Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2017 Apr 30;26(2):323–329. doi: 10.1007/s10068-017-0044-z

Preparation and characterization of the inclusion complexes between amylosucrase-treated waxy starch and palmitic acid

Hye In Kim 1, Ha Ram Kim 1, Seung Jun Choi 2, Cheon-Seok Park 3, Tae Wha Moon 1,4,
PMCID: PMC6049435  PMID: 30263546

Abstract

Amylosucrase-treated waxy corn starch (AS) was produced to extend the chain length of amylopectin to a great extent in comparison to its native chain length. An amylopectin–palmitic acid (PA) complex was prepared by heat-treating (121°C) a starch/PA mixture and its subsequent further incubation (95°C, 24 h); moreover, its structure and digestibility were studied. Unmodified waxy starch could not complex at all, whereas elongation due to amylosucrase modification allowed amylopectin to form a complex with PA to a small extent. Complexation between AS and PA caused a decrease in relative crystallinity. The AS–PA complex displayed an endothermic peak representing type I inclusion complexes rather than type II complexes. The formation of complexes did not significantly affect the in vitro digestibility maintaining the low digestibility of AS resulting from extremely small amounts of complexes and the type of complex.

Keywords: starch-lipid complex, waxy corn starch, amylosucrase, palmitic acid, amylopectin

References

  • 1.Biliaderis CG, Galloway G. Crystallization behavior of amylose-V complexes: Structure-property relationships. Carbohyd. Res. 1989;189:31–48. doi: 10.1016/0008-6215(89)84084-4. [DOI] [Google Scholar]
  • 2.Biliaderis CG, Senevirante HD. On the supermolecular structure and metastability of glycerol monostearate-amylose complex. Carbohyd. Polym. 1990;13:185–206. doi: 10.1016/0144-8617(90)90083-5. [DOI] [Google Scholar]
  • 3.Holm J, Björck I, Ostrowska S, Eliasson AC, Asp NG, Larsson K, Lundquist I. Digestibility of amylose-lipid complexes in-vitro and in-vivo. Starch-Stärke. 1983;35:294–297. doi: 10.1002/star.19830350902. [DOI] [Google Scholar]
  • 4.Zhou Z, Robards K, Helliwell S, Blanchard C. Effect of the addition of fatty acids on rice starch properties. Food Res. Int. 2007;40:209–214. doi: 10.1016/j.foodres.2006.10.006. [DOI] [Google Scholar]
  • 5.Hasjim J, Lee S-O, Hendrich S, Setiawan S, Ai Y, Jane J. Characterization of a novel resistant-starch and its effects on postprandial plasma-glucose and insulin responses. Cereal Chem. 2010;87:257–262. doi: 10.1094/CCHEM-87-4-0257. [DOI] [Google Scholar]
  • 6.Karkalas J, Ma S, Morrison WR, Pethrick RA. Some factors determining the thermal properties of amylose inclusion complexes with fatty acids. Carbohyd. Res. 1995;268:233–247. doi: 10.1016/0008-6215(94)00336-E. [DOI] [Google Scholar]
  • 7.Lesmes U, Cohen SH, Shener Y, Shimoni E. Effects of long chain fatty acid unsaturation on the structure and controlled release properties of amylose complexes. Food Hydrocolloid. 2009;23:667–675. doi: 10.1016/j.foodhyd.2008.04.003. [DOI] [Google Scholar]
  • 8.Hirai M, Hirai T, Ueki T. Effect of branching of amylopectin on complexation with iodine as steric hindrance. Polymer. 1994;35:2222–2225. doi: 10.1016/0032-3861(94)90255-0. [DOI] [Google Scholar]
  • 9.Potocki de Montalk G, Remaud-Simeon M, Willemot R-M, Sarçabal P, Planchot V, Monsan P. Amylosucrase from Neisseria polysaccharea: Novel catalytic properties. FEBS Lett. 2000;471:219–223. doi: 10.1016/S0014-5793(00)01406-X. [DOI] [PubMed] [Google Scholar]
  • 10.Rolland-Sabaté A, Colonna P, Potocki-Véronèse G, Monsan P, Planchot V. Elongation and insolubilisation of a-glucans by the action of Neisseria polysaccharea amylosucrase. J. Cereal Sci. 2004;40:17–30. doi: 10.1016/j.jcs.2004.04.001. [DOI] [Google Scholar]
  • 11.Jung J-H, Seo D-H, Ha S-J, Song M-C, Cha J, Yoo S-H, Kim T-J, Baek N-I, Baik M-Y, Park C-S. Enzymatic synthesis of salicin glycosides through transglycosylation catalyzed by amylosucrases from Deinococcus geothermalis and Neisseria polysaccharea. Carbohyd. Res. 2009;344:1612–1619. doi: 10.1016/j.carres.2009.04.019. [DOI] [PubMed] [Google Scholar]
  • 12.Kim BK, Kim HI, Moon TW, Choi SJ. Branch chain elongation by amylosucrase: production of waxy corn starch with a slow digestion property. Food Chem. 2014;152:113–120. doi: 10.1016/j.foodchem.2013.11.145. [DOI] [PubMed] [Google Scholar]
  • 13.Kim B-S, Kim H-S, Hong J-S, Huber KC, Shim J-H, Yoo S-H. Effects of amylosucrase treatment on molecular structure and digestion resistance of pre-gelatinised rice and barley starches. Food Chem. 2013;138:966–975. doi: 10.1016/j.foodchem.2012.11.028. [DOI] [PubMed] [Google Scholar]
  • 14.Brumovsky JO, Thompson DB. Production of boiling-stable granular resistant starch by partial acid hydrolysis and hydrothermal treatments of high-amylose maize starch. Cereal Chem. 2001;78:680–689. doi: 10.1094/CCHEM.2001.78.6.680. [DOI] [Google Scholar]
  • 15.Shin SI, Choi HJ, Chung KM, Hamaker BR, Park KH, Moon TW. Slowly digestible starch from debranched waxy sorghum starch: preparation and properties. Cereal Chem. 2004;81:404–408. doi: 10.1094/CCHEM.2004.81.3.404. [DOI] [Google Scholar]
  • 16.Potocki de Montalk G, Remaud-Simeon M, Willemot RM, Planchot V, Monsan P. Sequence analysis of the gene encoding amylosucrase from Neisseria polysaccharea and characterization of the recombinant enzyme. J. Bacteriol. 1999;181:375–381. doi: 10.1128/jb.181.2.375-381.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Godet MC, Tran V, Colonna P, Buleon A, Pezolet M. Inclusion/exclusion of fatty acids in amylose complexes as a function of the fatty acid chain length. Int. J. Biol. Macromol. 1995;17:405–408. doi: 10.1016/0141-8130(96)81853-8. [DOI] [PubMed] [Google Scholar]
  • 18.Zhou X, Wang R, Zhang Y, Yoo S-H, Lim S-T. Effects of amylose chain length and heat treatment on amylose–glycerol monocaprate complex formation. Carbohyd. Polym. 2013;95:227–232. doi: 10.1016/j.carbpol.2013.02.051. [DOI] [PubMed] [Google Scholar]
  • 19.Yasui T, Ashida K, Sasaki T. Chain-length distribution profiles of amylopectin isolated from endosperm starch of waxy and low-amylose bread wheat (Triticum aestivum L.) lines with common genetic background. Starch-Stärke. 2009;61:677–686. doi: 10.1002/star.200900177. [DOI] [Google Scholar]
  • 20.Gelders GG, Vanderstukken TC, Goesaert H, Delcour JA. Amylose-lipid complexation: A new fractionation method. Carbohyd. Polym. 2004;56:447–458. doi: 10.1016/j.carbpol.2004.03.012. [DOI] [Google Scholar]
  • 21.Kim EJ, Kim HR, Choi SJ, Park C-S, Moon TW. Low digestion property of amylosucrase-modified waxy adlay starch. Food Sci. Biotechnol. 2016;25:457–460. doi: 10.1007/s10068-016-0063-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Exarhopoulos S, Raphaelides SN. Morphological and structural studies of thermally treated starch-fatty acid systems. J. Cereal Sci. 2012;55:139–152. doi: 10.1016/j.jcs.2011.10.011. [DOI] [Google Scholar]
  • 23.Cheetham NWH, Tao L. Variation in crystalline type with amylose content in maize starch granules: An X-ray powder diffraction study. Carbohyd. Polym. 1998;36:277–284. doi: 10.1016/S0144-8617(98)00007-1. [DOI] [Google Scholar]
  • 24.Chung H-J, Jeong H-Y, Lim S-T. Effects of acid hydrolysis and defatting on crystallinity and pasting properties of freeze-thawed high amylose corn starch. Carbohyd. Polym. 2003;54:449–455. doi: 10.1016/j.carbpol.2003.05.001. [DOI] [Google Scholar]
  • 25.Jane J, Chen YY, Fee LF, McPherson AE, Wong KS, Rodosavljevic M, Kasemsuwan T. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem. 1999;75:629–637. doi: 10.1094/CCHEM.1999.76.5.629. [DOI] [Google Scholar]
  • 26.Srichuwong S, Sunarti TC, Mishima T, Isono N, Hisamatsu M. Starches from different botanical sources I: Contribution of amylopectin fine structure to thermal properties and enzyme digestibility. Carbohyd. Polym. 2005;60:529–538. doi: 10.1016/j.carbpol.2005.03.004. [DOI] [Google Scholar]
  • 27.Shin HJ, Choi SJ, Park CS, Moon TW. Preparation of starches with low glycaemic response using amylosucrase and their physicochemical properties. Carbohyd. Polym. 2010;82:489–497. doi: 10.1016/j.carbpol.2010.05.017. [DOI] [Google Scholar]
  • 28.Chang F, He X, Huang Q. The physicochemical properties of swelled maize starch granules complexed with lauric acid. Food Hydrocolloid. 2013;32:365–372. doi: 10.1016/j.foodhyd.2013.01.021. [DOI] [Google Scholar]
  • 29.Tester RF, Morrison WR. Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose and lipids. Cereal Chem. 1990;67:551–557. [Google Scholar]
  • 30.Tufvesson F, Wahlgren M, Eliasson A-C. Formation of amylose-lipid complexes and effects of temperature treatment. Part 2. fatty acids. Starch-Stärke. 2003;55:138–149. doi: 10.1002/star.200390028. [DOI] [Google Scholar]
  • 31.Tufvesson F, Skrabanja V, Björck I, Elmståhl HL, Eliasson A-C. Digestibility of starch systems containing amylose–glycerol monopalmitin complexes. LWTFood Sci. Technol. 2001;34:131–139. [Google Scholar]
  • 32.Zhang G, Ao Z, Hamaker BR. Nutritional property of endosperm starches from maize mutants: a parabolic relationship between slowly digestible starch and amylopectin fine structure. J. Agr. Food Chem. 2008;56:4686. doi: 10.1021/jf072822m. [DOI] [PubMed] [Google Scholar]
  • 33.Soong YY, Goh HJ, Henry CJ. The influence of saturated fatty acids on complex index and in vitro digestibility of rice starch. Int. J. Food Sci. Nutr. 2013;64:641–647. doi: 10.3109/09637486.2013.763912. [DOI] [PubMed] [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES