Abstract
This study was carried out to select the most competent bacterial cultures that could convert sesaminol glycosides to aglycone by β-glucosidase produced by lactic acid bacteria such as Lactobacillus acidophilus, Lactobacillus plantarum (LP), and Streptococcus thermophilus in sesame fermented at 37°C for 24 h. The pH of fermented sesame was decreased compared to non-fermented controls. The pH of LP was lower than that of the other two during fermentation. Fermented sesame had higher antioxidant activity compared to non-fermented controls during the entire fermentation time. Total phenol content, DPPH free radical scavenging assay, reducing power assay of sesame fermented by LP was the highest compared to the others. In addition, sesame fermented by LP had more bioconversion of sesaminol glycoside to aglycone compared to the others. Therefore, LP was the best bacterial culture of the three strains studied for producing functional fermented sesame for good health.
Keywords: sesame, fermentation, lactic acid bacteria, sesaminol, aglycone
References
- 1.Namiki M. Nutraceutical functions of sesame: A review. Crit. Rev. Food Sci. 2007;47:651–673. doi: 10.1080/10408390600919114. [DOI] [PubMed] [Google Scholar]
- 2.Namiki M. The chemistry and physiological functions of sesame. Food Rev. Int. 1995;11:281–329. doi: 10.1080/87559129509541043. [DOI] [Google Scholar]
- 3.Ryu SN, Ho CT, Osawa T. High performance liquid chromatographic determination of antioxidant lignan glycosides in some varieties of sesame. J. Food Lipids. 1998;5:17–28. doi: 10.1111/j.1745-4522.1998.tb00104.x. [DOI] [Google Scholar]
- 4.Kamal-Eldin A, Moazzami A, Washi S. Sesame seed lignans: Potent physiological modulators and possible ingredients in functional foods & nutraceuticals. Recent Pat. Food Nutr. Agric. 2011;3:17–29. doi: 10.2174/2212798411103010017. [DOI] [PubMed] [Google Scholar]
- 5.Matsumura Y, Kita S, Morimoto S, Akimoto K, Furuya M, Oka N, Tanaka T. Antihypertensive effect of sesamin. I. Protection against deoxycorticosterone acetate-salt-induced hypertension and cardiovascular hypertrophy. Biol. Pharm. Bull. 1995;19:1016–1019. doi: 10.1248/bpb.18.1016. [DOI] [PubMed] [Google Scholar]
- 6.Hirose N, Inoue T, Nishihara K, Sugano M, Akimoto K, Shimizu S, Yamada H. Inhibition of cholesterol absorption and synthesis in rats by sesamin. J. Lipid Res. 1991;32:629–638. [PubMed] [Google Scholar]
- 7.Fukuda Y, Nagata M, Osawa T, Namiki M. Chemical aspects of the antioxidative activity of roasted sesame seed oil, and the effect of using the oil for frying. Agr. Biol. Chem. Toky. 1986;5:857–862. doi: 10.1271/bbb1961.50.857. [DOI] [Google Scholar]
- 8.Katsuzaki H, Kawakishi S, Osawa T. Sesaminol glucosides in sesame seeds. Phytochemistr. 1994;35:773–776. doi: 10.1016/S0031-9422(00)90603-4. [DOI] [PubMed] [Google Scholar]
- 9.Moazzami A, Andersson RE, Kamal-Eldin A. HPLC analysis of sesaminol glucosides in sesame seeds. J. Agr. Food Chem. 1994;54:633–638. doi: 10.1021/jf051541g. [DOI] [PubMed] [Google Scholar]
- 10.Moazzami A, Andersson RE, Kamal-Eldin A. Characterization and analysis of sesamolinol diglucoside in sesame seeds. Biosci. Biotech. Bioch. 2006;70:1478–1481. doi: 10.1271/bbb.60013. [DOI] [PubMed] [Google Scholar]
- 11.Miyake Y, Fukumoto S, Okada M, Sakaide K, Nakamura Y, Osawa T. Antioxidative catechol lignans converted from sesamin and sesaminol triglucoside by culturing with Aspergillus. J. Agr. Food Chem. 2005;53:22–27. doi: 10.1021/jf048743h. [DOI] [PubMed] [Google Scholar]
- 12.Kuriyama S, Murui T. Scavenging of hydroxy radicals by lignan glucosides in germinated sesame seeds. Nippon Nogeik. Kaish. 1995;69:703–705. [Google Scholar]
- 13.Jan KC, Ku KL, Chu YH, Hwang LS, Ho CT. Tissue distribution and elimination of estrogenic and anti-inflammatory catechol metabolites from sesaminol triglucoside in rat. J. Agr. Food Chem. 2010;58:7693–7700. doi: 10.1021/jf1009632. [DOI] [PubMed] [Google Scholar]
- 14.Lee SY, Ha TY, Son DH, Kim SR, Hong JT. Effect of sesaminol glucosides on β-amyloid-induced PC12 cell death through antioxidant mechanisms. Neurosci. Res. 2005;52:330–341. doi: 10.1016/j.neures.2005.04.003. [DOI] [PubMed] [Google Scholar]
- 15.Katsuzaki H, Osawa T, Kawakishi S. Food Phytochemicals for Cancer Prevention II. 1994. Chemistry and antioxidative activity of lignan glucosides in sesame seed; pp. 275–280. [Google Scholar]
- 16.Adlercreutz H, Vanderwildt J, Kinzel J, Attalla H, Wahala K, Makela T, Hase T, Fotsis T. Lignan and isoflavonoid conjugates in human urine. J. Steroid Biochem. 1995;52:97–103. doi: 10.1016/0960-0760(94)00146-D. [DOI] [PubMed] [Google Scholar]
- 17.Mousavi Y, Adlercreutz H. Enterolactone and estradiol inhibit each other’s proliferative effect on MCF-7 breast cancer cells in culture. J. Steroid Biochem. 1992;41:615–619. doi: 10.1016/0960-0760(92)90393-W. [DOI] [PubMed] [Google Scholar]
- 18.Sheng H, Hirose Y, Hata K, Zheng Q, Kuno T, Asano N, Yamada Y, Hara A, Osawa T, Mori H. Modifying effect of dietary sesaminol glucosides on the formation of azoxymethane-induced premalignant lesions of rat colon. Cancer Lett. 2007;246:63–68. doi: 10.1016/j.canlet.2006.01.030. [DOI] [PubMed] [Google Scholar]
- 19.Toda T, Sakamoto A, Takayanagi T, Yokotsuka K. Changes in isoflavone compositions of soybeans during the soaking process. Food Sci. Technol. Res. 2001;6:314–319. doi: 10.3136/fstr.6.314. [DOI] [Google Scholar]
- 20.Izumi T, Piskula MK, Osawa S, Obata A, Tobe K, Saito M. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr. 2000;130:1695–1699. doi: 10.1093/jn/130.7.1695. [DOI] [PubMed] [Google Scholar]
- 21.Mital BK, Steinkraus KH, Naylor HB. Growth of lactic acid bacteria in soy milks. J. Food Sci. 1974;39:1018–1022. doi: 10.1111/j.1365-2621.1974.tb07300.x. [DOI] [Google Scholar]
- 22.Afaneh I, Abu-Alruz K, Quasem JM, Sundookah A, Abbadi J, Alloussi S, Ayyad Z. Fundamental elements to produce sesame yoghurt from sesame milk. Am. J. Appl. Sci. 2011;11:1086–1092. doi: 10.3844/ajassp.2011.1086.1092. [DOI] [Google Scholar]
- 23.Shyu YS, Hwang LS. Antioxidative activity of the crude extract of lignan glycosides from unroasted Burma black sesame meal. Food Res. Int. 2002;35:357–365. doi: 10.1016/S0963-9969(01)00130-2. [DOI] [Google Scholar]
- 24.AOAC. Official method of analysis AOAC Intl. 2000. [Google Scholar]
- 25.Zhu X, Zhang X, Sun Y, Su D, Sun Y, Hu B, Zeng X. Purification and fermentation in vitro of sesaminol triglucoside from sesame cake by human intestinal microbiota. J. Agr. Food Chem. 2013;61:1868–1877. doi: 10.1021/jf304643k. [DOI] [PubMed] [Google Scholar]
- 26.Singleton VL, Rossi J. Colorimetry of total phenolics with phosphomolybicphosphotungstic acid reagents. Am. J. Enol. Viticult. 1965;16:144–158. [Google Scholar]
- 27.Blois MS. Antioxidant determinations by the use of a stable free radical. Natur. 1958;181:1198–1200. doi: 10.1038/1811199a0. [DOI] [Google Scholar]
- 28.Oyaizu M. Studies on products of browning reactions: Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 1986;44:307–315. doi: 10.5264/eiyogakuzashi.44.307. [DOI] [Google Scholar]
- 29.Wu H, Hulbert GJ, Mount JR. Effects of ultrasound on milk homogenization and fermentation with yogurt starter. Innov. Food Sci. Emerg. 2001;1:211–218. doi: 10.1016/S1466-8564(00)00020-5. [DOI] [Google Scholar]
- 30.Lee MY, Hong GE, Zhang H, Yang CY, Han KH, Mandal PK, Lee CH. Production of the isoflavone aglycone and antioxidant activities in black soymilk using fermentation with Streptococcus thermophilus S10. Food Sci. Biotechnol. 2015;24:537–544. doi: 10.1007/s10068-015-0070-7. [DOI] [Google Scholar]
- 31.Suja KP, Jayalakshmy A, Arumughan C. Antioxidant activity of sesame cake extract. Food Chem. 2005;91:213–219. doi: 10.1016/j.foodchem.2003.09.001. [DOI] [Google Scholar]
- 32.Ferreira ICFR, Baptista P, Vilas-Boas M, Barros L. Free-radical scavenging capacity and reducing power of wild edible mushrooms from Northeast Portugal: Individual cap and stipe activity. Food Chem. 2007;100:1511–1516. doi: 10.1016/j.foodchem.2005.11.043. [DOI] [Google Scholar]
- 33.Nakai M, Harada M, Nakahara K, Akimoto K, Shibata H, Miki W, Kiso Y. Novel antioxidative metabolites in rat liver with ingested sesamin. J. Agr. Food Chem. 2003;51:1666–1670. doi: 10.1021/jf0258961. [DOI] [PubMed] [Google Scholar]
- 34.Meir S, Kanner J, Akiri B, Hadas SP. Determination and involvement of aqueous reducing compounds in oxidative defense system of various senescing leaves. J. Agr. Food Chem. 1995;43:1813–1815. doi: 10.1021/jf00055a012. [DOI] [Google Scholar]
