlipidemic and antihyperglycemic activities than white ginseng and exhibited physiological effects similar to red ginseng, perhaps due to a relatively high ginsenoside content. Aged ginseng can be beneficial as a functional food.

Keywords: aged ginseng, red, lipid, glucose

References

  • 1.Soldati F. Ginseng, Asian (Panax ginseng) In: Coates P, Blackman M, Cragg G, Levine M, Moss J, White J, editors. Encyclopedia of Dietary Supplements. 2005. pp. 265–277. [Google Scholar]
  • 2.Hong YJ, Kim N, Lee K, Sonn CH, Lee JE, Kim ST. Korean red ginseng (Panax ginseng) ameliorates type 1 diabetes and restores immune cell compartments. J. Pharmacol. 2012;144:225–233. doi: 10.1016/j.jep.2012.08.009. [DOI] [PubMed] [Google Scholar]
  • 3.Lee MR, Yun BS, Sung CK. Comparative study of white and steamed black Panax ginseng, P. quinquefolium, and P. notoginseng on cholinesterase inhibitory and antioxidative activity. J. Ginseng Res. 2012;36:93–101. doi: 10.5142/jgr.2012.36.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Lee H, Park D, Yoon M. Korean red ginseng (Panax ginseng) prevents obesity by inhibiting angiogenesis in high fat diet-induce obese C57BL/6J mice. Food Chem. Toxicol. 2013;53:402–408. doi: 10.1016/j.fct.2012.11.052. [DOI] [PubMed] [Google Scholar]
  • 5.Song YB, An YR, Kim SJ, Park HW, Jung JW, Kyung JS. Lipid metabolic effect of Korean red ginseng extract in mice fed on a high fat diet. J. Sci. Food Agr. 2012;92:388–396. doi: 10.1002/jsfa.4589. [DOI] [PubMed] [Google Scholar]
  • 6.Jia L, Zhao Y. Current evaluation of the millennium phytomedicine-ginseng (1): Etymology, pharmacognosy, phytochemistry, market and regulations. Curr. Med. Chem. 2009;16:2475–2484. doi: 10.2174/092986709788682146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Li X, Yan YZ, Jin X, Kim YK, Uddin MR, Kim YB. Ginsenoside content in the leaves and roots of Panax ginseng at different ages. Life Sci. J. 2012;9:679–683. [Google Scholar]
  • 8.Chung IM, Kim JW, Seguin P, Jun YM, Kim SH. Ginsenosides and phenolics in fresh and processed Korean ginseng (Panax ginseng C.A. Meyer): Effects of cultivation location, year, and storage period. Food Chem. 2012;130:73–83. doi: 10.1016/j.foodchem.2011.06.056. [DOI] [Google Scholar]
  • 9.Sohn SH, Kim SK, Kim YO, Kim HD, Shin YS, Yang SO. A comparison of antioxidant activity of Korean white and red ginsengs on H2O2-induced oxidative stress in HepG2 hepatoma cells. J. Ginseng Res. 2013;37:442–450. doi: 10.5142/jgr.2013.37.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Bae HJ, Chung SI, Lee SC, Kang MY. Influence of aging process on the bioactive components and antioxidant activity of ginseng (Panax ginseng L.) J. Food Sci. 2014;79:H2127–H2131. doi: 10.1111/1750-3841.12640. [DOI] [PubMed] [Google Scholar]
  • 11.Jochum GM, Mudge KW, Thomas RB. Elevated temperatures increase leaf senescence and root secondary metabolite concentrations in the understory herb Panax quinquefolius (Araliaceae) Am. J. Bot. 2007;94:819–826. doi: 10.3732/ajb.94.5.819. [DOI] [PubMed] [Google Scholar]
  • 12.Seifter S, Dayton S, Navic B, Muntwyler E. The estimation of glycogen with the anthrone reagent. Arch. Biochem. 1950;25:191–200. [PubMed] [Google Scholar]
  • 13.Hulcher FH, Oleson WH. Simplified spectrophotometric assay for microsomal 3-hydroxy-3-methylglutaryl CoA reductase by measurement of coenzyme A. J. Lipid Res. 1973;14:625–631. [PubMed] [Google Scholar]
  • 14.Gibson DM, Hubbard DD. Incorporation of malonyl CoA into fatty acids by liver in starvation and alloxan-diabetes. Biochem. Bioph. Res. Co. 1960;3:531–535. doi: 10.1016/0006-291X(60)90169-8. [DOI] [PubMed] [Google Scholar]
  • 15.Ochoa S. Malic dehydrogenase from pig heart. In: Colowick SP, Kaplan NO, editors. Methods in Enzymology. 1955. pp. 735–739. [Google Scholar]
  • 16.Pitkanen E, Pitkanen O, Uotila L. Enzymatic determination of unbound Dmannose in serum. Eur. J. Clin. Chem. Clin. 1997;35:761–766. doi: 10.1515/cclm.1997.35.10.761. [DOI] [PubMed] [Google Scholar]
  • 17.Davidson AL, Arion WJ. Factors underlying significant underestimations of glucokinase activity in crude liver extracts: Physiological implications of higher cellular activity. Arch. Biochem. Biophys. 1987;253:156–167. doi: 10.1016/0003-9861(87)90648-5. [DOI] [PubMed] [Google Scholar]
  • 18.Bentle L A, Lardy H A. I nteraction of anions a nd divalent m etal i ons with phosphoenolpyruvate carboxykinase. J. Biol. Chem. 1976;251:2916–2921. [PubMed] [Google Scholar]
  • 19.Alegre M, Ciudad CJ, Fillat C, Guinovart JJ. Determination of glucose-6-phosphatase activity using the glucose dehydrogenase-coupled reaction. Anal. Biochem. 1988;173:185–189. doi: 10.1016/0003-2697(88)90176-5. [DOI] [PubMed] [Google Scholar]
  • 20.Karu N, Reifen R, Kerem Z. Weight gain reduction in mice fed Panax ginseng saponin, a pancreatic lipase inhibitor. J. Agr. Food Chem. 2007;55:2824–2828. doi: 10.1021/jf0628025. [DOI] [PubMed] [Google Scholar]
  • 21.Kim JH, Hahm DH, Yang DC, Kim JH, Lee HJ, Shim I. Effect of crude saponin of Korean red ginseng on high-fat diet-induced obesity in the rat. J. Pharmacol. Sci. 2005;97:124–131. doi: 10.1254/jphs.FP0040184. [DOI] [PubMed] [Google Scholar]
  • 22.Gallou-Kabani C, Vige A, Gross MS, Rabes JP, Boileau C, Larue-Archagiotis C. C57BL/6J and A/J mice fed a high-fat diet delineate components of metabolic syndrome. Obesit. 2007;15:1996–2005. doi: 10.1038/oby.2007.238. [DOI] [PubMed] [Google Scholar]
  • 23.Zuliani G, Vigna GB, Felin R. The anti-atherogenic properties of HDL particles. Int. Congr. Ser. 2007;1303:103–110. doi: 10.1016/j.ics.2007.04.003. [DOI] [Google Scholar]
  • 24.Al Kanhal MA, Ahmad F, Al Othman AA, Al Orf S, Al Murshed KS. Effect of pure and oxidized cholesterol-rich diet on some biochemical parameters in rats. Int. J. Food Sci. Nutr. 2002;53:381–388. doi: 10.1080/0963748021000044723. [DOI] [PubMed] [Google Scholar]
  • 25.Yin J, Zhang H, Ye J. Traditional Chinese medicine in treatment of metabolic syndrome. Endocr. Metab. Immune Disord. Drug Target. 2008;8:99–111. doi: 10.2174/187153008784534330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Cho WC, Chung WS, Lee SK, Leung AW, Cheng CH, Yue KK. Ginsenoside Re of Panax ginseng possesses significant antioxidant and antihyperlipidemic efficacies in streptozotocin-induced diabetic rats. Eur. J. Pharmacol. 2006;550:173–179. doi: 10.1016/j.ejphar.2006.08.056. [DOI] [PubMed] [Google Scholar]
  • 27.Yuan HD, Kim DY, Quan HY, Kim SJ, Jung MS, Chung SH. Ginsenoside Rg2 induces orphan nuclear receptor SHP gene expression and inactivates GSK3b via AMP-activated protein kinase to inhibit hepatic glucose production in HepG2 cells. Chem.-Biol. Interact. 2012;195:35–42. doi: 10.1016/j.cbi.2011.10.006. [DOI] [PubMed] [Google Scholar]
  • 28.Silha JV, Weiler HA, Murphy LJ. Plasma adipokines and body composition in response to modest dietary manipulations in the mouse. Obesit. 2006;14:1320–1329. doi: 10.1038/oby.2006.150. [DOI] [PubMed] [Google Scholar]
  • 29.Trayhurn P, Wood IS. Signalling role of adipose tissue: Adipokines and inflammation in obesity. Biochem. Soc. T. 2005;33:1078–1081. doi: 10.1042/BST0331078. [DOI] [PubMed] [Google Scholar]
  • 30.Wang Y, Lam KS, Xu A. Adiponectin as a therapeutic target for obesity-related metabolic and cardiovascular disorders. Drug Develop. Res. 2006;67:677–686. doi: 10.1002/ddr.20141. [DOI] [Google Scholar]
  • 31.Halminski MA, Marsh JB, Harrison EH. Differential effects of fish oil, safflower oil and palm oil on fatty acid oxidation and glycerolipid synthesis in rat liver. J. Nutr. 1991;121:1554–1561. doi: 10.1093/jn/121.10.1554. [DOI] [PubMed] [Google Scholar]
  • 32.Park J, Rho HK, Kim KH, Choi SS, Lee YS, Kim JB. Overexpression of glucose-6-phosphate dehydrogenase is associated with lipid dysregulation and insulin resistance in obesity. Mol. Cell. Biol. 2005;25:5146–5157. doi: 10.1128/MCB.25.12.5146-5157.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.She P, Shiota M, Shelton KD, Chalkley R, Postic C, Magnuson MA. Phosphoenolpyruvate carboxykinase is necessary for the integration of hepatic energy metabolism. Mol. Cell. Biol. 2000;20:6508–6517. doi: 10.1128/MCB.20.17.6508-6517.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Van Schaftingen E, Gerin I. The glucose-6-phosphatase system. Biochem. J. 2002;362:513–532. doi: 10.1042/bj3620513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Coope GJ, Atkinson AM, Allott C, McKerrecher D, Johnstone C, Pike KG. Predictive blood glucose lowering efficacy by glucokinase activators in high fat fed female zucker rats. Brit. J. Pharmacol. 2006;149:328–335. doi: 10.1038/sj.bjp.0706848. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES