Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2017 Apr 30;26(2):481–487. doi: 10.1007/s10068-017-0066-6

Inhibitory effect of Zizania latifolia chloroform fraction on allergy-related mediator production in RBL-2H3 cells

Eun-Jung Lee 1, Mi-Hee Yu 1, Coralia V Garcia 1, Kwang-Hwan Jhee 2, Seun-Ah Yang 1,
PMCID: PMC6049454  PMID: 30263568

Abstract

Zizania latifolia exhibits anti-inflammatory and anti-allergic effects; however, the mechanisms behind these effects are unknown. Here the ethanol extract of Z. latifolia was partitioned using hexane, chloroform, ethyl acetate, butanol, and water. Subsequently, the anti-allergic effects of these fractions were evaluated in vitro. The results showed that the chloroform fraction of Z. latifolia inhibited the release of β-hexosaminidase and tumor necrosis factor (TNF-α) from RBL-2H3 cells stimulated with dinitrophenyl-bovine serum albumin (DNP-BSA). In addition, this fraction suppressed the expression of cyclooxygenase-2 (COX-2) and inhibited the activation of mitogen-activated protein kinases (MAPKs). The results obtained suggest that the chloroform fraction of Z. latifolia inhibited mast cell-mediated allergic inflammatory responses.

Keywords: Zizania latifolia, anti-allergic, RBL-2H3 cells, COX-2, MAPK

References

  • 1.Kim JW, Lee JH, Hwang BY, Mun SH, Ko NY, Kim DK, Kim B, Kim HS, Kim YM, Choi WS. Morin inhibits Fyn kinase in mast cells and IgE-mediated type I hypersensitivity response in vivo. Biochem. Pharmacol. 2009;77:1506–1512. doi: 10.1016/j.bcp.2009.01.019. [DOI] [PubMed] [Google Scholar]
  • 2.Itoh T, Ninomiya M, Yasuda M, Koshikawa K, Deyashiki Y, Nozawa Y, Akao Y, Koketsu M. Inhibitory effects of flavonoids isolated from Fragaria ananassa Duch on IgE-mediated degranulation in rat basophilic leukemia RBL-2H3. Bioorgan. Med. Chem. 2009;17:5374–5379. doi: 10.1016/j.bmc.2009.06.050. [DOI] [PubMed] [Google Scholar]
  • 3.Marieb EN, Hoehn K. Human Anatomy and Physiology 7th ed. Benjamin Cummings, San Francisco, CA, USA. p. 659 (2007)
  • 4.Lagunoff D, Martin T, Read G. Agents that release histamine from mast cells. Annu. Rev. Pharmacol. 1983;23:331–351. doi: 10.1146/annurev.pa.23.040183.001555. [DOI] [PubMed] [Google Scholar]
  • 5.Church MK, Levi-Schaffer F. The human mast cell. J. Allergy Clin. Immun. 1997;99:155–160. doi: 10.1016/S0091-6749(97)70089-7. [DOI] [PubMed] [Google Scholar]
  • 6.Ortega E, Schweitzer-Stenner R, Pecht I. Possible orientational constraints determine secretory signals induced by aggregation of IgE receptors on mast cells. EMBO J. 1988;7:4101–4109. doi: 10.1002/j.1460-2075.1988.tb03304.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Funaba M, Ikeda T, Abe M. Degranulation in RBL-2H3 cells: Regulation by calmodulin pathway. Cell Biol. Int. 2003;27:879–885. doi: 10.1016/S1065-6995(03)00177-X. [DOI] [PubMed] [Google Scholar]
  • 8.Ikawati Z, Wahyuono S, Maeyama K. Screening of several Indonesian medicinal plants for their inhibitory effect on histamine release from RBL-2H3 cells. J. Ethnopharmacol. 2001;75:249–256. doi: 10.1016/S0378-8741(01)00201-X. [DOI] [PubMed] [Google Scholar]
  • 9.Nishigaki T. Mast cell degranulation and its inhibition by an anti-allergic agent tranilast. An electron microscopic study. Virchows Arch. B. 1988;55:311–322. doi: 10.1007/BF02896590. [DOI] [PubMed] [Google Scholar]
  • 10.Matsuda H, Morikawa T, Managi H, Yoshikawa M. Antiallergic principles from Alpinia galanga: structural requirements of phenylpropanoids for inhibition of degranulation and release of TNF-a and IL-4 in RBL-2H3 cells. Bioorgan. Med. Chem. Lett. 2003;13:3197–3202. doi: 10.1016/S0960-894X(03)00710-8. [DOI] [PubMed] [Google Scholar]
  • 11.Zhai C, Jiang X, Xu Y, Lorenz K. Protein and amino acid composition of Chinese and North American wild rice. LWT-Food Sci. Technol. 1994;27:380–383. doi: 10.1006/fstl.1994.1077. [DOI] [Google Scholar]
  • 12.Zhang H, Cao P, Agellon LB, Zhai C-K. Wild rice (Zizania latifolia (Griseb) Turcz) improves the serum lipid profile and antioxidant status of rats fed with a high fat/cholesterol diet. Brit. J. Nutr. 2009;102:1723–1727. doi: 10.1017/S0007114509991036. [DOI] [PubMed] [Google Scholar]
  • 13.Han S, Zhang H, Qin L, Zhai C. Effects of dietary carbohydrate replaced with wild rice (Zizania latifolia (Griseb) Turcz) on insulin resistance in rats fed with a high-fat/cholesterol diet. Nutrients. 2013;5:552–564. doi: 10.3390/nu5020552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Lee EJ, Whang EY, Whang K, Lee IS, Yang SA. Anti-allergic effect of Zizania latifolia Turcz extracts. Korean J. Food Sci. Technol. 2009;41:717–721. [Google Scholar]
  • 15.Lee SS, Baek YS, Eun CS, Yu MH, Baek NI, Chung DK, Bang MH, Yang SA. Tricin derivatives as anti-inflammatory and anti-allergic constituents from the aerial part of Zizania latifolia. Biosci. Biotech. Bioch. 2015;79:700–706. doi: 10.1080/09168451.2014.997184. [DOI] [PubMed] [Google Scholar]
  • 16.Matsuda H, Tewtrakul S, Morikawa T, Nakamura A, Yoshikawa M. Anti-allergic principles from Thai zedoary: Structural requirements of curcuminoids for inhibition of degranulation and effect on the release of TNF-a and IL-4 in RBL-2H3 cells. Bioorgan. Med. Chem. 2004;12:5891–5898. doi: 10.1016/j.bmc.2004.08.027. [DOI] [PubMed] [Google Scholar]
  • 17.Paul WE, Seder RA, Plaut M. Lymphokine and cytokine production by FceRI+ cells. Adv. Immunol. 1993;53:1–29. doi: 10.1016/S0065-2776(08)60496-4. [DOI] [PubMed] [Google Scholar]
  • 18.Finn DF, Walsh JJ. Twenty-first century mast cell stabilizers. Br. J. Pharmacol. 2013;170:23–37. doi: 10.1111/bph.12138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Cunha-Melo JR, Gonzaga HM, Ali H, Huang FL, Huang KP, Beaven MA. Studies of protein kinase C in the rat basophilic leukemia (RBL-2H3) cell reveal that antigen-induced signals are not mimicked by the actions of phorbol myristate acetate and Ca2+ ionophore. J. Immunol. 1989;143:2617–2625. [PubMed] [Google Scholar]
  • 20.Ludowyke RI, Scurr LL, McNally CM. Calcium ionophore-induced secretion from mast cells correlates with myosin light chain phosphorylation by protein kinase C. J. Immunol. 1996;157:5130–5138. [PubMed] [Google Scholar]
  • 21.Hundley TR, Prasad AR, Beaven MA. Elevated levels of cyclooxygenase-2 in antigen-stimulated mast cells is associated with minimal activation of p38 mitogen-activated protein kinase. J. Immunol. 2001;167:1629–1636. doi: 10.4049/jimmunol.167.3.1629. [DOI] [PubMed] [Google Scholar]
  • 22.Carey MA, Germolec DR, Langenbach R, Zeldin DC. Cyclooxygenase enzymes in allergic inflammation and asthma. Prost. Leuko. F.A. 2003;69:157–162. doi: 10.1016/S0952-3278(03)00076-0. [DOI] [PubMed] [Google Scholar]
  • 23.Rajakariar R, Yaqoob MM, Gilroy DW. COX-2 in inflammation and resolution. Mol. Interv. 2006;6:199–207. doi: 10.1124/mi.6.4.6. [DOI] [PubMed] [Google Scholar]
  • 24.Kannan Y, Wilson MS. TEC and MAPK kinase signalling pathways in T helper (TH) cell development, TH2 differentiation and allergic asthma. J. Clin. Cell. Immunol. 2012;12:11–11. doi: 10.4172/2155-9899.S12-011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Rivera J, Olivera A. Src family kinases and lipid mediators in control of allergic inflammation. Immunol. Rev. 2007;217:255–268. doi: 10.1111/j.1600-065X.2007.00505.x. [DOI] [PubMed] [Google Scholar]
  • 26.Chung MJ, Sohng JK, Choi DJ, Park YI. Inhibitory effect of phloretin and biochanin A on IgE-mediated allergic responses in rat basophilic leukemia RBL-2H3 cells. Life Sci. 2013;93:401–408. doi: 10.1016/j.lfs.2013.07.019. [DOI] [PubMed] [Google Scholar]
  • 27.Di Stasi LC, Gomes JC, Vilegas W. Studies on anti-allergic constituents in the leaves and stems of Anchientia salutaris var. martiana (Violaceae). Chem. Pharm. Bull. 1999;47:890–3. doi: 10.1248/cpb.47.890. [DOI] [PubMed] [Google Scholar]
  • 28.Silva RO, Sousa FBM, Damasceno SRB, Carvalho NS, Silva VG, Oliveira FRMA, Sousa DP, Aragão KS, Barbosa ALR, Freitas RM, Medeiros JVR. Phytol, a diterpene alcohol, inhibits the inflammatory response by reducing cytokine production and oxidative stress. Fund. Clin. Pharmacol. 2014;28:455–464. doi: 10.1111/fcp.12049. [DOI] [PubMed] [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES