Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2017 Feb 28;26(1):71–78. doi: 10.1007/s10068-017-0010-9

Changes occurring in nutritional components (phytochemicals and free amino acid) of raw and sprouted seeds of white and black sesame (Sesamum indicum L.) and screening of their antioxidant activities

Tae Joung Ha 1, Myoung-Hee Lee 2, Woo Duck Seo 3, In-Youl Baek 1, Jae Eun Kang 4, Jin Hwan Lee 4,
PMCID: PMC6049474  PMID: 30263512

Abstract

The present study is the first to investigate the germination properties regarding phytochemicals, amino acids, total phenolics, and antioxidant capacities of white and black sesame seeds. Nutritional components and antioxidant effects showed considerable differences. Sesamine and sesamolin composition decreased (white: 4.21→1.72, 3.57→1.57 mg/g; black: 2.43→0.58, 1.36→0.45 mg/g) during germination. Moreover, catechin displayed the predominant composition in sprouted seeds with values of 13.50 mg/g (white) and 19.09 (black) mg/g followed by (-)-epicatechin and sinapic acid. Total phenolics increased by approximately 4 times upon germination, i.e., 503.1±27.1→ 2085.0±56.7 (white) and 645.8±31.5→2480.1±49.5 (black), mg GAE/g. Amino acids also remarkably increased in sprouted white (7.04→31.69mg/g) and black (6.55→26.97mg/g) seeds, with individual composition occurring in the following order: asparagine>arginine>tryptophan>leucine>alanine. In particular, arginine and tryptophan exhibited the greatest variations. The antioxidant effects against DPPH radical were stronger in sprouted seeds depending on the phytochemicals. Therefore, sprouted sesame can be utilized as an excellent source for functional foods.

Keywords: germination, sesame seeds, phytochemical, amino acid, antioxidant activity

References

  • 1.Arizeni C M K, Zema P, Arias A, Pérez OE, Pilosof AMR. Comparative study of high identity ultrasound effects on food proteins functionality. J. Food Eng. 2012;108:463–472. doi: 10.1016/j.jfoodeng.2011.08.018. [DOI] [Google Scholar]
  • 2.Cho KM, Lee JH, Yun HD, Ahn BY, Kim H, Seo WT. Changes in phytochemical constituents (isoflavones, flavanols, and phenolic acids) during cheonggukjang soybeans fermentation using potential probiotics Bacillus subtilis CS90. J. Food Compos. Anal. 2011;24:402–410. doi: 10.1016/j.jfca.2010.12.015. [DOI] [Google Scholar]
  • 3.Randhir R, Lin YT, Shetty K. Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Process Biochem. 2004;39:637–646. doi: 10.1016/S0032-9592(03)00197-3. [DOI] [PubMed] [Google Scholar]
  • 4.Lee JH, Hwang CE, Lee BW, Kim HT, Ko JM, Baek IY, Ahn MJ, Lee HY, Cho KM. Effects of roasting on the phytochemical contents and antioxidant activities of Korean soybean (Glycine max L.Merrill) cultivars. Food Sci. Biotechnol. 2015;24:1573–1582. doi: 10.1007/s10068-015-0203-z. [DOI] [Google Scholar]
  • 5.Zhu D, Hettiarachchy NS, Horax R, Chen P. Isoflavone contents in germinated soybean seeds. Plant Food. Hum. Nutr. 2005;60:147–151. doi: 10.1007/s11130-005-6931-0. [DOI] [PubMed] [Google Scholar]
  • 6.Shi H, Nam P, Ma A. Comprehensive profiling of isoflavones, phytosterols, tocopherols, minerals, crude protein, lipid, and sugar during soybean (Glycine max) germination. J. Agr. Food Chem. 2010;58:4970–4976. doi: 10.1021/jf100335j. [DOI] [PubMed] [Google Scholar]
  • 7.Chung HJ, Cho A, Lim ST. Effect of heat-moisture treatment for utilization of germinated brown rice in wheat noodle. LWT-Food Sci. Technol. 2012;47:342–347. doi: 10.1016/j.lwt.2012.01.029. [DOI] [Google Scholar]
  • 8.Li T, Zirpoli GR, Jayaprakash V, Reid ME, McCann SE. Cruciferous vegetable intake is inversely associated with lung cancer risk among smokers: A casecontrol study. BMC Cancer. 2010;10:162–170. doi: 10.1186/1471-2407-10-162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Amadou I, Le GW, Amza T, Sun J, Shi YH. Purification and characterization of foxtail millet-derived peptides with antioxidant and antimicrobial activities. Food Res. Int. 2013;51:422–428. doi: 10.1016/j.foodres.2012.12.045. [DOI] [Google Scholar]
  • 10.Limón RI, Peñas E, Martínez-Villaluenga C, Frias J. Role of elicitation on the health-promoting properties of kidney bean. LWT-Food Sci. Technol. 2014;56:328–334. doi: 10.1016/j.lwt.2013.12.014. [DOI] [Google Scholar]
  • 11.Lee JH, Seo WT, Lim WJ, Cho KM. Phenolic contents and antioxidant activities from different tissues of Baekseohyang (Daphne kiusiana) Food Sci. Biotechnol. 2011;20:695–702. doi: 10.1007/s10068-011-0098-2. [DOI] [Google Scholar]
  • 12.Dixit AK, Bhatnagar D, Kumar V, Chawla D, Fakhruddin K, Bhatnagar D. Antioxidant potential and radioprotective effect of soy isoflavone against gamma irradiation induced oxidative stress. J. Funct. Foods. 2012;4:197–206. doi: 10.1016/j.jff.2011.10.005. [DOI] [Google Scholar]
  • 13.Middleton E, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: Implications for inflammations, heart disease, and cancer. Pharmacol. Rev. 2000;52:673–751. [PubMed] [Google Scholar]
  • 14.Veledo MT, de Frutos M, Diez-Masa JC. Amino acids determination using capillary electrophoresis with on-capillary derivatization and laser-induced fluorescence detection. J. Chromatogr. A. 2005;1079:335–343. doi: 10.1016/j.chroma.2005.03.111. [DOI] [PubMed] [Google Scholar]
  • 15.Namiki M. The chemistry and physiological functions of sesame. Food Rev. Int. 1995;11:281–329. doi: 10.1080/87559129509541043. [DOI] [Google Scholar]
  • 16.Chen PR, Chien KL, Su TC, Chang CJ, Liu TL, Cheng H, Tsai C. Dietary sesame reduces serum cholesterol and enhances antioxidant capacity in hypercholesterolemia. Nutr. Res. 2005;25:559–567. doi: 10.1016/j.nutres.2005.05.007. [DOI] [Google Scholar]
  • 17.Yokota T, Matsuzaki Y, Koyama M, Hitomi T, Kawanaka M, Enoki-Konishi M, Okuyama Y, Takayasu J, Nishino H, Nishikawa A, Osawa T, Sakai T. Sesamin, a lignan of sesame, down-regulates cyclin Dl protein expression in human tumor cells. Cancer Sci. 2007;98:1447–1453. doi: 10.1111/j.1349-7006.2007.00560.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Kim JH, Seo WD, Lee SK, Lee YB, Park CH, Ryu HW, Lee JH. Comparative assessment of compositional components, antioxidant effects, and lignan extractions from Korean white and black sesame (Sesamum indicum L.) seeds for different crop years. J. Funct. Foods. 2014;7:495–505. doi: 10.1016/j.jff.2014.01.006. [DOI] [Google Scholar]
  • 19.Botelho JRS, Medeiros NG, Rodrigues A A M, Machado NT, Santos AG, Santos IR, Gomes-Leal W, Junior RNC. Black sesame (Sesamum indicum L.) seeds extracts by CO2 supercritical fluid extraction: Isotherms of global yield, kinetics data, total fatty acids, phytosterols and neuroprotective effects. J. Supercrit. Fluid. 2014;93:49–55. doi: 10.1016/j.supflu.2014.02.008. [DOI] [Google Scholar]
  • 20.Hung WL, Liao CD, Lu WC, Ho CT, Hwang LS. Lignan glycosides from sesame meal exhibit higher oral bioavailability and antioxidant activity in rat after nano/submicrosizing. J. Funct. Foods. 2016;23:511–522. doi: 10.1016/j.jff.2016.03.008. [DOI] [Google Scholar]
  • 21.Rangkadilok N, Pholphana N, Mahidol C, Wongyai W, Saengsooksree K, Nookabkaew S, Satayavivad J. Variation of sesamin, sesamolin, and tocopherols in sesame (Sesamum indicum L.) s eed s and oil p rod ucts in Thailand. Food Chem. 2010;122:724–730. doi: 10.1016/j.foodchem.2010.03.044. [DOI] [Google Scholar]
  • 22.Pajak P, Socha R, Galkowska D, Roznowski J, Fortuna T. Phenolic profile and antioxidant activity in selected seeds and sprouts. Food Chem. 2014;143:300–306. doi: 10.1016/j.foodchem.2013.07.064. [DOI] [PubMed] [Google Scholar]
  • 23.Xu JG, Hu QP, Duan JL, Tian CR. Dynamic changes in caminobutyric acid and glutamate decarboxylase activity in oats (Avena nuda L.) during steeping and germination. J. Agr. Food Chem. 2010;58:9759–9763. doi: 10.1021/jf101268a. [DOI] [PubMed] [Google Scholar]
  • 24.Kao TH, Chen BH. Functional components in soybean cake and their effects on antioxidant activity. J. Agr. Food Chem. 2010;54:7544–7555. doi: 10.1021/jf061586x. [DOI] [PubMed] [Google Scholar]
  • 25.Liu FF, Ang CYW, Springer D. Optimization of extraction conditions for active components in Hypericum perforatum using surface methodology. J. Agr. Food Chem. 2000;48:3364–3371. doi: 10.1021/jf991086m. [DOI] [PubMed] [Google Scholar]
  • 26.Kim SH, Yu BR, Chung IM. Changes in the contents and profiles of selected phenolics, soyasapogenols, tocopherols, and amino acids during soybean-rice mixture cooking: Electric rice cooker vs electric pressure rice cooker. Food Chem. 2015;176:45–53. doi: 10.1016/j.foodchem.2014.12.024. [DOI] [PubMed] [Google Scholar]
  • 27.Xu B, Chang SKC. Total phenolics, phenolic acids, isoflavones, and anthocyanins and antioxidant properties of yellow and black soybean as affected by thermal processing. J. Agr. Food Chem. 2008;56:7165–7175. doi: 10.1021/jf8012234. [DOI] [PubMed] [Google Scholar]
  • 28.Zhao F, Zhuang P, Song C, Shi Z, Zhang L. Amino acid and fatty acid compositions and nutritional quality of muscle in the pomfret, Pampus punctatissimus. Food Chem. 2010;118:224–227. doi: 10.1016/j.foodchem.2009.04.110. [DOI] [Google Scholar]
  • 29.Neeta MP, Mukta N, Bilwa K. Comparative Qualitative Phytochemical analysis of Sesamum indicum L. Int. J. Curr. Microbiol. Appl. Sci. 2015;2:172–181. [Google Scholar]
  • 30.Ghasemi P S M, Siahpoosh A, Mashayekhi H. Antioxidant activity, total phenolic and flavonoids contents of three herbs used as condiments and additives in pickles products. Herba Pol. 2013;59:51–62. [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES