Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2016 Mar 31;25(Suppl 1):41–46. doi: 10.1007/s10068-016-0096-5

Hypolipidemic effects of hickory nut oil using cold pressure extraction

Yan Zhang 1, Liying Wu 1, Zhixin Yao 1, Zhongsu Ma 1, Jingbo Liu 1,
PMCID: PMC6049405  PMID: 30263484

Abstract

Optimal conditions of hickory nut oil cold press technology were studied. L9(34) orthogonal experiment results showed that optimal conditions were a pressing pressure of 15 MPa, pressing temperature of 50°C, pressing cycle of 4 s, and stop cycle of 9 s. Fatty acid compositions were determined using GC-MS and hypolipidemic effects in mice were investigated. Compared to a high fat diet group, hickory nut oil administration decreased serum and visceral total cholesterol, triacylglycerol, and serum low density lipoprotein cholesterol levels. Serum high density lipoprotein cholesterol values were increased. Hickory nut oil can be used as a valuable bioactive source of natural hypolipidemic compounds.

Keywords: hickory nut oil, cold press technology, hypolipidemic effect

References

  • 1.Brunner G. Counter-current separations. J. Supercrit. Fluid. 2009;47:574–582. doi: 10.1016/j.supflu.2008.09.022. [DOI] [Google Scholar]
  • 2.Santos OV, Corrêa NCF, Soares FASM, Gioielli LA, Costa CEF, Lannes SCS. Chemical evaluation and thermal behavior of Brazil nut oil obtained by different extraction processes. Food Res. Int. 2012;47:253–258. doi: 10.1016/j.foodres.2011.06.038. [DOI] [Google Scholar]
  • 3.Pengzhan Y, Ning L, Xiquang L, Gefei Z, Quanbin Z, Pengcheng L. Antihyperlipidemic effects of different molecular weight sulfated polysaccharides from Ulva pertusa (Chlorophyta) Pharmacol. Res. 2003;48:543–549. doi: 10.1016/S1043-6618(03)00215-9. [DOI] [PubMed] [Google Scholar]
  • 4.Tzang BS, Yang SF, Fu SG, Yang HC, Sun HL, Chen YC. Effects of dietary flaxseed oil on cholesterol metabolism of hamsters. Food Chem. 2009;114:1450–1455. doi: 10.1016/j.foodchem.2008.11.030. [DOI] [Google Scholar]
  • 5.Ennouri M, Fetoui H, Hammami M, Bourret E, Attia H, Zeghal N. Effects of diet supplementation with cactus pear seeds and oil on serum and liver lipid parameters in rats. Food Chem. 2007;101:248–253. doi: 10.1016/j.foodchem.2006.01.026. [DOI] [Google Scholar]
  • 6.Tahvonen RL, Schwab US, Linderborg KM, Mykkanen HM, Kallio HP. Black currant seed oil and fish oil supplements differ in their effects on fatty acid profiles of plasma lipids, and concentrations of serum total and lipoprotein lipids, plasma glucose and insulin. J. Nutr. Biochem. 2005;16:353–359. doi: 10.1016/j.jnutbio.2005.01.004. [DOI] [PubMed] [Google Scholar]
  • 7.Leudeu BC, Tchiégang C, Barbé F, Nicolas B, Guéant JL. Ricinodendron heutelotii (Bail.) or Tetracarpidium conophorum Müll. oils fed to male rats lower blood lipids. Nutr. Res. 2009;29:503–509. doi: 10.1016/j.nutres.2009.07.004. [DOI] [PubMed] [Google Scholar]
  • 8.Takeyama E, Fukushima M. Physicochemical properties of Plukenetia volubilis L. seeds and oxidative stability of cold-pressed oil (green nut oil) Food Sci. Technol. Res. 2013;19:875–882. doi: 10.3136/fstr.19.875. [DOI] [Google Scholar]
  • 9.Bannon CD, Craske JD, Felder DL, Garland IJ, Norman LM. Analysis of fatty acid methyl esters with high accuracy and reliability. VI. Rapid analysis by split injection capillary gas-liquid chromatography. J. Chromatogr. A. 1987;407:231–241. doi: 10.1016/S0021-9673(01)92621-4. [DOI] [PubMed] [Google Scholar]
  • 10.AOCS. Official Methods and Recommended Practices of the AOCS, 6th ed. Method Ce 1j-07. American Oil Chemists’ Society, Champaign, IL, USA (2009).
  • 11.Hu YB, Fu XJ, Zhang FX, Ma FM, Wang Z, Xu SY. Hypolipidemic study of xylanase-modified corn bran fibre in rats. Food Chem. 2010;123:563–567. doi: 10.1016/j.foodchem.2010.03.131. [DOI] [Google Scholar]
  • 12.Santos OV, Corrêa NCF, Carvalho Jr RN, Costa CEF, Lannes SCS. Yield, nutritional quality, and thermal-oxidative stability of Brazil nut oil (Bertolletia excelsa H.B.K) obtained by supercritical extraction. J. Food Eng. 2013;117:499–504. doi: 10.1016/j.jfoodeng.2013.01.013. [DOI] [Google Scholar]
  • 13.Venkatachalam M, Kshirsagar HH, Seeram NP, Heber D, Thompson TE, Roux KH, Sathe SK. Biochemical composition and immunological comparison of select pecan [Carya illinoinensis (Wangenh.) K. Koch] cultivars. J. Agr. Food Chem. 2007;55:9899–9907. doi: 10.1021/jf0714721. [DOI] [PubMed] [Google Scholar]
  • 14.Le NH, Shin S, Tu TH, Kim CS, Kang JH, Tsuyoshi G, Teruo K, Han SN, Yu R. Diet enriched with Korean pine nut oil improves mitochondrial oxidative metabolism in skeletal muscle and brown adipose tissue in diet-induced obesity. J. Agr. Food Chem. 2012;60:11935–11941. doi: 10.1021/jf303548k. [DOI] [PubMed] [Google Scholar]
  • 15.Oarada M, Tsuzuki T, Gonoi T, Igarashi M, Kamei K, Nikawa T, Hirasaka K, Ogawa T, Miyazawa T, Nakagawa K, Kurita N. Effects of dietary fish oil on lipid peroxidation and serum triacylglycerol levels in psychologically stressed mice. Nutrition. 2008;24:67–75. doi: 10.1016/j.nut.2007.10.006. [DOI] [PubMed] [Google Scholar]
  • 16.Villanueva MJ, Yokoyama WH, Hong YJ, Barttley GE, Rupérez P. Effect of highfat diets supplemented with okara soybean by-product on lipid profiles of plasma, liver and faeces in Syrian hamsters. Food Chem. 2011;124:72–79. doi: 10.1016/j.foodchem.2010.05.106. [DOI] [Google Scholar]
  • 17.Deguchi Y, Ogata A. Relationship between serum selenium concentration and atherogenic index in Japanese adults. Tohoku J. Exp. Med. 1991;165:247–251. doi: 10.1620/tjem.165.247. [DOI] [PubMed] [Google Scholar]
  • 18.Kassab A, Laradi S, Ferchichi S, Omezzine A, Charfeddine B, Ammar H, Chaieb L, Miled A. Paramètres du stress oxydant dans le diabète de type 2. Immuno-Anal. Biol. Spe. 2003;18:79–85. [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES