Abstract
This study aimed to investigate the anti-oxidative properties of the ethanolic extracts of the devil’s club (Oplopanax horridus) leaves, stems, and roots. Furthermore, the anti-inflammatory activity of the leaf extract was analyzed. The leaf extract had higher total phenolic and flavonoid contents and anti-oxidative activity (radical scavenging, reducing power, and inhibition of lipid oxidation) than the root and stem extracts. The leaf extract also had anti-inflammatory effects. It significantly reduced lipopolysaccharide (LPS)-induced nitric oxide (NO; 71.0% at 50 μg/mL), tumor necrosis factor (TNF)-α (87.6% at 100 μg/mL), and interleukin (IL)-6 (36.2% at 100 μg/mL) production in murine RAW 264.7 macrophages. Furthermore, LPS-induced inducible nitric oxide synthase (iNOS) expression was decreased by the leaf extract (IC50=24.4 μg/mL). The ultra performance liquid chromatography-diode array detector (UPLC-DAD) analysis showed that the leaf extract contained gallic acid, protocatechuic acid, chlorogenic acid, and maltol. These findings suggest that the leaf extract could be utilized as a functional food material because of its anti-oxidative and anti-inflammatory activities.
Keywords: Oplopanax horridus, anti-oxidative activity, anti-inflammatory activity, phenolic compounds, UPLC-DAD
References
- 1.Tiwari S. Plants: A rich source of herbal medicine. J. Nat. Prod. 2008;1:27–35. doi: 10.2174/1874848100801010027. [DOI] [Google Scholar]
- 2.Chan PC, Peckham JC, Malarkey DE, Kissling GE, Travlos GS, Fu PP. Two-year toxicity and carcinogenicity studies of Panax ginseng in Fischer 344 rats and B6C3F1 mice. Am. J. Chinese Med. 2011;39:779–788. doi: 10.1142/S0192415X11009184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Lantz TC, Antos JA. Clonal expansion in the deciduous understory shrub, devil's club (Oplopanax horridus; Araliaceae) Can. J. Botany. 2002;80:1052–1062. doi: 10.1139/b02-095. [DOI] [Google Scholar]
- 4.Smith GW. Arctic pharmacognosia II. Devils club, Oplopanax horridus. J. Ethnopharmacol. 1983;7:313–320. doi: 10.1016/0378-8741(83)90005-3. [DOI] [PubMed] [Google Scholar]
- 5.Inui T, Wang Y, Deng S, Smith DC, Franzblau SG, Pauli GF. Counter-current chromatography based analysis of synergy in an anti-tuberculosis ethnobotanical. J. Chromatogr. A. 2007;1151:211–215. doi: 10.1016/j.chroma.2007.01.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Kobaisy M, Abramowski Z, Lermer L, Saxena G, Hancock RE, Towers GH, Doxsee D, Stokes RW. Antimycobacterial polyynes of Devil’s Club (Oplopanax horridus), a North American native medicinal plant. J. Nat. Prod. 1997;60:1210–1213. doi: 10.1021/np970182j. [DOI] [PubMed] [Google Scholar]
- 7.Sun S, Du GJ, Qi LW, Williams S, Wang CZ, Yuan CS. Hydrophobic constituents and their potential anticancer activities from Devil’s Club (Oplopanax horridus Miq.) J. Ethnopharmacol. 2010;132:280–285. doi: 10.1016/j.jep.2010.08.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Tai J, Cheung S, Chan E, Hasman D. Inhibition of human ovarian cancer cell lines by Devil’s club Oplopanax horridus. J. Ethnopharmacol. 2010;127:478–485. doi: 10.1016/j.jep.2009.10.010. [DOI] [PubMed] [Google Scholar]
- 9.Calway T, Du GJ, Wang CZ, Huang WH, Zhao J, Li SP, Yuan CS. Chemical and pharmacological studies of Oplopanax horridus, a North American botanical. J. Nat. Med. 2012;66:249–256. doi: 10.1007/s11418-011-0602-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Lantz TC, Swerhun K, Turner NJ. Devil's club (Oplopanax horridus): An ethnobotanical review. HerbalGram. 2004;62:33–48. [Google Scholar]
- 11.Singleton VS, Rossi JA. Colorimetric of total phenolics with phosphomolybdicphosphotungstic acid reagents. Am. J. Enol. Viticult. 1965;16:144–158. [Google Scholar]
- 12.Woisky RG, Salatino A. Analysis of propolis: Some parameters and procedures for chemical quality control. J. Apic. Res. 1998;37:99–105. doi: 10.1080/00218839.1998.11100961. [DOI] [Google Scholar]
- 13.Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181:1199–1200. doi: 10.1038/1811199a0. [DOI] [Google Scholar]
- 14.van den Berg R, Haenen GRMM, van den Berg H, Bast A. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem. 1999;66:511–517. doi: 10.1016/S0308-8146(99)00089-8. [DOI] [Google Scholar]
- 15.Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power: The FRAP assay. Anal. Biochem. 1996;239:70–76. doi: 10.1006/abio.1996.0292. [DOI] [PubMed] [Google Scholar]
- 16.Moon JK, Shibamoto T. Antioxidant assays for plant and food components. J. Agr. Food Chem. 2009;57:1655–1666. doi: 10.1021/jf803537k. [DOI] [PubMed] [Google Scholar]
- 17.Sharififar F, Dehghn-Nudeh G, Mirtajaldini M. Major flavonoids with antioxidant activity from Teucrium polium L. Food Chem. 2008;112:885–888. doi: 10.1016/j.foodchem.2008.06.064. [DOI] [Google Scholar]
- 18.Taviano MF, Marino A, Trovato A, Bellinghieri V, Melchini A, Dugo P, Cacciola F, Donato P, Mondello L, Güvenç A, de Pasquale R, Miceli N. Juniperus oxycedrus L. subsp. oxycedrus and Juniperus oxycedrus L. subsp. macrocarpa (Sibth. & Sm.) Ball. “berries” from Turkey: Comparative evaluation of phenolic profile, antioxidant, cytotoxic and antimicrobial activities. Food Chem. Toxicol. 2013;58:22–29. doi: 10.1016/j.fct.2013.03.049. [DOI] [PubMed] [Google Scholar]
- 19.Pérez-Jiménez J, Arranz S, Tabernero M, Díaz-Rubio ME, Serrano J, Goñi I, Saura-Calixto F. Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: Extraction, measurement and expression of results. Food Res. Int. 2008;41:274–285. doi: 10.1016/j.foodres.2007.12.004. [DOI] [Google Scholar]
- 20.Fukumoto LR, Mazza G. Assessing antioxidant and pro-oxidant activities of phenolic compounds. J. Agr. Food Chem. 2000;48:3597–3604. doi: 10.1021/jf000220w. [DOI] [PubMed] [Google Scholar]
- 21.Huang D, Ou B, Prior RL. The chemistry behind antioxidant capacity assays. J. Agr. Food Chem. 2005;53:1841–1856. doi: 10.1021/jf030723c. [DOI] [PubMed] [Google Scholar]
- 22.Sudha G, Janardhanan A, Moorthy A, Chinnasamy M, Gunasekaran S, Thimmaraju A, Gopalan J. Comparative study on the antioxidant activity of methanolic and aqueous extracts from the fruiting bodies of an edible mushroom Pleurotus djamor. Food Sci. Biotechnol. 2016;25:371–377. doi: 10.1007/s10068-016-0052-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Biswas M, Haldar PK, Ghosh AK. Antioxidant and free-radical-scavenging effects of fruits of Dregea volubilis. J. Nat. Sci. Biol. Med. 2010;1:29–34. doi: 10.4103/0976-9668.71670. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Draper HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Method. Enzymol. 1990;186:421–431. doi: 10.1016/0076-6879(90)86135-I. [DOI] [PubMed] [Google Scholar]
- 25.Dudonne S, Vitrac X, Coutiere P, Woillez M, Merillon JM. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agr. Food Chem. 2009;57:1768–1774. doi: 10.1021/jf803011r. [DOI] [PubMed] [Google Scholar]
- 26.Osawa T. Novel natural antioxidants for utilization in food and biological systems. In: I U, VV G, EM M, editors. Postharvest Biochemistry of Plant Food-Materials in the Tropics. Tokyo, Japan: Japan Scientific Societies Press; 1994. pp. 241–251. [Google Scholar]
- 27.Lee CJ, Chen LG, Chang TL, Ke WM, Lo YF, Wang CC. The correlation between skin-care effects and phytochemical contents in Lamiaceae plants. Food Chem. 2011;124:833–841. doi: 10.1016/j.foodchem.2010.07.003. [DOI] [Google Scholar]
- 28.de Cruz SJ, Kenyon NJ, Sandrock CE. Bench-to-bedside review: The role of nitric oxide in sepsis. Expert Rev. Respir. Med. 2009;3:511–521. doi: 10.1586/ers.09.39. [DOI] [PubMed] [Google Scholar]
- 29.Stone KD, Prussin C, Metcalfe DD. IgE, mast cells, basophils, and eosinophils. J. Allergy Clin. Immun. 2010;125:S73–S80. doi: 10.1016/j.jaci.2009.11.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Chen HH, Lin HT, Foung YF, Lin JHY. The bioactivity of teleost IL-6: IL-6 protein in orange-spotted grouper (Epinephelus coioides) induces Th2 cell differentiation pathway and antibody production. Dev. Comp. Immunol. 2012;38:285–294. doi: 10.1016/j.dci.2012.06.013. [DOI] [PubMed] [Google Scholar]
- 31.O’Shea JJ, Ma A, Lipsky P. Cytokines and autoimmunity. Nat. Rev. Immunol. 2002;2:37–45. doi: 10.1038/nri702. [DOI] [PubMed] [Google Scholar]
- 32.Strlic M, Radovic T, Kolar J, Pihlar B. Anti-and prooxidative properties of gallic acid in fenton-type systems. J. Agr. Food Chem. 2002;50:6313–6317. doi: 10.1021/jf025636j. [DOI] [PubMed] [Google Scholar]
- 33.Hsu CC, Hsu CL, Tsai SE, Fu TY, Yen GC. Protective effect of Millettia reticulata Benth against CCl4-induced hepatic damage and inflammatory action in rats. J. Med. Food. 2009;12:821–828. doi: 10.1089/jmf.2008.1227. [DOI] [PubMed] [Google Scholar]
- 34.dos Santos MD, Almeida MC, Lopes NP, de Souza GE. Evaluation of the antiinflammatory, analgesic and antipyretic activities of the natural polyphenol chlorogenic acid. Biol. Pharm. Bull. 2006;29:2236–2240. doi: 10.1248/bpb.29.2236. [DOI] [PubMed] [Google Scholar]
- 35.Hong YL, Pan HZ, Scott MD, Meshnick SR. Activated oxygen generation by a primaquine metabolite: Inhibition by antioxidants derived from Chinese herbal remedies. Free Radical Bio. Med. 1992;12:213–218. doi: 10.1016/0891-5849(92)90029-G. [DOI] [PubMed] [Google Scholar]