Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2016 Mar 31;25(Suppl 1):15–21. doi: 10.1007/s10068-016-0093-8

Impact of stirring speed on β-lactoglobulin fibril formation

Shy Kai Ng 1,, Kar Lin Nyam 2, Imededdine Arbi Nehdi 3, Gun Hean Chong 1, Oi Ming Lai 4, Chin Ping Tan 1
PMCID: PMC6049419  PMID: 30263481

Abstract

β-Lactoglobulin (β-lg) can produce fibrils that have multi-functional properties. Impacts of different stirring speeds on characteristics of β-lg fibrils as a stable form in β-lg fibril solutions were investigated. Fibril concentration, fibril morphology, turbidity, particle size distribution, zeta potential, and rheological behavior of solutions were studied. Stirring enhanced fibril formation and stability of a fibril solution, in comparison with unstirred solutions. Increasing the stirring speed produced more turbidity and a greater distribution of particle sizes, higher viscosity values, but no differences in zeta potential values of β-lg fibril solutions. However, a high stirring speed is not feasible due to reduction of the fibril yield and changes in fibril morphology.

Keywords: fibril, β-lactoglobulin, stirring, zeta potential, morphology

References

  • 1.Rogers SS, Venema P, van der Ploeg JPM, van der Linden E, Sagis LM, Donald AM. Investigating the permanent electric dipole moment of β-lactoglobulin fibrils, using transient electric birefringence. Biopolymers. 2006;82:241–252. doi: 10.1002/bip.20483. [DOI] [PubMed] [Google Scholar]
  • 2.Yan H, Nykanen A, Ruokolainen J, Farrar D, Gough JE, Saiani A, Miller AF. Thermo-reversible protein fibrillar hydrogels as cell scaffolds. Faraday Discuss. 2008;139:71–84. doi: 10.1039/b717748h. [DOI] [PubMed] [Google Scholar]
  • 3.Pilkington SM, Roberts SJ, Meade SJ, Gerrard JA. Amyloid fibrils as a nanoscaffold for enzyme immobilization. Biotechnol. Progr. 2010;26:93–100. doi: 10.1002/btpr.309. [DOI] [PubMed] [Google Scholar]
  • 4.Weiss J, Takhistov P, McClements DJ. Functional materials in food nanotechnology. J. Food Sci. 2006;71:107–116. doi: 10.1111/j.1750-3841.2006.00195.x. [DOI] [Google Scholar]
  • 5.Akkermans C, van der Goot AJ, Venema P, Gruppen H, Vereijken JM, van der Linden E, Boom RM. Micrometer-sized fibrillar protein aggregates from soy glycinin and soy protein isolate. J. Agr. Food Chem. 2007;55:9877–9882. doi: 10.1021/jf0718897. [DOI] [PubMed] [Google Scholar]
  • 6.Mounsey JS, O’Kennedy BT, Fenelon MA, Brodkorb A. The effect of heating on β-lactoglobulin-chitosan mixtures as influenced by pH and ionic strength. Food Hydrocolloid. 2008;22:65–73. doi: 10.1016/j.foodhyd.2007.04.006. [DOI] [Google Scholar]
  • 7.Qi XL, Holt C, McNulty D, Clarke DT, Brownlow S, Jones GR. Effect of temperature on the secondary structure of β-lactoglobulin at pH 6.7, as determined by CD and IR spectroscopy: A test of the molten globule hypothesis. Biochem. J. 1997;324:341–346. doi: 10.1042/bj3240341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Konrad G, Lieske B, Faber W. A large-scale isolation of native β-lactoglobulin: Characterization of physicochemical properties and comparison with other methods. Int. Dairy J. 2000;10:713–721. doi: 10.1016/S0958-6946(00)00099-6. [DOI] [Google Scholar]
  • 9.Zsila F. A new ligand for an old lipocalin: Induced circular dichroism spectra reveal binding of bilirubin to bovine β-lactoglobulin. FEBS Lett. 2003;539:85–90. doi: 10.1016/S0014-5793(03)00203-5. [DOI] [PubMed] [Google Scholar]
  • 10.Aymard P, Nicolai T, Durand D, Clark A. Static and dynamic scattering of β-lactoglobulin aggregates formed after heat induced denaturation at pH 2. Macromolecules. 1999;32:2542–2552. doi: 10.1021/ma981689j. [DOI] [Google Scholar]
  • 11.Kavanagh GM, Clark AH, Ross-Murphy SB. Heat-induced gelation of globular proteins: Part 3. Molecular studies on low pH β-lactoglobulin gels. Int. J. Biol. Macromol. 2000;28:41–50. doi: 10.1016/S0141-8130(00)00144-6. [DOI] [PubMed] [Google Scholar]
  • 12.Sabate R, Gallardo M, Estelrich J. Temperature dependence of the nucleation constant rate in β amyloid fibrillogenesis. Int. J. Biol. Macromol. 2005;35:9–13. doi: 10.1016/j.ijbiomac.2004.11.001. [DOI] [PubMed] [Google Scholar]
  • 13.Bromley EH, Krebs MR, Donald AM. Aggregation across the length scales in β-lactoglobulin. Faraday Discuss. 2005;128:13–27. doi: 10.1039/B403014A. [DOI] [PubMed] [Google Scholar]
  • 14.Hamada D, Dobson CM. A kinetic study of β-lactoglobulin amyloid fibril formation promoted by urea. Protein Sci. 2002;11:2417–2426. doi: 10.1110/ps.0217702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Dave AC, Loveday SM, Anema SG, Loo TS, Norris GE, Jameson GB, Singh H. β-Lactoglobulin self-assembly: Structural changes in early stages and disulfide bonding in fibrils. J. Agr. Food Chem. 2013;61:7817–7828. doi: 10.1021/jf401084f. [DOI] [PubMed] [Google Scholar]
  • 16.Rochet JC, Lansbury P Jr. Amyloid fibrillogenesis: Theme and variations. Curr. Opin. Struc. Biol. 2000;10:60–68. doi: 10.1016/S0959-440X(99)00049-4. [DOI] [PubMed] [Google Scholar]
  • 17.Pearce FG, Mackintosh SH, Gerrard JA. Formation of amyloid-like fibrils by ovalbumin and related proteins under conditions relevant to food processing. J. Agr. Food Chem. 2007;55:318–322. doi: 10.1021/jf062154p. [DOI] [PubMed] [Google Scholar]
  • 18.Hill EK, Krebs B, Goodall DG, Howlett GJ, Dunstan DE. Shear flow induces amyloid fibril formation. Biomacromolecules. 2006;7:10–13. doi: 10.1021/bm0505078. [DOI] [PubMed] [Google Scholar]
  • 19.Dunstan DE, Hamilton-Brown P, Asimakis P, Ducker W, Bertolini J. Shearinduced structure and mechanics of β-lactoglobulin amyloid fibrils. Soft Matter. 2009;5:5020–5028. doi: 10.1039/b914089a. [DOI] [Google Scholar]
  • 20.Dave AC, Loveday SM, Anema SG, Jameson GB, Singh H. Modulating β-lactoglobulin nanofibril self-assembly at pH 2 using glycerol and sorbitol. Biomacromolecules. 2014;15:95–103. doi: 10.1021/bm401315s. [DOI] [PubMed] [Google Scholar]
  • 21.Serfert Y, Lamprecht C, Tan CP, Keppler JK, Appel E, Rossier-Miranda FJ, Schroen K, Boom RM, Gorb S, Selhuber-Unkel C, Drusch S, Schwarz K. Characterisation and use of β-lactoglobulin fibrils for microencapsulation of lipophilic ingredients and oxidative stability thereof. J. Food Eng. 2014;143:53–61. doi: 10.1016/j.jfoodeng.2014.06.026. [DOI] [Google Scholar]
  • 22.Loveday SM, Wang XL, Rao MA, Anema SG, Singh H. β-Lactoglobulin nanofibrils: Effect of temperature on fibril formation kinetics, fibril morphology and the rheological properties of fibril dispersions. Food Hydrocolloid. 2012;27:242–249. doi: 10.1016/j.foodhyd.2011.07.001. [DOI] [Google Scholar]
  • 23.Sardar S, Pal S, Maity S, Chakraborty J, Halder UC. Amyloid fibril formation by β-lactoglobulin is inhibited by gold nanoparticles. Int. J. Biol. Macromol. 2014;69:137–145. doi: 10.1016/j.ijbiomac.2014.05.006. [DOI] [PubMed] [Google Scholar]
  • 24.Kehoe JJ, Foegeding EA. The characteristics of heat-induced aggregates formed by mixtures of β-lactoglobulin and β-casein. Food Hydrocolloid. 2014;39:264–271. doi: 10.1016/j.foodhyd.2014.01.019. [DOI] [Google Scholar]
  • 25.Krebs MRH, Bromley EHC, Donald AM. The binding of thioflavin-T to amyloid fibrils: Localization and implications. J. Struct. Biol. 2005;149:30–37. doi: 10.1016/j.jsb.2004.08.002. [DOI] [PubMed] [Google Scholar]
  • 26.Kroes-Nijboer A, Venema P, Bouman J. The critical aggregation concentration of β-lactoglobulin-based fibril formation. Food Biophys. 2009;4:59–63. doi: 10.1007/s11483-009-9101-3. [DOI] [Google Scholar]
  • 27.Bolder SG, Sagis LM, Venema P, van der Linden E. Effect of stirring and seeding on whey protein fibril formation. J. Agr. Food Chem. 2007;55:5661–5669. doi: 10.1021/jf063351r. [DOI] [PubMed] [Google Scholar]
  • 28.Kroes-Nijboer A, Lubbersen YS, Venema P, van der Linden E. Thioflavin T fluorescence assay for β-lactoglobulin fibrils hindered by DAPH. J. Struct. Biol. 2009;165:140–145. doi: 10.1016/j.jsb.2008.11.003. [DOI] [PubMed] [Google Scholar]
  • 29.Oboroceanu D, Wang L, Brodkorb A, Magner E, Auty MA. Characterization of β-lactoglobulin fibrillar assembly using atomic force microscopy, polyacrylamide gel electrophoresis, and in situ fourier transform infrared spectroscopy. J. Agr. Food Chem. 2010;58:3667–3673. doi: 10.1021/jf9042908. [DOI] [PubMed] [Google Scholar]
  • 30.Xiong YL, Dawson KA, Wan L. Thermal aggregation of β-lactoglobulin: Effect of pH, ionic environment and thiol reagent. J. Dairy Sci. 1993;76:70–77. doi: 10.3168/jds.S0022-0302(93)77324-5. [DOI] [Google Scholar]
  • 31.Majhi PR, Ganta RR, Vanam RP, Seyrek E, Giger K, Dubin PL. Electrostatically driven protein aggregation: β-Lactoglobulin at low ionic strength. Langmuir. 2006;22:9150–9159. doi: 10.1021/la053528w. [DOI] [PubMed] [Google Scholar]
  • 32.Akkermans C, van der Goot AJ, Venema P, van der Linden E, Boom RM. Properties of protein fibrils in whey protein isolate solutions: Microstructure, flow behaviour and gelation. Int. Dairy J. 2008;18:1034–1042. doi: 10.1016/j.idairyj.2008.05.006. [DOI] [Google Scholar]
  • 33.Ron N, Zimet P, Bargarum J, Livney YD. Beta-lactoglobulin-polysaccharide complexes as nanovehicles for hydrophobic nutraceuticals in non-fat foods and clear beverages. Int. Dairy J. 2010;20:686–693. doi: 10.1016/j.idairyj.2010.04.001. [DOI] [Google Scholar]
  • 34.Engelhardt K, Lexis M, Gochev G, Konnerth C, Miller R, Willenbacher N, Peukert W, Braunschweig B. pH effects on the intermolecular structure of β-lactoglobulin modified air-water interfaces and its impact on foam rheology. Langmuir. 2013;29:11646–11655. doi: 10.1021/la402729g. [DOI] [PubMed] [Google Scholar]
  • 35.Rûhs PA, Scheuble N, Windhab EJ, Mezzenga R, Fischer P. Simultaneous control of pH and ionic strength during interfacial rheology of β-lactoglobulin fibrils adsorbed at liquid/liquid interfaces. Langmuir. 2012;28:12536–12543. doi: 10.1021/la3026705. [DOI] [PubMed] [Google Scholar]
  • 36.Sorbie KS, Clifford PJ, Jones ERW. The rheology of pseudoplastic fluids in porous media using network modeling. J. Colloid Interf. Sci. 1989;130:508–534. doi: 10.1016/0021-9797(89)90128-8. [DOI] [Google Scholar]
  • 37.Quintana JM, Califano AN, Zaritzky NE, Partal P, Franco JM. Linear and nonlinear viscoelastic behavior of oil-in-water emulsions stabilized with polysaccharides. J. Texture Stud. 2002;33:215–236. doi: 10.1111/j.1745-4603.2002.tb01346.x. [DOI] [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES