Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2016 Feb 29;25(1):185–192. doi: 10.1007/s10068-016-0028-4

Optimization of submerged Aspergillus oryzae S2 α-amylase production

Belgacem Naili 1, Mouna Sahnoun 1,, Samir Bejar 1, Radhouane Kammoun 1
PMCID: PMC6049366  PMID: 30263256

Abstract

Use of 4 agro-industrial by products and organic materials as nitrogen sources for production of Aspergillus oryzae S2 α-amylase in liquid culture was investigated. The 2 agro-industrial byproducts maltose and saccharose, and also lactose and starch were individually evaluated for use as carbon sources. A Box-Behnken experimental design was used to determine optimal conditions for production of α-amylase. A maximum amylase activity of 750 U/mL was obtained at a temperature of 24°C, a urea concentration of 1 g/L, and a C/N ratio of 2. Laboratory scale application of optimal conditions in a 7 L fermentor produced a final α-amylase activity of 770 U/mL after 3 days of batch cultivation. Addition of 10% starch to the culture medium each 12 h immediately after the stationary phase of cell growth led to a production yield of 1,220 U/mL at the end of fed-batch cultivation.

Keywords: Aspergillus oryzae strain S2, Box–Behnken design, 7 L-fermentor, batch, fed-batch

References

  • 1.Goesaert H, Slade L, Levine H, Delcour JA. Amylases and bread firming-An integrated view. J. Cereal Sci. 2009;50:345–352. doi: 10.1016/j.jcs.2009.04.010. [DOI] [Google Scholar]
  • 2.Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B. Microbial α-amylases: A biotechnological perspective. Process Biochem. 2003;38:1599–1616. doi: 10.1016/S0032-9592(03)00053-0. [DOI] [Google Scholar]
  • 3.Chang PK, Ehrlich KC. What does genetic diversity of Aspergillus flavus tell us about Aspergillus oryzae. Int. J. Food Microbiol. 2010;138:189–199. doi: 10.1016/j.ijfoodmicro.2010.01.033. [DOI] [PubMed] [Google Scholar]
  • 4.Gangadharan D, Sivaramakrishnan S, Nampoothiri KM, Sukumaran RK, Pandey A. Response surface methodology for the optimization of alphaamylase production by Bacillus amyloliquefaciens. Bioresource Technol. 2008;99:4597–4602. doi: 10.1016/j.biortech.2007.07.028. [DOI] [PubMed] [Google Scholar]
  • 5.Ravindar DJ, Elangovan N. Molecular identification of amylase producing Bacillus subtilis and detection of optimal conditions. J. Pharm. Res. 2013;6:426–430. [Google Scholar]
  • 6.Hashemi M, Razavi SH, Shojaosadati SA, Mousavi SM. The potential of brewer’s spent grain to improve the production of alpha-amylase by Bacillus sp. KR-8104 in submerged fermentation system. New Biotechnol. 2011;28:165–172. doi: 10.1016/j.nbt.2010.10.009. [DOI] [PubMed] [Google Scholar]
  • 7.Haq IU, Hamad A, Qadeer MA, Iqbal J. Pearl millet, a source of alpha-amylase production by Bacillus licheniformis. Bioresource Technol. 2005;96:1201–1204. doi: 10.1016/j.biortech.2004.09.012. [DOI] [PubMed] [Google Scholar]
  • 8.Bennamoun L, Meraihi Z, Dakhmouche S. Use of experimental planning to optimize production of alpha amylase by Aspergillus oryzae Ahlburg (Cohen) 1042.72 cultivated on a basal medium make from orange waste. J. Food Eng. 2004;64:257–264. doi: 10.1016/j.jfoodeng.2003.10.007. [DOI] [Google Scholar]
  • 9.Hashemi M, Mousavi SM, Razavi SH, Shojaosadati SA. Comparison of submerged and solid state fermentation systems effects on the catalytic activity of Bacillus sp KR-8104 α-amylase at different pH and temperatures. Ind. Crop Prod. 2013;43:661–667. doi: 10.1016/j.indcrop.2012.08.002. [DOI] [Google Scholar]
  • 10.Pedersen H, Nielsen J. The influence of nitrogen sources on the alpha-amylase productivity of Aspergillus oryzae in continuous cultures. Appl. Microbiol. Biotech. 2000;53:278–281. doi: 10.1007/s002530050021. [DOI] [PubMed] [Google Scholar]
  • 11.Kalishwaralal K, Gopalram S, Vaidyanathan R, Deepak V, Pandian SR, Gurunathan S. Optimization of α-amylase production for the green synthesis of gold nanoparticles. Colloid. Surface. 2010;77:174–180. doi: 10.1016/j.colsurfb.2010.01.018. [DOI] [PubMed] [Google Scholar]
  • 12.Spohr A, Carlsen M, Nielsen J, Villadsen J. α-Amylase production in recombinant Aspergillus oryzae during fed-batch and continuous cultivations. J. Ferment. Bioeng. 1998;86:49–56. doi: 10.1016/S0922-338X(98)80033-0. [DOI] [Google Scholar]
  • 13.Imai Y, Suzuki M, Masamoto M, Nagayasu K. Amylase production by Aspergillus oryzae in a new kind of fermentor with a rotary draft tube. J. Ferment. Bioeng. 1993;76:459–464. doi: 10.1016/0922-338X(93)90241-Y. [DOI] [Google Scholar]
  • 14.Aguilar G, Morlon-Guyot J, Trejo-Aguilar B, Guyot JP. Purification and characterization of an extracellular alpha-amylase produced by Lactobacillus manihotivorans LMG 1801 (T), an amylolytic lactic acid bacterium. Enzyme Microb. Tech. 2000;27:406–413. doi: 10.1016/S0141-0229(00)00230-1. [DOI] [PubMed] [Google Scholar]
  • 15.Sahnoun M, Bejar S, Sayari A, Triki MA, Kriaa M, Kammoun R. Production purification and characterization of two α-amylase isoforms from a newly isolated Aspergillus oryzae strain S2. Process Biochem. 2011;47:18–25. doi: 10.1016/j.procbio.2011.09.016. [DOI] [Google Scholar]
  • 16.Kammoun R, Naili B, Bejar S. Application of a statistical design to the optimization of parameters and culture medium for α-amylase production by Aspergillus oryzae CBS 81972 grown on gruel (wheat grinding by-product) Bioresource Technol. 2008;99:1–8. doi: 10.1016/j.biortech.2007.10.045. [DOI] [PubMed] [Google Scholar]
  • 17.AACC. International Approved Methods of AACC. 10th ed. Methods 46-10A. American Association of Cereal Chemists, St. Paul, MN, USA (2000)
  • 18.AOAC. Official Method of Analysis of AOAC Intl. 18th ed. Method 920.39. Association of Official Analytical Chemists, Gaithersburg, MD, USA (2005)
  • 19.Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959;31:426–428. doi: 10.1021/ac60147a030. [DOI] [Google Scholar]
  • 20.Sasaki H, Kurosawa K, Takao S. Screening of Microorganisms for raw starch saccharifying enzyme production. Agr. Biol. Chem. Toky. 1986;50:1661–1664. doi: 10.1271/bbb1961.50.1661. [DOI] [Google Scholar]
  • 21.Tanyildizi MS, Ozer D, Elibol M. Production of bacterial α-amylase by B amyloliquefaciens under solid substrate fermentation. Biochem. Eng. J. 2007;37:294–297. doi: 10.1016/j.bej.2007.05.009. [DOI] [Google Scholar]
  • 22.Hashemi M, Razavi SH, Shojaosadati SA, Mousavi SM, Khajeh K, Safari M. Development of a solid-state fermentation process for production of an alpha-amylase with potentially interesting properties. J. Biosci. Bioeng. 2010;110:333–337. doi: 10.1016/j.jbiosc.2010.03.005. [DOI] [PubMed] [Google Scholar]
  • 23.Mørkeberg R, Carlsen MJ. Nielsen Induction and repression of amylase production in batch and continuous cultures of Aspergillus oryzae. Microbiolog. 1995;141:2449–2454. doi: 10.1099/13500872-141-10-2449. [DOI] [PubMed] [Google Scholar]
  • 24.Bhella RS, Altosaar I. Purification and some properties of the extracellular alpha-amylase from Aspergillus awamori. Can. J. Microbiol. 1985;31:149–153. doi: 10.1139/m85-029. [DOI] [Google Scholar]
  • 25.Møller K, Sharif MZ, Olsson L. Production of fungal α-amylase by Saccharomyces kluyveri in glucose-limited cultivations. J. Biotechnol. 2004;111:311–318. doi: 10.1016/j.jbiotec.2004.04.013. [DOI] [PubMed] [Google Scholar]
  • 26.Jin B, van Leeuwen HJ, Patel B, Yu Q. Utilisation of starch processing wastewater for production of microbial biomass protein and fungal α-amylase by Aspergillus oryzae. Bioresource Technol. 1998;66:201–206. doi: 10.1016/S0960-8524(98)00060-1. [DOI] [Google Scholar]
  • 27.Hernandez MS, Rodrýguez MR, Guerra NP, Roses RP. Amylase production by Aspergillus niger in submerged cultivation on two wastes from food industries. J. Food Eng. 2006;73:93–100. doi: 10.1016/j.jfoodeng.2005.01.009. [DOI] [Google Scholar]
  • 28.Sahnoun M, Naili B, Elgharbi F, Kammoun R, Gabsi K, Bejar S. Effect of Aspergillus oryzae CBS 81972 α-amylase on rheological dough properties and bread quality. Biologi. 2013;68:808–815. doi: 10.2478/s11756-013-0233-z. [DOI] [Google Scholar]
  • 29.Szijártó N, Faigl Z, Réczey K, Mézes M, Bersényi A. Cellulase fermentation on a novel substrate (waste cardboard) and subsequent utilization of homeproduced cellulase and commercial amylase in a rabbit feeding trial. Ind. Crop. Prod. 2004;20:49–57. doi: 10.1016/j.indcrop.2003.12.012. [DOI] [Google Scholar]
  • 30.Kole MM, Gerson DF. Ammonium controlled fed-batch fermentation for amylase production. J. Ferment. Bioeng. 1989;68:423–427. doi: 10.1016/0922-338X(89)90098-6. [DOI] [Google Scholar]
  • 31.Nedovic V, Willaert R. Fundamentals of Cell Immobilisation Biotechnology. 2004. pp. 60–75. [Google Scholar]
  • 32.Choi DB, Park EY. Enhanced production of mouse α-amylase by feeding combined nitrogen and carbon sources in fed-batch culture of recombinant Pichia pastoris. Process Biochem. 2006;41:390–397. doi: 10.1016/j.procbio.2005.06.020. [DOI] [Google Scholar]
  • 33.Shiina S, Ohshima T, Sato M. Extracellular production of -amylase during fedbatch cultivation of recombinant Escherichia coli using pulsed electric field. J. Electrostat. 2007;65:30–36. doi: 10.1016/j.elstat.2005.03.093. [DOI] [Google Scholar]
  • 34.Schwab K, Johannes B, Brokamp C, Popoviæ MK, Bajpai R, Beroviè M. Dual feeding strategy for the production of α-amylase by Bacillus caldolyticus using complex media. New Biotechnol. 2009;26:68–74. doi: 10.1016/j.nbt.2009.04.005. [DOI] [PubMed] [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES