Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2017 Apr 30;26(2):381–387. doi: 10.1007/s10068-017-0052-z

The structural characteristics of amylosucrase-treated waxy corn starch and relationship between its in vitro digestibility

Cheon-Seok Park 1, Inmyoung Park 2,
PMCID: PMC6049424  PMID: 30263554

Abstract

The glucotransferase amylosucrase (AS) influences the structural properties of starch, but its precise effects are unclear. The structural characteristics and in vitro digestibility of waxy corn starch modified by AS from Neisseria polysaccharea were examined. AS-treated starch exhibited a higher slowly digestible starch (SDS) fraction, the weak B-type polymorph, lower relative crystallinity, and lower double helix content than those of native starches based on X-ray diffractometry, solid-state 13C CP/MAS NMR, and FT-IR. AS-treated starches exhibited increased proportions of degree of polymerization (DP) 25–36 and DP≥37 chains. Higher SDS and resistant (RS) fractions, higher proportions of DP 25–36 and DP≥37 chains, more double helices, higher relative crystallinity, and less difference between double helix and relative crystallinity were observed for starch treated with 460 U than with 230 U of AS. AS re-built the double-helical and rearranged crystalline structure of gelatinized starch and consequently influenced the SDS and RS fractions.

Keywords: amylosucrase, modified starch, crystalline structure, double helix, in vitro digestibility

References

  • 1.Englyst HN, Kingman SM, Cummings JH. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992;46:S33–S5. [PubMed] [Google Scholar]
  • 2.Lehmann U, Robin F. Slowly digestible starch - its structure and health implications: A review. Trends Food Sci. Tech. 2007;18:346–355. doi: 10.1016/j.tifs.2007.02.009. [DOI] [Google Scholar]
  • 3.Shin HJ, Choi SJ, Park CS, Moon TW. Preparation of starches with low glycaemic response using amylosucrase and their physicochemical properties. Carbohyd. Polym. 2010;82:489–497. doi: 10.1016/j.carbpol.2010.05.017. [DOI] [Google Scholar]
  • 4.Shin SI, Byun J, Park KH, Moon TW. Effect of partial acid hydrolysis and heatmoisture treatment on formation of resistant tuber starch. Cereal Chem. 2004;81:194–198. doi: 10.1094/CCHEM.2004.81.2.194. [DOI] [Google Scholar]
  • 5.Tester RF, Debon SJJ. Annealing of starch -A review. Int. J. Biol. Macromol. 2000;27:1–12. doi: 10.1016/S0141-8130(99)00121-X. [DOI] [PubMed] [Google Scholar]
  • 6.Han XZ, Ao ZH, Janaswamy S, Jane JL, Chandrasekaran R, Hamaker BR. Development of a low glycemic maize starch: Preparation and characterization. Biomacromolecules. 2006;7:1162–1168. doi: 10.1021/bm050991e. [DOI] [PubMed] [Google Scholar]
  • 7.Lee BH, Yan L, Phillips RJ, Reuhs BL, Jones K, Rose DR, Nichols B Q-, Calvillo R, Yoo SH, Hamaker BR. Enzyme-synthesized highly branched maltodextrins have slow glucose generation at the mucosal a-glucosidase level and are slowly digestible in vivo. PLoS ONE. 2013;8:e59745. doi: 10.1371/journal.pone.0059745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Miao M, Jiang B, Zhang T. Effect of pullulanase debranching and recrystallization on structure and digestibility of waxy maize starch. Carbohyd. Polym. 2009;76:214–221. doi: 10.1016/j.carbpol.2008.10.007. [DOI] [Google Scholar]
  • 9.Shin SI, Choi HJ, Chung KM, Hamaker BR, Park KH, Moon TW. Slowly digestible starch from debranched waxy sorghum starch: Preparation and properties. Cereal Chem. 2004;81:404–408. doi: 10.1094/CCHEM.2004.81.3.404. [DOI] [Google Scholar]
  • 10.Zhang G, Ao Z, Hamaker BR. Nutritional property of endosperm starches from maize mutants: A parabolic relationship between slowly digestible starch and amylopectin fine structure. J. Agr. Food Chem. 2008;56:4686–4694. doi: 10.1021/jf072822m. [DOI] [PubMed] [Google Scholar]
  • 11.de Montalk GP, Remaud-Simeon M, Willemot RM, Planchot V, Monsan P. Sequence analysis of the gene encoding amylosucrase from Neisseria polysaccharea and characterization of the recombinant enzyme. J. Bacteriol. 1999;181:375–381. doi: 10.1128/jb.181.2.375-381.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Kim EJ, Kim HR, Choi SJ, Park C-S, Moon TW. Low digestion property of amylosucrase-modified waxy adlay starch. Food Sci. Biotechnol. 2016;25:457–460. doi: 10.1007/s10068-016-0063-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Ryu JH, Lee BH, Seo DH, Baik MY, Park CS, Wang R, Yoo SH. Production and characterization of digestion-resistant starch by the reaction of Neisseria polysaccharea amylosucrase. Starch-Stärke. 2010;62:221–228. doi: 10.1002/star.200900182. [DOI] [Google Scholar]
  • 14.Seo JY. Preparation of low digestible starch by using amylosucrase and locust bean gum and its structural and physicochemical properties. Seoul, Korea: Seoul National University; 2011. [Google Scholar]
  • 15.Gidley MJ. Quantification of the structural features of starch polysaccharides by NMR-spectroscopy. Carbohyd. Res. 1985;139:85–93. doi: 10.1016/0008-6215(85)90009-6. [DOI] [Google Scholar]
  • 16.Lee CJ, Moon TW. Structural characteristics of slowly digestible starch and resistant starch isolated from heat-moisture treated waxy potato starch. Carbohyd. Polym. 2015;125:200–205. doi: 10.1016/j.carbpol.2015.02.035. [DOI] [PubMed] [Google Scholar]
  • 17.Chung HJ, Liu Q. Impact of molecular structure of amylopectin and amylose on amylose chain association during cooling. Carbohyd. Polym. 2009;77:807–815. doi: 10.1016/j.carbpol.2009.03.004. [DOI] [Google Scholar]
  • 18.van Soest JJG, Tournois H, de Wit D, Vliegenthart JFG. Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance fourier-transform IR spectroscopy. Carbohyd. Res. 1995;279:201–214. doi: 10.1016/0008-6215(95)00270-7. [DOI] [Google Scholar]
  • 19.Kim BK, Kim HI, Moon TW, Choi SJ. Branch chain elongation by amylosucrase: Production of waxy corn starch with a slow digestion property. Food Chem. 2014;152:113–120. doi: 10.1016/j.foodchem.2013.11.145. [DOI] [PubMed] [Google Scholar]
  • 20.Jung JH, Seo DH, Ha SJ, Song MC, Cha J, Yoo SH, Kim TJ, Baek NI, Baik MY, Park CS. Enzymatic synthesis of salicin glycosides through transglycosylation catalyzed by amylosucrases from Deinococcus geothermalis and Neisseria polysaccharea. Carbohyd. Res. 2009;344:1612–1619. doi: 10.1016/j.carres.2009.04.019. [DOI] [PubMed] [Google Scholar]
  • 21.Brumovsky JO, Thompson DB. Production of boiling-stable granular resistant starch by partial acid hydrolysis and hydrothermal treatments of high-amylose maize starch. Cereal Chem. 2001;78:680–689. doi: 10.1094/CCHEM.2001.78.6.680. [DOI] [Google Scholar]
  • 22.Nara S, Komiya T. Studies on the relationship between water-satured state and crystallinity by the diffraction method for moistened potato starch. Starch-Stärke. 1983;35:407–410. doi: 10.1002/star.19830351202. [DOI] [Google Scholar]
  • 23.Imberty A, Chanzy H, Pérez S, Bulèon A, Tran V. The double-helical nature of the crystalline part of a-starch. J. Mol. Biol. 1988;201:365–378. doi: 10.1016/0022-2836(88)90144-1. [DOI] [PubMed] [Google Scholar]
  • 24.Hizukuri S, Takeda Y, Usami S, Takase Y. Effect of aliphatic hydrocarbon groups on the crystallization of amylodextrin: Model experiments for starch crystallization. Carbohyd. Res. 1980;83:193–199. doi: 10.1016/S0008-6215(00)85384-7. [DOI] [Google Scholar]
  • 25.Gérard C, Colonna P, Bulèon A, Planchot V. Amylolysis of maize mutant starches. J. Sci. Food Agr. 2001;81:1281–1287. doi: 10.1002/jsfa.929. [DOI] [Google Scholar]
  • 26.Lee CJ, Shin SI, Kim Y, Choi HJ, Moon TW. Structural characteristics and glucose response in mice of potato starch modified by hydrothermal treatments. Carbohyd. Polym. 2011;83:1879–1886. doi: 10.1016/j.carbpol.2010.10.057. [DOI] [Google Scholar]
  • 27.Tan I, Flanagan BM, Halley PJ, Whittaker AK, Gidley MJ. A method for estimating the nature and relative proportions of amorphous, single, and double-helical components in starch granules by 13C CP/MAS NMR. Biomacromolecules. 2007;8:885–891. doi: 10.1021/bm060988a. [DOI] [PubMed] [Google Scholar]
  • 28.Zhang B, Wang K, Hasjim J, Li E, Flanagan BM, Gidley MJ, Dhital S. Freezedrying changes the structure and digestibility of B-polymorphic starches. J. Agr. Food Chem. 2014;62:1482–1491. doi: 10.1021/jf405196m. [DOI] [PubMed] [Google Scholar]
  • 29.Hanashiro I, Abe J, Hizukuri S. A periodic distribution of the chain length of amylopectin as revealed by high-performance anion-exchange chromatography. Carbohyd. Res. 1996;283:151–159. doi: 10.1016/0008-6215(95)00408-4. [DOI] [Google Scholar]
  • 30.Zhang GY, Venkatachalam M, Hamaker BR. Structural basis for the slow digestion property of native cereal starches. Biomacromolecules. 2006;7:3259–3266. doi: 10.1021/bm060343a. [DOI] [PubMed] [Google Scholar]
  • 31.Charles AL, Chang YH, Ko WC, Sriroth K, Huang TC. Influence of amylopectin structure and amylose content on the gelling properties of five cultivars of cassava starches. J. Agr. Food Chem. 2005;53:2717–2725. doi: 10.1021/jf048376+. [DOI] [PubMed] [Google Scholar]
  • 32.Jane J, Chen YY, Lee LF, McPherson AE, Wong KS, Radosavljevic M, Kasemsuwan T. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem. 1999;76:629–637. doi: 10.1094/CCHEM.1999.76.5.629. [DOI] [Google Scholar]
  • 33.Chung HJ, Liu QA, Lee L, Wei DZ. Relationship between the structure, physicochemical properties and in vitro digestibility of rice starches with different amylose contents. Food Hydrocolloid. 2011;25:968–975. doi: 10.1016/j.foodhyd.2010.09.011. [DOI] [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES