Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2016 Feb 29;25(1):179–184. doi: 10.1007/s10068-016-0027-5

Optimization of the extraction process for fermented Rhus verniciflua stokes using response surface methodology

Hyeon Ju Jeong 1, Ju-Hee Park 1, Myong-Jo Kim 2,
PMCID: PMC6049367  PMID: 30263255

Abstract

Extraction conditions for extraction yield (Y 1), total phenolic content (TPC, Y 2), and inhibition rate in human gastric carcinoma cells (Y 3) were optimized using response surface methodology for fermented Rhus verniciflua stokes (FRV). Optimal extraction conditions for effective use of FRV as a biofunctional material in food and pharmaceutical industries were investigated. Independent variables were extraction temperature (X 1=25-105°C), extraction time (X 2=4-20 h), and the solvent to solid ratio (X 3=10-30 mL/g). A second order polynomial model satisfactorily fitted experimental data with coefficient of determination (R 2) values of 0.9613, 0.9851, and 0.8038, respectively, for Y 1, Y 2, and Y 3. Optimal conditions for the highest extraction yield of 2.37%, a total phenol content (TPC) value of 113.75 mg of tannic acid equivalents (TAE)/g, and an inhibition rate of 72.61% were derived at X 1=89.95°C, X 2=9.25 h, and X 3=25 mL/g.

Keywords: response surface methodology, central composite design, fermented Rhus verniciflua stoke, polyphenol

References

  • 1.Karvela E, Makris DP, Kalogeropoulos N, Karathanos VT. Deployment of response surface methodology to optimize recovery of grape (Vitis vinifera) stem and seed polyphenols. Procedia Food Sci. 2011;1:1686–1693. doi: 10.1016/j.profoo.2011.09.249. [DOI] [Google Scholar]
  • 2.Alberti A, Zielinski AAF, Zardo DM, Demiate IM, Nogueira A, Mafra LI. Optimisation of the extraction of phenolic compounds from apples using response surface methodology. Food Chem. 2014;149:151–158. doi: 10.1016/j.foodchem.2013.10.086. [DOI] [PubMed] [Google Scholar]
  • 3.Yim HS, Chye FY, Koo SM, Matanjun P, How SE, Ho CW. Optimization of extraction time and temperature for antioxidant activity of edible wild mushroom, Pleurotus porrigens. Food Bioprod. Process. 2012;90:235–242. doi: 10.1016/j.fbp.2011.04.001. [DOI] [Google Scholar]
  • 4.Giovanni M. Response surface methodology and product optimization. Food Technol.-Chicag. 1983;37:41–45. [Google Scholar]
  • 5.Aybastier O, Isik E, Sahin S, Demir C. Optimization of ultrasonic-assisted extraction of antioxidant compounds from blackberry leaves using response surface methodology. Ind. Crop. Prod. 2013;44:558–565. doi: 10.1016/j.indcrop.2012.09.022. [DOI] [PubMed] [Google Scholar]
  • 6.Jung CH, Jun CY, Lee S, Park CH, Cho K, Ko SG. Rhus verniciflua stokes extract: Radical scavenging activities and protective effects on H2O2-induced cytotoxicity in macrophage RAW 264.7 cell lines. Biol. Pharm. Bull. 2006;29:1603–1607. doi: 10.1248/bpb.29.1603. [DOI] [PubMed] [Google Scholar]
  • 7.Kim KH, Moon E, Choi SU, Kim SY, Lee KR. Polyphenols from the bark of Rhus verniciflua and their biological evaluation on antitumor and antiinflammatory activities. Phytochemistr. 2013;92:113–121. doi: 10.1016/j.phytochem.2013.05.005. [DOI] [PubMed] [Google Scholar]
  • 8.Kim JH, Shin YC, Ko SG. Integrating traditional medicine into modern inflammatory diseases care: Multitargeting by Rhus verniciflua stokes. Mediat. Inflamm. 2014;2014:154561. doi: 10.1155/2014/154561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Choi J, Yoon BJ, Han YN, Lee KT, Ha J, Jung HJ, Park HJ. Antirheumatoid arthritis effect of Rhus verniciflua and of the active component, sulfuretin. Planta Med. 2003;69:899–904. doi: 10.1055/s-2003-38483. [DOI] [PubMed] [Google Scholar]
  • 10.Kim JH, Go HY, Jin DH, Kim HP, Hong MH, Chung WY, Park JH, Jang JB, Jung H, Shin YC, Kim SH, Ko SG. Inhibition of the PI3K-Akt/PKB survival pathway enhanced an ethanol extract of Rhus verniciflua Stokes-induced apoptosis via a mitochondrial pathway in AGS gastric cancer cell lines. Cancer Lett. 2008;256:197–205. doi: 10.1016/j.canlet.2008.02.039. [DOI] [PubMed] [Google Scholar]
  • 11.Lee J, Chae J, Lee S, Kim K, Eo W, Kim S, Choi W, Cheon SH. The efficacy and safety of standardized allergen-removed Rhus verniciflua extract as maintenance therapy after first-line chemotherapy in patients with advanced non-small cell lung cancer. Am. J. Chinese Med. 2013;41:773–787. doi: 10.1142/S0192415X13500523. [DOI] [PubMed] [Google Scholar]
  • 12.Epstein WL. Occupational poison ivy and oak dermatitis. Dermatol. Clin. 1994;12:511–516. [PubMed] [Google Scholar]
  • 13.Choi HS, Kim MK, Park HS, Yun SE, Mun SP, Kim JS, Sapkota K, Kim S, Kim TY, Kim SJ. Biological detoxification of lacquer tree (Rhus verniciflua stokes) stem bark by mushroom species. Food Sci. Biotechnol. 2007;16:935–942. [Google Scholar]
  • 14.Liu CS, Nam TG, Han MW, Ahn SM, Choi HS, Kim TY, Chun OK, Koo SI, Kim DO. Protective effect of detoxified Rhus verniciflua stokes on human keratinocytes and dermal fibroblasts against oxidative stress and identification of the bioactive phenolics. Biosci. Biotech. Bioch. 2013;77:1682–1688. doi: 10.1271/bbb.130236. [DOI] [PubMed] [Google Scholar]
  • 15.Choi MJ, Lee SJ, Jang SH, Reza MA, Hong JH, Jung HK, Park SC. Biological activities and single oral dose toxicity in rat of fermented Rhus verniciflua extract. Korean J. Vet. Res. 2010;50:187–195. [Google Scholar]
  • 16.Sapkota K, Kim S, Kim MK, Kim S J. A detoxified extract of Rhus verniciflua Stokes upregulated the expression of BDNF and GDNF in the rat brain and the human dopaminergic cell line SH-SY5Y. Biosci. Biotech. Bioch. 2010;74:1997–2004. doi: 10.1271/bbb.100165. [DOI] [PubMed] [Google Scholar]
  • 17.Choi HS, Yeo SH, Jeong ST, Choi JH, Park HS, Kim MK. Preparation and characterization of urushiol free fermented Rhus verniciflua stem bark (FRVSB) extracts. Korean J. Food Sci. Technol. 2012;44:173–178. doi: 10.9721/KJFST.2012.44.2.173. [DOI] [Google Scholar]
  • 18.Shin SH, Koo KH, Bae JS, Cha SB, Kang IS, Kang MS, Kim HS, Heo HS, Park MS, Gil GH, Lee JY, Kim KH, Li Y, Lee HK, Song SW, Choi HS, Kang BH, Kim JC. Single and 90-day repeated oral dose toxicity studies of fermented Rhus verniciflua stem bark extract in Sprague-Dawley rats. Food Chem. Toxicol. 2013;55:617–626. doi: 10.1016/j.fct.2013.01.043. [DOI] [PubMed] [Google Scholar]
  • 19.Ghafoor K, Park J, Choi YH. Optimization of supercritical fluid extraction of bioactive compounds from grape (Vitis labrusca B.) peel by using response surface methodology. Innov. Food Sci. Emerg. 2010;11:485–490. doi: 10.1016/j.ifset.2010.01.013. [DOI] [Google Scholar]
  • 20.Shi J, Yu J, Pohorly J, Young JC, Bryan M, Wu Y. Optimization of the extraction of polyphenols from grape seed meal by aqueous ethanol solution. J. Food Agric. Environ. 2003;1:42–47. [Google Scholar]
  • 21.Beara IN, Lesjak MM, Cetojeviæ-Simin DD, Marjanoviæ ZS, Ristiæ JD, Mrkonjiæ ZO, Mimica-Dukiæ NM. Phenolic profile, antioxidant, antiinflammatory and cytotoxic activities of black (Tuber aestivum Vittad.) and white (Tuber magnatum Pico) truffles. Food Chem. 2014;165:460–466. doi: 10.1016/j.foodchem.2014.05.116. [DOI] [PubMed] [Google Scholar]
  • 22.Kim MK, Kim MJ, Upadhyaya J, Yong GR, Park HS. Biological activity of lacquer tree (Rhus verniciflua stokes) stem bark detoxified with Fomitella fraxinea. J. Agric. Life Sci. 2014;45:59–66. doi: 10.14397/jals.2014.48.1.59. [DOI] [Google Scholar]
  • 23.Taga MS, Miller EE, Patt DE. Chia seeds as a source of natural lipid antioxidants. J. Am. Oil Chem. Soc. 1984;61:928–931. doi: 10.1007/BF02542169. [DOI] [Google Scholar]
  • 24.Samavati V, Manoochehrizade A. Dodonaea viscosa var. angustifolia leaf: New source of polysaccharide and its anti-oxidant activity. Carbohyd. Polym. 2013;98:199–207. doi: 10.1016/j.carbpol.2013.05.083. [DOI] [PubMed] [Google Scholar]
  • 25.Liu JL, Zheng SL, Fan QJ, Yuan JC, Yang SM, Kong FL. Optimisation of highpressure ultrasonic-assisted extraction and antioxidant capacity of polysaccharides from the rhizome of Ligusticumc huanxiong. Int. J. Biol. Macromol. 2015;76:80–85. doi: 10.1016/j.ijbiomac.2015.02.031. [DOI] [PubMed] [Google Scholar]
  • 26.Zhu C, Liu X. Optimization of extraction process of crude polysaccharides from Pomegranate peel by response surface methodology. Carbohyd. Polym. 2013;92:1197–1202. doi: 10.1016/j.carbpol.2012.10.073. [DOI] [PubMed] [Google Scholar]
  • 27.Hemwimol S, Pavasant P, Shotipruk A. Ultrasound-assisted extraction of anthraquinones from roots of Morinda citrifolia. Ultrason. Sonochem. 2006;13:543–548. doi: 10.1016/j.ultsonch.2005.09.009. [DOI] [PubMed] [Google Scholar]
  • 28.Liyana-Pathirana C, Shahidi F. Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem. 2005;93:47–56. doi: 10.1016/j.foodchem.2004.08.050. [DOI] [Google Scholar]
  • 29.Gan CY, Latiff AA. Optimisation of the solvent extraction of bioactive compounds from Parkia speciosa pod using response surface methodology. Food Chem. 2011;124:1277–1283. doi: 10.1016/j.foodchem.2010.07.074. [DOI] [Google Scholar]
  • 30.Pompeu DR, Silva EM, Rogez H. Optimisation of the solvent extraction of phenolic antioxidants from fruits of Euterpe oleracea using response surface methodology. Bioresource Technol. 2009;100:6067–6082. doi: 10.1016/j.biortech.2009.03.083. [DOI] [PubMed] [Google Scholar]
  • 31.Prasad KN, Yang E, Yi C, Zhao M, Jiang Y. Effects of high pressure extraction on the extraction yield, total phenolic content and antioxidant activity of longan fruit pericarp. Innov. Food Sci. Emerg. 2009;10:155–159. doi: 10.1016/j.ifset.2008.11.007. [DOI] [Google Scholar]
  • 32.Sabzevari O, Galatic G, Moridania MY, Sirakia A, O’Brien PJ. Molecular cytotoxic mechanisms of anticancer hydroxychalcones. Chem.-Biol. Interact. 2004;148:57–67. doi: 10.1016/j.cbi.2004.04.004. [DOI] [PubMed] [Google Scholar]
  • 33.Rodrigo G, Almanza GR, Cheng Y, Peng J, Hamann M, Duan RD, Akesson B. Antiproliferative effects of curcuphenol, a sesquiterpene phenol. Fitoterapi. 2010;81:762–766. doi: 10.1016/j.fitote.2010.04.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Al -Suede FS, Khadeer Ahamed MB, Abdul Majid AS, Baharetha HM, Hassan LE, Kadir MO, Nassar ZD, Abdul Majid AM. Optimization of Cat’s whiskers tea (Orthosiphon stamineus) using supercritical carbon dioxide and selective chemotherapeutic potential against prostate cancer cells. Evid.-Based Compl. Alt. 2014;2014:396016. doi: 10.1155/2014/396016. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES