Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2017 Apr 30;26(2):521–529. doi: 10.1007/s10068-017-0072-8

New antibacterial-core structures based on styryl quinolinium

Eunsuk Kim 1, Seung-Heon Lee 1, Seung-Jun Lee 1, O-Pil Kwon 1,2, Hyunjin Yoon 1,2,
PMCID: PMC6049449  PMID: 30263574

Abstract

Quaternary quinolinium salts have been widely used as alternative antimicrobial agents. In an effort to improve the current quinolinium compounds and determine the relation between antibacterial activity and substituted functional groups, 10 different styryl quinolinium derivatives with various quaternary ammonium electron acceptors, electron donors, and counter anions were rationally designed. Among the 10 styryl quinoliniums, six compounds exhibited bactericidal effects against Gram-positive bacteria, with minimum inhibitory concentrations (MICs) of 2.4–37.5 μg/mL. In addition, two compounds, namely DA-DMQ1,4-T and DA-DMQ1,4-TMS, showed low MICs of 18.75–75 μg/mL with Gram-negative bacteria. In general, compounds possessing electron acceptor groups with a strong electron-withdrawing ability exhibited high bactericidal activity against diverse bacterial species. Co-administration of quinolinium (1.17–9.36 μg/mL) and broad-spectrum β-lactam antibiotic ampicillin (0.02–2.34 μg/mL) showed synergistic bactericidal effects on both Gram-positive and Gramnegative bacteria. This study provides guidelines for the development of new quinolinium salts with a prominent antimicrobial activity.

Keywords: bacteria, pathogen, quinolinium, resistance, susceptibility

References

  • 1.WHO. WHO estimates of the global burden of foodborne diseases. World Health Organization, Appia, Geneva, Switzerland. p. 1 (2015)
  • 2.Andersson JA, Fitts EC, Kirtley ML, Ponnusamy D, Peniche AG, Dann SM, Motin VL, Chauhan S, Rosenzweig JA, Sha J, Chopra AK. New role for FDAapproved drugs in combating antibiotic-resistant bacteria. Antimicrob. Agents Ch. 2016;60:3717–3729. doi: 10.1128/AAC.00326-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Ohta Y, Kondo Y, Kawada K, Teranaka T, Yoshino N. Synthesis and antibacterial activity of quaternary ammonium salt-type antibacterial agents with a phosphate group. J. Oleo Sci. 2008;57:445–452. doi: 10.5650/jos.57.445. [DOI] [PubMed] [Google Scholar]
  • 4.Block SS D. isinfection, sterilization, and preservation. Philadelphia, PA, USA: Lippincott Williams & Wilkins; 2001. p. 297. [Google Scholar]
  • 5.Haldar J, Kondaiah P, Bhattacharya S. Synthesis and antibacterial properties of novel hydrolyzable cationic amphiphiles. Incorporation of multiple head groups leads to impressive antibacterial activity. J. Med. Chem. 2005;48:3823–3831. doi: 10.1021/jm049106l. [DOI] [PubMed] [Google Scholar]
  • 6.Rawlinson LA, Ryan SM, Mantovani G, Syrett JA, Haddleton DM, Brayden DJ. Antibacterial effects of poly(2-(dimethylamino ethyl)methacrylate) against selected gram-positive and gram-negative bacteria. Biomacromolecules. 2010;11:443–453. doi: 10.1021/bm901166y. [DOI] [PubMed] [Google Scholar]
  • 7.Ingalsbe ML, Denis JD, McGahan ME, Steiner WW, Priefer R. Development of a novel expression, ZI MAX/K ZI, for determination of the counter-anion effect on the antimicrobial activity of tetrabutylammonium salts. Bioorg. Med. Chem. Lett. 2009;19:4984–4987. doi: 10.1016/j.bmcl.2009.07.066. [DOI] [PubMed] [Google Scholar]
  • 8.Waschinski CJ, Barnert S, Theobald A, Schubert R, Kleinschmidt F, Hoffmann A, Saalwachter K, Tiller JC. Insights in the antibacterial action of poly(methyloxazoline)s with a biocidal end group and varying satellite groups. Biomacromolecules. 2008;9:1764–1771. doi: 10.1021/bm7013944. [DOI] [PubMed] [Google Scholar]
  • 9.Colak S, Nelson CF, Nusslein K, Tew GN. Hydrophilic modifications of an amphiphilic polynorbornene and the effects on its hemolytic and antibacterial activity. Biomacromolecules. 2009;10:353–359. doi: 10.1021/bm801129y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Sandt C, Barbeau J, Gagnon MA, Lafleur M. Role of the ammonium group in the diffusion of quaternary ammonium compounds in Streptococcus mutans biofilms. J. Antimicrob. Chemoth. 2007;60:1281–1287. doi: 10.1093/jac/dkm382. [DOI] [PubMed] [Google Scholar]
  • 11.Palermo EF, Kuroda K. Chemical structure of cationic groups in amphiphilic polymethacrylates modulates the antimicrobial and hemolytic activities. Biomacromolecules. 2009;10:1416–1428. doi: 10.1021/bm900044x. [DOI] [PubMed] [Google Scholar]
  • 12.Soukup O, Dolezal R, Malinak D, Marek J, Salajkova S, Pasdiorova M, Honegr J, Korabecny J, Nachtigal P, Nachon F, Jun D, Kuca K. Synthesis, antimicrobial evaluation and molecular modeling of 5-hydroxyisoquinolinium salt series; The effect of the hydroxyl moiety. Bioorg. Med. Chem. 2016;24:841–848. doi: 10.1016/j.bmc.2016.01.006. [DOI] [PubMed] [Google Scholar]
  • 13.Gerba CP. Quaternary ammonium biocides: Efficacy in application. Appl. Environ. Microb. 2015;81:464–469. doi: 10.1128/AEM.02633-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Xue Y, Xiao H, Zhang Y. Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts. Int. J. Mol. Sci. 2015;16:3626–3655. doi: 10.3390/ijms16023626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Gutsulyak B. Biological activity of quinolinium salts. Russ. Chem. Rev. 1972;41:187–202. doi: 10.1070/RC1972v041n02ABEH002038. [DOI] [Google Scholar]
  • 16.Chanawanno K, Chantrapromma S, Anantapong T, Kanjana-Opas A, Fun HK. Synthesis, structure and in vitro antibacterial activities of new hybrid disinfectants quaternary ammonium compounds: Pyridinium and quinolinium stilbene benzenesulfonates. Eur. J. Med. Chem. 2010;45:4199–4208. doi: 10.1016/j.ejmech.2010.06.014. [DOI] [PubMed] [Google Scholar]
  • 17.Choquet-Kastylevsky G, Vial T, Descotes J. Allergic adverse reactions to sulfonamides. Curr. Allergy Asthm. R. 2002;2:16–25. doi: 10.1007/s11882-002-0033-y. [DOI] [PubMed] [Google Scholar]
  • 18.Jeong J-H, Kim J-S, Campo J, Lee S-H, Jeon W-Y, Wenseleers W, Jazbinsek M, Yun H, Kwon OP. N-Methylquinolinium derivatives for photonic applications: Enhancement of electron-withdrawing character beyond that of the widelyused N-methylpyridinium. Dyes Pigments. 2015;113:8–17. doi: 10.1016/j.dyepig.2014.07.016. [DOI] [Google Scholar]
  • 19.Lee K-H, Lee S-H, Yun H, Jazbinsek M, Kim JW, Rotermund F, Kwon O-P. Multifunctional supramolecular building blocks with hydroxy piperidino groups: New opportunities for developing nonlinear optical ionic crystals. Crystengcomm. 2016;18:5832–5841. doi: 10.1039/C6CE00401F. [DOI] [Google Scholar]
  • 20.Russell AD, Gould GW. Resistance of Enterobacteriaceae to preservatives and disinfectants. Soc. Appl. Bacteriol. Symp. Ser. 1988;17:167S–195S. doi: 10.1111/j.1365-2672.1988.tb04470.x. [DOI] [PubMed] [Google Scholar]
  • 21.Argudin MA, Mendoza MC, Rodicio MR. Food poisoning and Staphylococcus aureus enterotoxins. Toxins. 2010;2:1751–1773. doi: 10.3390/toxins2071751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Giraffa G. Enterococci from foods. FEMS Microbiol. Rev. 2002;26:163–171. doi: 10.1111/j.1574-6976.2002.tb00608.x. [DOI] [PubMed] [Google Scholar]
  • 23.Atluri S, Ragkousi K, Cortezzo DE, Setlow P. Cooperativity between different nutrient receptors in germination of spores of Bacillus subtilis and reduction of this cooperativity by alterations in the GerB receptor. J. Bacteriol. 2006;188:28–36. doi: 10.1128/JB.188.1.28-36.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Pearce SM, Fitz-James PC. Spore refractility in variants of Bacillus cereus treated with actinomycin D. J. Bacteriol. 1971;107:337–344. doi: 10.1128/jb.107.1.337-344.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Bennett SD, Walsh KA, Gould LH. Foodborne disease outbreaks caused by Bacillus cereus, Clostridium perfringens, and Staphylococcus aureus—United States, 1998-2008. Clin. Infect. Dis. 2013;57:425–433. doi: 10.1093/cid/cit244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Rabsch W, Andrews HL, Kingsley RA, Prager R, Tschape H, Adams LG, Baumler AJ. Salmonella enterica serotype Typhimurium and its host-adapted variants. Infect. Immun. 2002;70:2249–2255. doi: 10.1128/IAI.70.5.2249-2255.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Martinez JL, Baquero F. Mutation frequencies and antibiotic resistance. Antimicrob. Agents Ch. 2000;44:1771–1777. doi: 10.1128/AAC.44.7.1771-1777.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Fukushima M, Kakinuma K, Kawaguchi R. Phylogenetic analysis of Salmonella, Shigella, and Escherichia coli strains on the basis of the gyrB gene sequence. J. Clin. Microbiol. 2002;40:2779–2785. doi: 10.1128/JCM.40.8.2779-2785.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Page AV, Liles WC. Enterohemorrhagic Escherichia coli Infections and the Hemolytic-Uremic Syndrome. Med. Clin. N. Am. 2013;97:681–695. doi: 10.1016/j.mcna.2013.04.001. [DOI] [PubMed] [Google Scholar]
  • 30.Aiyegoro OA, Okoh AI. Use of bioactive plant products in combination with standard antibiotics: Implications in antimicrobial chemotherapy. J. Med. Plants Res. 2009;3:1147–1152. [Google Scholar]
  • 31.Johnson A. Antimicrobial therapy and vaccines, Volume II Antimicrobial agents. J. Antimicrob. Chemoth. 2006;57:801. doi: 10.1093/jac/dkl029. [DOI] [Google Scholar]
  • 32.Oku N, Yamaguchi N, Yamaguchi N, Shibamoto S, Ito F, Nango M. The fusogenic effect of synthetic polycations on negatively charged lipid bilayers. J. Biochem. 1986;100:935–944. doi: 10.1093/oxfordjournals.jbchem.a121806. [DOI] [PubMed] [Google Scholar]
  • 33.Yaroslavov AA, Efimova AA, Lobyshev VI, Kabanov VA. Reversibility of structural rearrangements in the negative vesicular membrane upon electrostatic adsorption/desorption of the polycation. Biochim. Biophys. Acta. 2002;1560:14–24. doi: 10.1016/S0005-2736(01)00453-9. [DOI] [PubMed] [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES