Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2016 Feb 29;25(1):105–110. doi: 10.1007/s10068-016-0015-9

Physicochemical properties and oxidative stabilities of mealworm (Tenebrio molitor) oils under different roasting conditions

Yu-Ho Jeon 1, Yang-Ju Son 1, Soo-Hee Kim 2, Eun-Young Yun 3, Hee-Jin Kang 4, In-Kyeong Hwang 1,
PMCID: PMC6049372  PMID: 30263243

Abstract

Physicochemical properties and oxidative stabilities of mealworm (Tenebrio molitor) oils under different roasting conditions were investigated. Oils were extracted using n-hexane from mealworms roasted at 200°C for 0, 5, 10, and 15 min and physicochemical properties and oxidative stabilities of oils were analyzed. Roasting increased the color intensity and the oleic acid and δ-tocopherol contents, but decreased linoleic acid, and α- and γ-tocopherol contents. An improvement in oxidative stability was observed in roasted mealworm oils, demonstrated by induction time and peroxide values. Mealworm oil contained abundant essential fatty acids and exhibited a superior oxidative stability.

Keywords: mealworm, oil, roasting, physicochemical property, oxidative stability

References

  • 1.Verkerk MC, Tramper J, van Trijp JCM, Martens DE. Insect cells for human food. Biotechnol. Adv. 2007;25:198–202. doi: 10.1016/j.biotechadv.2006.11.004. [DOI] [PubMed] [Google Scholar]
  • 2.van Huis A, van Itterbeeck J, Klunder H, Mertens E, Halloran A, Muir G, Vantomme P. Edible insects: Future prospects for food and feed security. Food and Agriculture Organiation of the United Nations (FAO), Rome, Italy. No.171 (2013)
  • 3.Rumpold BA, Schlüte OK. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013;57:802–823. doi: 10.1002/mnfr.201200735. [DOI] [PubMed] [Google Scholar]
  • 4.Ravzanaadii N, Kim SH, Choi WH, Hong SJ, Kim NJ. Nutritional value of mealworm, Tenebrio molitor as food source. Int. J. Indust. Entomol. 2012;25:93–98. doi: 10.7852/ijie.2012.25.1.093. [DOI] [Google Scholar]
  • 5.Finke MD. Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol. 2002;21:269–285. doi: 10.1002/zoo.10031. [DOI] [Google Scholar]
  • 6.Buckholz LL, Daun H, Stier E, Trout R. Influence of roasting time on sensory attributes of fresh roasted peanuts. J. Food Sci. 2006;45:547–554. doi: 10.1111/j.1365-2621.1980.tb04098.x. [DOI] [Google Scholar]
  • 7.Murkovic M, Piironen V, Lampi AM, Kraushofer T, Sontag G. Changes in chemical composition of pumpkin seeds during the roasting process for production of pumpkin seed oil. Food Chem. 2004;84:359–365. doi: 10.1016/S0308-8146(03)00240-1. [DOI] [Google Scholar]
  • 8.Lee SW, Jeung MK, Park MH, Lee SY, Lee JH. Effects of roasting conditions of sesame seeds on the oxidative stability of pressed oil during thermal oxidation. Food Chem. 2010;118:681–685. doi: 10.1016/j.foodchem.2009.05.040. [DOI] [Google Scholar]
  • 9.Elizade BE, Dalla Rosa M, Lerici CR. Effect of Maillard reaction volatiles on lipid oxidation. J. Am. Oil Chem. Soc. 1991;68:758–762. doi: 10.1007/BF02662167. [DOI] [Google Scholar]
  • 10.AOCS. Official methods and recommended practices of the AOCS. 2013. [Google Scholar]
  • 11.Kim M, Nagy S. An improved method to determine nonenzymatic browning in citrus juices. J. Agr. Food Chem. 1988;36:1271–1274. doi: 10.1021/jf00084a036. [DOI] [Google Scholar]
  • 12.ska-wiglo Gliszczy A, Sikorska E. Simple reversed-phase liquid chromatography method for determination of tocopherols in edible plant oils. J. Chromatogr. 2004;1048:195–198. doi: 10.1016/S0021-9673(04)01211-7. [DOI] [PubMed] [Google Scholar]
  • 13.Jones LD, Cooper RW, Harding RS. Composition of mealworm Tenebrio molitor larvae. J. Zoo Anim. Med. 1972;3:34–41. doi: 10.2307/20094161. [DOI] [Google Scholar]
  • 14.Noureddini H, Teoh BC, Clements D. Densities of vegetable oils and fatty acids. J. Am. Oil Chem. Soc. 1992;69:1184–1188. doi: 10.1007/BF02637677. [DOI] [Google Scholar]
  • 15.Han YS, Yoon JY, Lee SR. Effect of palm oil blending on the thermal and oxidative stability of soybean oil. Korean J. Food Sci. Technol. 1991;99:465–470. [Google Scholar]
  • 16.Bouaid A, Martinez M, Aracil J. Long storage stability of biodiesel from vegetable and used frying oils. Fue. 2007;86:2596–2602. doi: 10.1016/j.fuel.2007.02.014. [DOI] [Google Scholar]
  • 17.Predojevi ZJ. The production of biodiesel from waste frying oils: A comparison of different purification steps. Fue. 2008;87:3522–3528. doi: 10.1016/j.fuel.2008.07.003. [DOI] [Google Scholar]
  • 18.Gopinath A, Puhan S, Nagarajan G. Theoretical modeling of iodine value and saponification value of biodiesel fuels from their fatty acid composition. Renew. Energ. 2009;34:1806–1811. doi: 10.1016/j.renene.2008.11.023. [DOI] [Google Scholar]
  • 19.Anjum F, Anwar F, Jamil A, Iqbal M. Microwave roasting effects on the physicochemical composition and oxidative stability of sunflower seed oil. J. Am. Oil Chem. Soc. 2006;83:777–784. doi: 10.1007/s11746-006-5014-1. [DOI] [Google Scholar]
  • 20.Yen GC. Influence of seed roasting process on the changes in composition and quality of sesame oil. J. Sci. Food Agr. 1990;50:563–570. doi: 10.1002/jsfa.2740500413. [DOI] [Google Scholar]
  • 21.Kim IH, Kim CJ, You J M, Lee KW, Kim CT, Chung SH, Tae BS. Effect of roasting temperature and time on the chemical composition of rice germ oil. J. Am. Oil Chem. Soc. 2002;79:413–418. doi: 10.1007/s11746-002-0498-2. [DOI] [Google Scholar]
  • 22.Lee YC, Oh SW, Chang JH, Kim IH. Chemical composition and oxidative stability of safflower oil prepared from safflower seed roasted with different temperatures. Food Chem. 2004;84:1–6. doi: 10.1016/S0308-8146(03)00158-4. [DOI] [Google Scholar]
  • 23.Nowak V, Persijn D, Rittenschober D, Charrondiere UR. Review of food composition data for edible insects. Food Chem. 2016;193:39–46. doi: 10.1016/j.foodchem.2014.10.114. [DOI] [PubMed] [Google Scholar]
  • 24.Durmaz G, Gökmen V. Changes in oxidative stability, antioxidant capacity, and phytochemical composition of Pistacia terebinthus oil with roasting. Food Chem. 2011;128:410–414. doi: 10.1016/j.foodchem.2011.03.044. [DOI] [PubMed] [Google Scholar]
  • 25.Läubli MW, Bruttel PA. Determination of the oxidative stability of fats and oils: Comparison between the active oxygen method (AOCS Cd 12-57) and the Rancimat method. J. Am. Oil Chem. Soc. 1986;63:792–795. doi: 10.1007/BF02541966. [DOI] [Google Scholar]
  • 26.Skiera C, Steliopoulos P, Kuballa T, Holzgrabe U, Diehl B. Determination of free fatty acids in edible oils by H NMR spectroscopy. Lipid Technol. 2012;24:279–281. doi: 10.1002/lite.201200241. [DOI] [Google Scholar]
  • 27.Kim SY, Son YJ, Kim SH, Kim AN, Lee GY, Hwang IK. Studies on oxidative stability of Tenebrio molitor larvae during cold storage. Korean J. Food Cook. Sci. 2015;31:62–71. doi: 10.9724/kfcs.2015.31.1.062. [DOI] [Google Scholar]
  • 28.Zamora R, Hidalgo FJ. Coordinate contribution of lipid oxidation and Maillard reaction to the nonenzymatic food browning. Crit. Rev. Food Sci. 2005;45:49–59. doi: 10.1080/10408690590900117. [DOI] [PubMed] [Google Scholar]
  • 29.Ikeda N, Fukuzumi K. Synergistic antioxidant effect of nucleic acids and tocopherols. J. Am. Oil Chem. Soc. 1977;54:360–366. doi: 10.1007/BF02802036. [DOI] [PubMed] [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES