Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2016 Mar 31;25(Suppl 1):23–29. doi: 10.1007/s10068-016-0094-7

Chemical properties and toxicology studies of fucoidan extracted from Malaysian Sargassum binderi

Seng Joe Lim 1, Wan Aida Wan Mustapha 1,, Mohamad Yusof Maskat 1, Jalifah Latip 1, Khairiah Haji Badri 1, Osman Hassan 1
PMCID: PMC6049416  PMID: 30263482

Abstract

Fucoidan is a sulfated polysaccharide that consists mainly of fucose and is found in brown seaweeds. In this study, fucoidan was extracted from Sargassum binderi (Fsar) from Malaysia and subsequently characterized in terms of composition, structure and toxicology. It was found that the molecular weight, polydispersity index, monosaccharide profile and degree of sulfation of Fsar differed from those of commercial food-grade fucoidan (Fysk). NMR analysis suggested that the main structure of Fsar was →3)fuc-2-OSO3 (1→3)fuc-2-OSO3 (1→. A cytotoxicity study employing up to 200 mg/mL Sargassum binderi extract showed that cell inhibition was less than 50% (IC50), while acute toxicity results classified S. binderi as category 5 (unclassified) according to the OECD Guideline 423, as no mortality was observed at the highest dosage (2,000 mg/kg). Both toxicity results showed that this material is safe to be consumed. The chemical characteristics and non-toxicity of Fsar demonstrate its potential in biological and food product applications.

Keywords: acute toxicity, characterization, cytotoxicity, fucoidan, Sargassum binderi

References

  • 1.FAO. FAO Yearbook 2010: Fishery and Aquaculture Statistics. Food and Agriculture Organization of the United Nations, Rome, Italy (2012)
  • 2.Lim SJ, Wan Aida WM, Maskat MY, Mamot S, Ropien J, Mohd DM. Isolation and antioxidant capacity of fucoidan from selected Malaysian seaweeds. Food Hydrocolloid. 2014;42:280–288. doi: 10.1016/j.foodhyd.2014.03.007. [DOI] [Google Scholar]
  • 3.Bilan MI, Grachev AA, Ustuzhanina NE, Shashkov AS, Nifantiev NE, Usov AI. Structure of fucoidan from the brown seaweed Fucus evanescens C. Ag. Carbohyd. Res. 2002;337:719–730. doi: 10.1016/S0008-6215(02)00053-8. [DOI] [PubMed] [Google Scholar]
  • 4.Li B, Lu F, Wei X, Zhao R. Fucoidan: Structure and bioactivity. Molecules. 2008;13:1671–1695. doi: 10.3390/molecules13081671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Rioux LE, Turgeon SL, Beaulieu M. Effect of season on the composition of bioactive polysaccharides from the brown seaweed Saccharina longicruris. Phytochemistry. 2009;70:1069–1075. doi: 10.1016/j.phytochem.2009.04.020. [DOI] [PubMed] [Google Scholar]
  • 6.Zvyagintseva TN, Shevchenko NM, Chizhov AO, Krupnova TN, Sundukova EV, Isakov VV. Water-soluble polysaccharides of some far-eastern brown seaweeds. Distribution, structure, and their dependence on the developmental conditions. J. Exp. Mar. Biol. Ecol. 2003;294:1–13. doi: 10.1016/S0022-0981(03)00244-2. [DOI] [Google Scholar]
  • 7.Synytsya A, Kim WJ, Kim SM, Pohl R, Synytsya A, Kvasnicka F, Copikova J, Park YI. Structure and antitumor activity of fucoidan isolated from sporophyll of Korean brown seaweed Undaria pinnatifida. Carbohyd. Polym. 2010;81:41–48. doi: 10.1016/j.carbpol.2010.01.052. [DOI] [Google Scholar]
  • 8.Rioux LE, Turgeon SL, Beaulieu M. Characterization of polysaccharides extracted from brown seaweeds. Carbohyd. Polym. 2007;69:530–537. doi: 10.1016/j.carbpol.2007.01.009. [DOI] [Google Scholar]
  • 9.Dobruchowska JM, Gerwig GJ, Babuchowski A, Kamerling JP. Structural studies on exopolysaccharides produced by three different propionibacteria strains. Carbohyd. Res. 2008;343:726–745. doi: 10.1016/j.carres.2007.12.006. [DOI] [PubMed] [Google Scholar]
  • 10.Lawson AM. Mass Spectrometry. 1989. pp. 175–263. [Google Scholar]
  • 11.Guezennec J, Pignet P, Lijour Y, Gentric E, Ratiskol J, Colliec-Jouault S. Sulfation and depolymerization of a bacterial exopolysaccharide of hydrothermal origin. Carbohyd. Polym. 1998;37:19–24. doi: 10.1016/S0144-8617(98)00006-X. [DOI] [Google Scholar]
  • 12.Roger O, Kervarec N, Ratiskol J, Colliec-Jouault S, Chevolot L. Structural studies of the main exopolysaccharide produced by the deep-sea bacterium Alteromonas infernus. Carbohyd. Res. 2004;339:2371–2380. doi: 10.1016/j.carres.2004.07.021. [DOI] [PubMed] [Google Scholar]
  • 13.Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
  • 14.Peng Z, Liu M, Fang Z, Wu J, Zhang Q. Composition and cytotoxicity of a novel polysaccharide from brown alga (Laminaria japonica) Carbohyd. Polym. 2012;89:1022–1026. doi: 10.1016/j.carbpol.2012.03.043. [DOI] [PubMed] [Google Scholar]
  • 15.Peng Z, Liu M, Fang Z, Chen L, Wu J, Zhang Q. In vitro antiproliferative effect of a water-soluble Laminaria japonica polysaccharide on human melanoma cell line A375. Food Chem. Toxicol. 2013;58:56–60. doi: 10.1016/j.fct.2013.04.026. [DOI] [PubMed] [Google Scholar]
  • 16.OECD. Guideline 423: Acute oral toxicity-acute toxic class method. In: OECD Guidelines for the Testing of Chemicals. OECD. OECD Publishing, Paris, France. pp. 1-14 (2001)
  • 17.Ale MT, Mikkelsen JD, Meyer AS. Important determinants for fucoidan bioactivity: A critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Mar. Drugs. 2011;9:2106–2130. doi: 10.3390/md9102106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Bilan MI, Grachev AA, Ustuzhanina NE, Shashkov AS, Nifantiev NE, Usov AI. A highly regular fraction of a fucoidan from the brown seaweed Fucus distichus L. Carbohyd. Res. 2004;339:511–517. doi: 10.1016/j.carres.2003.10.028. [DOI] [PubMed] [Google Scholar]
  • 19.Daniel R, Berteau O, Chevolot L, Varenne A, Gareil P, Goasdoue N. Regioselective desulfation of sulfated L-fucopyranoside by a new sulfoesterase from the marine mollusk Pecten maximus-Application to the structural study of algal fucoidan (Ascophyllum nodosum) FEBS J. 2001;268:5617–5626. doi: 10.1046/j.1432-1033.2001.02497.x. [DOI] [PubMed] [Google Scholar]
  • 20.Jacobsen NE. NMR Spectroscopy Explained: Simplified Theory, Applications and Examples for Organic Chemistry and Structural Biology. 2007. [Google Scholar]
  • 21.Assayed ME, Khalaf AA, Salem HA. Protective effects of garlic extract and vitamin C against in vivo cypermethrin-induced cytogenetic damage in rat bone-marrow. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2010;702:1–7. doi: 10.1016/j.mrgentox.2010.02.020. [DOI] [PubMed] [Google Scholar]
  • 22.Turner PV, Brabb T, Pekow C, Vasbinder MA. Administration of substances to laboratory animals: Routes of administration and factors to consider. J. Am. Assoc. Lab. Anim. Sci. 2011;50:600–613. [PMC free article] [PubMed] [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES