Abstract
The objectives of this study were to analyze antioxidant activities and identify volatile compounds in mixed berry juice after fermentation by lactic acid bacteria (LAB). Antioxidant activity of the mixed berry juice increased significantly from 209.57±2.93 to 268.30±1.75 μmol TE/g after 24 h of fermentation. After LAB fermentation, 34 volatile compounds were identified. Among them, three compounds—benzoic acid, benzaldehyde, and vitispirane—showed significant changes in their concentrations. Peak areas of benzoic acid and benzaldehyde, which are known to possess antioxidant activities, increased by 64 and 188%, respectively, after fermentation. However, the peak area of vitispirane, which is the most abundant terpene compound in berry juices, decreased by 92% after fermentation.
Keywords: berry, fermentation, antioxidant activity, volatile compound, GC-MS
References
- 1.Park HM, Yang SJ, Kang J, Lee DH, Kim DI, Hong JH. Quality characteristics and granule manufacture of mulberry and blueberry fruit extracts. Korean J. Food Cook. Sci. 2012;28:375–382. doi: 10.9724/kfcs.2012.28.4.375. [DOI] [Google Scholar]
- 2.Dröge W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002;82:47–95. doi: 10.1152/physrev.00018.2001. [DOI] [PubMed] [Google Scholar]
- 3.Park SH, Hwang HS, Han JH. Development of drink from composition with medicinal plants and evaluation of its physiological function. J. Nutr. Health. 2004;37:364–372. [Google Scholar]
- 4.Rocha A, Wang L, Penichet M, Martins-Green M. Pomegranate juice and specific components inhibit cell and molecular processes critical for metastasis of breast cancer. Breast Cancer Res. Tr. 2012;136:647–658. doi: 10.1007/s10549-012-2264-5. [DOI] [PubMed] [Google Scholar]
- 5.Castro L, Freeman BA. Reactive oxygen species in human health and disease. Nutrition. 2001;17:161–165. doi: 10.1016/S0899-9007(00)00570-0. [DOI] [PubMed] [Google Scholar]
- 6.Peìrez-Jimeìnez J, Neveu V, Vos F, Scalbert A. Systematic analysis of the content of 502 polyphenols in 452 foods and beverages: an application of the phenol-explorer database. J. Agr. Food Chem. 2010;58:4959–4969. doi: 10.1021/jf100128b. [DOI] [PubMed] [Google Scholar]
- 7.Jang MH, Kim MD. ß-1,4-Xylosidase activity of Leuconostoc lactic acid bacteria isolated from kimchi. Korean J. Food Sci. Technol. 2011;43:169–175. doi: 10.9721/KJFST.2011.43.2.169. [DOI] [Google Scholar]
- 8.Kang J, Li Z, Wu T, Jensen GS, Schauss AG, Wu X. Anti-oxidant capacities of flavonoid compounds isolated from acai pulp (Euterpe oleracea Mart.) Food Chem. 2010;122:610–617. doi: 10.1016/j.foodchem.2010.03.020. [DOI] [Google Scholar]
- 9.Lindroth RL. Hydrolysis of phenolic glycosides by midgut ß-glucosidases in Papilio glaucus subspecies. Insect Biochem. 1988;18:789–792. doi: 10.1016/0020-1790(88)90102-3. [DOI] [Google Scholar]
- 10.Kang OJ. Production of fermented tea with Rhodotorula yeast and comparison of its antioxidant effects to those of unfermented tea. Korean J. Food Cook. Sci. 2010;26:422–427. [Google Scholar]
- 11.Park SJ, Kim ES, Choi YS, Kim JD. Effects of sophorae fructus on antioxidative activities and lipid levels in rats. Prev. Nutr. Food Sci. 2008;37:1120–1125. [Google Scholar]
- 12.Suh J, Paek OJ, Kang Y, Ahn JE, Yun J, Oh K-S, An Y-S, Park S-H, Lee S-J. Study on theantioxidant activity in the various vegetables. J. Food Hyg. Safety. 2013;28:337–341. doi: 10.13103/JFHS.2013.28.4.337. [DOI] [Google Scholar]
- 13.Balogh E, Hegedûs A S-B É. Application of and correlation among antioxidant and antiradical assays for characterizing antioxidant capacity of berries. Sci. Hortic.-Amsterdam. 2010;125:332–336. doi: 10.1016/j.scienta.2010.04.015. [DOI] [Google Scholar]
- 14.Kim HY, Woo KS, Hwang IG, Lee YR, Jeong HS. Effects of heat treatments on the antioxidant activities of fruits and vegetables. Korean J. Food Sci. Technol. 2008;40:166–170. [Google Scholar]
- 15.Cho MJ, Howard LR, Prior RL, Clark JR. Flavonoid glycosides and antioxidant capacity of various blackberry, blueberry and red grape genotypes determined by highperformance liquid chromatography/mass spectrometry. J. Sci. Food Agr. 2004;84:1771–1782. doi: 10.1002/jsfa.1885. [DOI] [Google Scholar]
- 16.Zhu N, Sheng S, Li D, LaVoie E J, Karwe MV, Rosen RT, Ho CT. Antioxidative flavonoid glycosides from quinoa seeds (Chenopodium quinoa Willd) J. Food Lipids. 2001;8:37–44. doi: 10.1111/j.1745-4522.2001.tb00182.x. [DOI] [Google Scholar]
- 17.Bokkenheuser VD, Shackleton C, Winter J. Hydrolysis of dietary flavonoid glycosides by strains of intestinal Bacteroides from humans. Biochem. J. 1987;248:953–956. doi: 10.1042/bj2480953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Ohara H, Owaki M, Sonomoto K. Xylooligosaccharide fermentation with Leuconostoc lactis. J. Biosci. Bioeng. 2006;101:415–420. doi: 10.1263/jbb.101.415. [DOI] [PubMed] [Google Scholar]
- 19.Yang HS, Choi YJ, Oh HH, Moon JS, Jung HK, Kim KJ, Choi BS, Lee JW, Huh CK. Antioxidative activity of mushroom water extracts fermented by lactic acid bacteria. Prev. Nutr. Food Sci. 2014;43:80–85. [Google Scholar]
- 20.Kraujalyte V, Leitner E, Venskutonis PR. Characterization of Aronia melanocarpa volatiles by headspace-solid-phase microextraction (HS-SPME), simultaneous distillation/extraction (SDE), and gas chromatographyolfactometry (GC-O) methods. J. Agr. Food Chem. 2013;61:4728–4736. doi: 10.1021/jf400152x. [DOI] [PubMed] [Google Scholar]
- 21.Belitz HD, Grosch W. Food Chemistry. Heidelberg, Germany: Springer; 2004. pp. 806–861. [Google Scholar]
- 22.Lim SH, Nam H, Baek HH. Aroma characteristics of acai berry. Food Sci. Biotechnol. 2016;48:122–127. [Google Scholar]
- 23.Nile SH, Park SW. Edible berries: Bioactive components and their effect on human health. Nutrition. 2014;30:134–144. doi: 10.1016/j.nut.2013.04.007. [DOI] [PubMed] [Google Scholar]
- 24.Hirvi T, Honkanen E, Pyysalo T. The aroma of cranberries. Eur. Food Res. Technol. 1981;172:365–367. [Google Scholar]
- 25.D’Agostino M, Sanz J, Sanz M, Giuffrè A, Sicari V, Soria AC. Optimization of a solid-phase microextraction method for the gas chromatography–mass spectrometry analysis of blackberry (Rubus ulmifolius Schott) fruit volatiles. Food Chem. 2015;178:10–17. doi: 10.1016/j.foodchem.2015.01.010. [DOI] [PubMed] [Google Scholar]
- 26.Park JB, Sim HS, Ha SJ, Kim MD. Enhancement of antioxidative activities of berry or vegetable juices through fermentation by lactic acid bacteria. Microbiol. Biotechnol. Lett. 2015;43:291–295. doi: 10.4014/mbl.1505.05007. [DOI] [Google Scholar]
- 27.Lee S, Kim JK. Quality characteristics of Aronia melanocarpa by different drying method. Korean J. Food Preserv. 2015;22:56–62. doi: 10.11002/kjfp.2015.22.1.56. [DOI] [Google Scholar]
- 28.Ungvari Z, Ridgway I, Philipp EE, Campbell CM, McQuary P, Chow T, Coelho M, Didier ES, Gelino S, Holmbeck MA. Extreme longevity is associated with increased resistance to oxidative stress in Arctica islandica, the longest-living non-colonial animal. J. Gerontol. A Biol. Sci. Med. Sci. 2011;66:741–750. doi: 10.1093/gerona/glr044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Arthur CL, Pawliszyn J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 1990;62:2145–2148. doi: 10.1021/ac00218a019. [DOI] [Google Scholar]
- 30.Zhang Z, Yang MJ, Pawliszyn J. Solid-phase microextraction. A solvent-free alternative for sample preparation. Anal. Chem. 1994;66:844A–853A. [Google Scholar]
- 31.Tiitinen K, Hakala M, Kallio H. Headspace volatiles from frozen berries of sea buckthorn (Hippophae rhamnoides L.) varieties. Eur. Food Res. Technol. 2006;223:455–460. doi: 10.1007/s00217-005-0224-6. [DOI] [Google Scholar]
- 32.Harter HL. Critical values for Duncan’s new multiple range test. 1960. pp. 671–685. [Google Scholar]
- 33.Sieber R, Bütikofer U, Bosset J. Benzoic acid as a natural compound in cultured dairy products and cheese. Int. Dairy J. 1995;5:227–246. doi: 10.1016/0958-6946(94)00005-A. [DOI] [Google Scholar]
- 34.Velika B, Kron I. Antioxidant properties of benzoic acid derivatives against superoxide radical. Free Radical. Antioxid. 2012;2:62–67. doi: 10.5530/ax.2012.4.11. [DOI] [Google Scholar]
- 35.Ullah I, Khan AL, Ali L, Khan AR, Waqas M, Hussain J, Lee IJ, Shin JH. Benzaldehyde as an insecticidal, antimicrobial, and antioxidant compound produced by Photorhabdus temperata M1021. J. Microbiol. 2015;53:127–133. doi: 10.1007/s12275-015-4632-4. [DOI] [PubMed] [Google Scholar]
- 36.Ferreira ACS, de Pinho PG. Nor-isoprenoids profile during port wine ageinginfluence of some technological parameters. Anal. Chim. Acta. 2004;513:169–176. doi: 10.1016/j.aca.2003.12.027. [DOI] [Google Scholar]
- 37.Panda SK, Behera SK, Qaku XW, Sekar S, Ndinteh DT, Nanjundaswamy H, Ray RC, Kayitesi E. Quality enhancement of prickly pears (Opuntia sp.) juice through probiotic fermentation using Lactobacillus fermentum-ATCC 9338. LWT-Food Sci. Technol. 2017;75:453–459. doi: 10.1016/j.lwt.2016.09.026. [DOI] [Google Scholar]
