Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2016 Feb 29;25(1):33–40. doi: 10.1007/s10068-016-0005-y

Determination of matrix effects occurred during the analysis of organochlorine pesticides in agricultural products using GC-ECD

Nam-Hoon Kim 1,, Jeong-Sook Lee 1, Kyung-Ai Park 1, Yun-Hee Kim 1, Sae-Ram Lee 1, Jeong-Mi Lee 1, In-Sil Yu 1, Kweon Jung 1, Young-Ki Lee 2
PMCID: PMC6049384  PMID: 30263233

Abstract

Matrix effects observed during the multiresidue analysis of seven organochlorine pesticides in six different agricultural products with GC-ECD were assessed. The presence of matrix coextractives, a major cause of observed matrix effects, directly and/or indirectly influenced the chromatographic responses of some pesticides. Two types of external calibrations, solvent calibration (SC) and matrixmatched calibration (MC), were used to assess matrix effects. Greater matrix effects were observed at the lower concentrations of each pesticide. The extent of matrix effects varied unpredictably with matrix type. Among the analyzed pesticides, iprodione, cyhalothrin, and cypermethrin exhibited greater matrix effects (>150%) for almost all matrices. The pesticide recovery rates obtained with MC were not statistically different from a 100% recovery rate in most samples, which indicates that MC may diminish the overestimates occurred due to matrix effects in GC analysis.

Keywords: GC-ECD, matrix effect, solvent calibration, matrix-matched calibration, recovery rate

References

  • 1.Schenck FJ, Wong JW. Determination of pesticides in food of vegetable origin. In: Tadeo JL, editor. Analysis of pesticides in food and environmental samples. 2008. pp. 151–176. [Google Scholar]
  • 2.Menkissoglu-Spiroudi U, Fotopoulou A. Matrix effect in gas chromatographic determination of insecticides and fungicides in vegetables. Int. J. Environ. An. Ch. 2004;84:15–27. doi: 10.1080/03067310310001593684. [DOI] [Google Scholar]
  • 3.Egea Gonzalez F H, Torres ME, Almansa Lopez E, Cuadros-Rodriguez L, Martinez vidal JL. Matrix-effects of vegetable commodities in electroncapture detection applied to pesticide multiresidue analysis. J. Chromatogr. 2002;966:155–165. doi: 10.1016/S0021-9673(02)00707-0. [DOI] [PubMed] [Google Scholar]
  • 4.Erney DR, Gillespie AM, Gilvydis DM, Poole CF. Explanation of the matrixinduced chromatographic response enhancement of organophosphorus pesticides during open tubular column gas chromatography with splitless or hot on-column injection and flame photometric detection. J. Chromatogr. 1993;638:57–63. doi: 10.1016/0021-9673(93)85007-T. [DOI] [Google Scholar]
  • 5.Erney DR, Pawlowski TM, Poole CF. Matrix-induced peak enhancement of pesticides in gas chromatography: Is there a solution? J. High Res. Chromatog. 1997;20:375–378. doi: 10.1002/jhrc.1240200706. [DOI] [Google Scholar]
  • 6.Hajslova J, Holadova K, Kocourek V, Poustka J, Godula M, Cuhra P, Kempny M. Matrix-induced effects: A critical point in the gas chromatographic analysis of pesticide residues. J. Chromatogr. 1998;800:283–295. doi: 10.1016/S0021-9673(97)01145-X. [DOI] [Google Scholar]
  • 7.Hajslova J, Zrostlikova J. Matrix effects in (ultra)trace analysis of pesticide residues in food and biotic matrices. J. Chromatogr. 2003;1000:181–197. doi: 10.1016/S0021-9673(03)00539-9. [DOI] [PubMed] [Google Scholar]
  • 8.Martinez Vidal JL, Arrebola FJ, Garrido Frenich A, Martinez Fernandez J, Mateu-Sanchez M. Validation of a gas chromatographic-tandem mass spectrometric method for analysis of pesticide residues in six food commodities. Selection of a reference matrix for calibration. Chromatographi. 2004;59:321–327. [Google Scholar]
  • 9.Georgakopoulos P, Foteinopoulou E, Athanasopoulos P, Drosinos E, Skandamis P. Recoveries of four representative organophosphorus pesticides from 18 plant products belonging to different botanical categories: Implication for matrix effects. Food Addit. Contam. 2007;24:360–368. doi: 10.1080/02652030601101144. [DOI] [PubMed] [Google Scholar]
  • 10.Poole CF. Matrix-induced response enhancement in pesticide residue analysis by gas chromatography. J. Chromatogr. 2007;1158:241–250. doi: 10.1016/j.chroma.2007.01.018. [DOI] [PubMed] [Google Scholar]
  • 11.Freitas SS, Lancas FM. Matrix effects observed during pesticides residue analysis in fruits by GC. J Sep. Sci. 2009;32:3698–3705. doi: 10.1002/jssc.200900358. [DOI] [PubMed] [Google Scholar]
  • 12.Sousa FA, Costa AIG, Queiroz MELR, Teofilo RF, Neves AA, Pinho GP. Evaluation of matrix effect on the GC response of eleven pesticides by PCA. Food Chem. 2012;135:179–185. doi: 10.1016/j.foodchem.2012.04.063. [DOI] [Google Scholar]
  • 13.Rahman MM, El-Aty AMA, Shim JH. Matrix enhancement effect: A blessing or a curse for gas chromatography? -A review. Anal. Chim. Act. 2013;801:14–21. doi: 10.1016/j.aca.2013.09.005. [DOI] [PubMed] [Google Scholar]
  • 14.Godula M, Hajslova J, Alterova K. Pulsed splitless injection and the extent of matrix effects in the analysis of pesticides. J. High Res. Chromatog. 1999;22:395–402. doi: 10.1002/(SICI)1521-4168(19990701)22:7<395::AID-JHRC395>3.0.CO;2-O. [DOI] [Google Scholar]
  • 15.Schenck FJ, Lehotay SJ. Does further clean-up reduce the matrix enhancement effect in gas chromatographic analysis of pesticide residues in food? J. Chromatogr. 2000;868:51–61. doi: 10.1016/S0021-9673(99)01137-1. [DOI] [PubMed] [Google Scholar]
  • 16.Anastassiades M, Mastovska K, Lehotay SJ. Evalution of analyte protectants to improve gas chromatographic analysis of pesticides. J. Chromatogr. 2003;1015:163–184. doi: 10.1016/S0021-9673(03)01208-1. [DOI] [PubMed] [Google Scholar]
  • 17.Sanchez-Brunete C, Albero B, Martin G, Tadeo JL. Determination of pesticide residues by GC-MS using analyte protectants to counteract the matrix effect. Anal. Sci. 2005;21:1291–1296. doi: 10.2116/analsci.21.1291. [DOI] [PubMed] [Google Scholar]
  • 18.Mastovska K, Lehotay SJ, Anastassiades M. Combination of analyte protectants to overcome matrix effects in routine GC analysis of pesticide residues in food matrixes. Anal. Chem. 2005;77:8129–8137. doi: 10.1021/ac0515576. [DOI] [PubMed] [Google Scholar]
  • 19.Garrido Frenich A, Martinez Vidal JL, Fernandez Moreno JL, Romero-Gonzalez R. Compensation for matrix effects in gas chromatography-tandem mass spectrometry using a single point standard addition. J. Chromatogr. 2009;1216:4798–4808. doi: 10.1016/j.chroma.2009.04.018. [DOI] [PubMed] [Google Scholar]
  • 20.Rahman MM, Choi JH, El-Aty AMA, Abid MDN, Park JH, Na TW, Kim YD, Shim JH. Pepper leaf matrix as a promising analyte protectant prior to the analysis of thermolabile terbufos and its metabolites in pepper using GC-FPD. Food Chem. 2012;133:604–610. doi: 10.1016/j.foodchem.2012.01.074. [DOI] [PubMed] [Google Scholar]
  • 21.Sousa FA, Costa AIG, Queiroz MELR, Teofilo RF, Pinho GP, Neves AA. Influence of pH and matrix components in the chromatographic response of pesticides. Chromatographi. 2013;76:67–73. doi: 10.1007/s10337-012-2365-7. [DOI] [Google Scholar]
  • 22.Quality control procedure for pesticide residue analysis. Document SANCO/10232/2006. European Commission, Brussel, Belgium (2006)
  • 23.Lee YD. Practical guide of pesticide residues analysis method in food code. 2012. [Google Scholar]
  • 24.Statistics Mentor. Available from: http://www.statisticsmentor.com/tables/table_t.htm. Accessed Dec. 5, 2014.
  • 25.Cuadros-Rodriguez L, Gamiz-Gracia L, Almansa-Lopez EM, Bosque-Sendra JM. Calibration in chemical measurement processes. II. A methodological approach. Trends Anal. Chem. 2001;20:620–636. doi: 10.1016/S0165-9936(01)00111-X. [DOI] [Google Scholar]
  • 26.Cuadros-Rodriguez L, Garcia-Campana AM, Almansa-Lopez E, Egea-Gonzalez FJ, Castro Cano ML, Garrido Frenich A, Martinez-Vidal JL. Correction function on biased results due to matrix effects application to the routine analysis of pesticide residues. Anal. Chim. Act. 2003;478:281–301. doi: 10.1016/S0003-2670(02)01508-8. [DOI] [Google Scholar]
  • 27.Cai CP, Liang M, Wen RR. Rapid multiresidue screening method for organophosphate pesticides in vegetables. Chromatographi. 1995;40:417–420. doi: 10.1007/BF02269905. [DOI] [Google Scholar]
  • 28.Schenck FJ, Lehotay SJ, Vega V. Comparison of solid-phase extraction sorbents for cleanup in pesticide residue analysis of fresh fruits and vegetables. J. Sep. Sci. 2002;25:883–890. doi: 10.1002/1615-9314(20021001)25:14<883::AID-JSSC883>3.0.CO;2-7. [DOI] [Google Scholar]
  • 29.Sugitate K, Nakamura S, Orikata N, Mizukoshi K, Nakamura M, Toriba A, Hayakawa K. Search of components causing matrix effects on GC/MS for pesticide analysis in food. J. Pest. Sci. 2012;37:156–163. doi: 10.1584/jpestics.D11-048. [DOI] [Google Scholar]
  • 30.Hill ARC, Reynolds SL. Guidelines for in-house validation of analytical methods for pesticide residues in food and animal feeds. Analys. 1999;124:953–958. doi: 10.1039/a900603f. [DOI] [PubMed] [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES