Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2017 Feb 28;26(1):55–62. doi: 10.1007/s10068-017-0008-3

Comparison of structural features and antioxidant activity of polysaccharides from natural and cultured Cordyceps sinensis

Junqiao Wang 1, Shaoping Nie 1,, Lijiao Kan 1, Haihong Chen 1, Steve W Cui 1,2, Aled O Phillips 3, Glyn O Phillips 4, Mingyong Xie 1
PMCID: PMC6049471  PMID: 30263510

Abstract

Four polysaccharides (named as P1, P2, and P3 from three natural Cordyceps sinensis and P4 from cultured C. sinensis) were obtained by hot-water extraction and ethanol precipitation and their structural characteristics as well as antioxidant potentials were compared. Results revealed that the backbone of P1, P2, and P3 comprised α-1,4-glucose, with a branching point mainly at position 6 and terminating at glucose. On the other hand, the structure of P4 was highly complex, mainly comprising glucose, galactose, and mannose, with 1,4-glucose and 1,4-galactose as the main chain. For in vitro antioxidant assays, all the four polysaccharides showed similar scavenging capacity against DPPH and hydroxyl radicals, whereas P1 had a relatively low ferric reducing ability, possibly related to a combination of factors such as the phenolic compounds and amino acids that conjugated in polysaccharides.

Keywords: natural/cultured Cordyceps sinensis, polysaccharide, structure, antioxidant

References

  • 1.Jiang Y, Yao Y. Current understanding of molecular systematics of Cordyceps. J. Fungal Res. 2004;2:58–67. [Google Scholar]
  • 2.Sung JM, Lee HK, Yang KJ. Classification of Cordyceps spp. by morphological characteristics and protein banding pattern. Korean J. Mycol. 1995;23:92–104. [Google Scholar]
  • 3.Li SP, Yang FQ, Tsim KWK. Quality control of Cordyceps sinensis, a valued traditional Chinese medicine. J. Pharmaceut. Biomed. 2006;41:1571–1584. doi: 10.1016/j.jpba.2006.01.046. [DOI] [PubMed] [Google Scholar]
  • 4.Chen PX, Wang SN, Nie SP, Marcone M. Properties of Cordyceps sinensis: A review. J. Funct. Foods. 2013;5:550–569. doi: 10.1016/j.jff.2013.01.034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Zhu JS, Halpern GM, Jones K. The scientific rediscovery of an ancient Chinese herbal medicine: Cordyceps sinensis Part I. J. Altern. Complem. Med. 1998;4:289–303. doi: 10.1089/acm.1998.4.3-289. [DOI] [PubMed] [Google Scholar]
  • 6.Zhu JS, Halpern GM, Jones K. The scientific rediscovery of a precious ancient Chinese herbal regimen: Cordyceps sinensis Part II. J. Altern. Complem. Med. 1998;4:429–457. doi: 10.1089/acm.1998.4.429. [DOI] [PubMed] [Google Scholar]
  • 7.Liang ZQ. Current situation and ponderation of Cordyceps Fr. research and exploitation in China. Acta Edulis Fungi. 2001;2:53–62. [Google Scholar]
  • 8.Yan JK, Wang WQ, Wu JY. Recent advances in Cordyceps sinensis polysaccharides: Mycelial fermentation, isolation, structure, and bioactivities: A review. J. Funct. Foods. 2014;6:33–47. doi: 10.1016/j.jff.2013.11.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Nie SP, Cui SW, Xie MY, Phillips AO, Phillips GO. Bioactive polysaccharides from Cordyceps sinensis: Isolation, structure features and bioactivities. Bioact. Carbohyd. Dietary Fibre. 2013;1:38–52. doi: 10.1016/j.bcdf.2012.12.002. [DOI] [Google Scholar]
  • 10.Tao YZ, Zhang LN, Cheung PC. Physicochemical properties and antitumor activities of water-soluble native and sulfated hyperbranched mushroom polysaccharides. Carbohyd. Res. 2006;341:2261–2269. doi: 10.1016/j.carres.2006.05.024. [DOI] [PubMed] [Google Scholar]
  • 11.Zhang LN, Li XL, Xu XJ, Zeng FB. Correlation between antitumor activity, molecular weight, and conformation of lentinan. Carbohyd. Res. 2005;340:1515–1521. doi: 10.1016/j.carres.2005.02.032. [DOI] [PubMed] [Google Scholar]
  • 12.Wang JQ, Kan LJ, Nie SP, Chen HH, Cui SW, Phillips AO, Phillips GO, Li YJ, Xie MY. A comparison of chemical composition, bioactive components and antioxidant activity of natural and cultured Cordyceps sinensis. LWT-Food Sci. Technol. 2015;63:2–7. doi: 10.1016/j.lwt.2015.03.109. [DOI] [Google Scholar]
  • 13.Dai J, Liang L, Yin H. Analysis of monosaccharde compositions in polysaccharides from D. salina by high-performance anion-exchange chromatography. Food Ferment. Ind. 2006;32:131–135. [Google Scholar]
  • 14.Ciucanu I, Kerek F. A simple and rapid method for the permethylation of carbohydrates. Carbohyd. Res. 1984;131:209–217. doi: 10.1016/0008-6215(84)85242-8. [DOI] [Google Scholar]
  • 15.Singleton V, Orthofer R, Lamuela-Raventos R. Analysis of total phenols and other oxidation substrates and antioxidants by means of folinciocalteu reagent. Method. Enzymol. 1999;299:152–178. doi: 10.1016/S0076-6879(99)99017-1. [DOI] [Google Scholar]
  • 16.Mao GH, Zou Y, Feng WW, Wang W, Zhao T, Ye CW, Zhu Y, Wu XS, Yang LQ, Wu XY. Extraction, preliminary characterization and antioxidant activity of Seenriched Maitake polysaccharide. Carbohyd. Polym. 2014;101:213–219. doi: 10.1016/j.carbpol.2013.09.034. [DOI] [PubMed] [Google Scholar]
  • 17.Gao CJ, Wang YH, Wang CY, Wang ZY. Antioxidant and immunological activity in vitro of polysaccharides from Gomphidius rutilus mycelium. Carbohyd. Polym. 2013;92:2187–2192. doi: 10.1016/j.carbpol.2012.12.011. [DOI] [PubMed] [Google Scholar]
  • 18.Benzie IF, Strain J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996;239:70–76. doi: 10.1006/abio.1996.0292. [DOI] [PubMed] [Google Scholar]
  • 19.Fogarasi AL, Kun S, Tankó G, Stefanovits-Bányai, Hegyesné-Vecseri B. A comparative assessment of antioxidant properties, total phenolic content of einkorn, wheat, barley and their malts. Food Chem. 2015;167:1–6. doi: 10.1016/j.foodchem.2014.06.084. [DOI] [PubMed] [Google Scholar]
  • 20.Weng CJ, Yen GC. Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: Phenolic acids, monophenol, polyphenol, and their derivatives. Cancer Treat. Rev. 2012;38:76–87. doi: 10.1016/j.ctrv.2011.03.001. [DOI] [PubMed] [Google Scholar]
  • 21.Niu YG, Shang PP, Chen L, Zhang H, Gong L, Zhang XW, Yu WJ, Xu YH, Wang Q, Yu LL. Characterization of a novel alkali-soluble heteropolysaccharide from tetraploid Gynostemma pentaphyllum makino and its potential antiinflammatory and antioxidant properties. J. Agr. Food Chem. 2014;62:3783–3790. doi: 10.1021/jf500438s. [DOI] [PubMed] [Google Scholar]
  • 22.Chen H, Zhang M, Qu Z, Xie B. Antioxidant activities of different fractions of polysaccharide conjugates from green tea (Camellia Sinensis) Food Chem. 2008;106:559–563. doi: 10.1016/j.foodchem.2007.06.040. [DOI] [Google Scholar]
  • 23.Wang J, Hu S, Nie S, Yu Q, Xie M. Reviews on mechanisms of in vitro antioxidant activity of polysaccharides. Oxid. Med. Cell Longev. Article ID 5692852 (2016) [DOI] [PMC free article] [PubMed]
  • 24.Zhang H, Cui SW, Nie SP, Chen Y, Wang YX, Xie MY. Identification of pivotal components on the antioxidant activity of polysaccharide extract from Ganoderma atrum. Bioact. Carbohyd. Dietary Fibre. 2016;7:9–18. doi: 10.1016/j.bcdf.2016.04.002. [DOI] [Google Scholar]
  • 25.Elias RJ, Kellerby SS, Decker EA. Antioxidant activity of proteins and peptides. Crit. Rev. Food Sci. 2008;48:430–441. doi: 10.1080/10408390701425615. [DOI] [PubMed] [Google Scholar]
  • 26.Minelli A, Bellezza I, Grottelli S, Galli F. Focus on cyclo (His-Pro): History and perspectives as antioxidant peptide. Amino Acids. 2008;35:283–289. doi: 10.1007/s00726-007-0629-6. [DOI] [PubMed] [Google Scholar]
  • 27.Pérez RA, Iglesias MT, Pueyo E, González M, de Lorenzo C. Amino acid composition and antioxidant capacity of Spanish honeys. J. Agr. Food Chem. 2007;55:360–365. doi: 10.1021/jf062055b. [DOI] [PubMed] [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES