Abstract
Dietary hydroxycinnamates are considered as attractive materials for radioprotection. This study explores whether hydroxycinnamates protect against γ-radiation-induced cellular damages and hematopoietic stem cell senescence. C57BL/6 mice were orally administered with each of caffeic acid, p-coumaric acid, and ferulic acid (20mg/kg body weight) once per three days for five times before exposure to total body radiation (5 Gy). Irradiation increased the activities of alanine amino transaminase and aspartate aminotransferase in blood serum but decreased the anti-oxidant defense enzyme activities in the liver and spleen tissues. Oral administration of the compounds almost completely prevented irradiation-mediated changes in these enzyme activities. The hydroxycinnamates also inhibited the irradiation-mediated increases in the mitochondrial superoxide anions of Lin−Sca-1+c-Kit+ (LSK) cells and CD150+CD48− LSK cells in the bone marrow. These results suggest that dietary hydroxycinnamates protect against irradiation-mediated oxidative damages of tissues and bone marrow progenitor cells.
Keywords: total body irradiation, reactive oxygen species, bone marrow, radioprotection, phenolic compounds
References
- 1.Weiss JF. Pharmacologic approaches to protection against radiation-induced lethality and other damage. Environ. Health Persp. 1997;105:1473–1478. doi: 10.1289/ehp.97105s61473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Schultze-Mosgau S, Lehner B, Rödel F, Wehrhan F, Amann K, Kopp J, Thorwarth M, Nkenke E, Grabenbauer G. Expression of bone morphogenetic protein 2/4, transforming growth factor-beta1, and bone matrix protein expression in healing area between vascular tibia grafts and irradiated boneexperimental model of osteonecrosis. Int. J. Radiat. Oncol. 2005;61:1189–1196. doi: 10.1016/j.ijrobp.2004.12.008. [DOI] [PubMed] [Google Scholar]
- 3.Kang KA, Zhang R, Lee KH, Chea S, Kim BJ, Kwak YS, Park JW, Lee NH, Hyun JW. Protective effect of triphlorethol-A from Ecklonia cava against ionizing radiation in vitro. J. Radiat. Res. 2006;47:61–68. doi: 10.1269/jrr.47.61. [DOI] [PubMed] [Google Scholar]
- 4.Kovacs E, Keresztes A. Effect of gamma and UV-B/C radiation on plant cells. Micron. 2002;33:199–210. doi: 10.1016/S0968-4328(01)00012-9. [DOI] [PubMed] [Google Scholar]
- 5.Arora R, Gupta D, Chawla R, Sagar R, Sharma A, Kumar R, Prasad J, Singh S, Samanta N, Sharma RK. Radioprotection by plant products: Present status and future prospects. Phytother. Res. 2005;19:1–22. doi: 10.1002/ptr.1605. [DOI] [PubMed] [Google Scholar]
- 6.Chua HL, Plett PA, Sampson CH, Joshi M, Tabbey R, Katz BP, MacVittie TJ, Orschell CM. Long-term hematopoietic stem cell damage in a murine model of the hematopoietic syndrome of the acute radiation syndrome. Health Phys. 2012;103:356–366. doi: 10.1097/HP.0b013e3182666d6f. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Chang J, Feng W, Wang Y, Luo Y, Allen AR, Koturbash I, Turner J, Stewart B, Raber J, Hauer-Jensen M, Zhou D, Shao L. Total-body proton irradiation causes long-term damage to hematopoietic stem cells in mice. J. Radiat. Res. 2015;183:240–248. doi: 10.1667/RR13887.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Wang Y, Schulte BA, La Rue AC, Ogawa M, Zhou D. Total body irradiation selectively induces murine hematopoietic stem cell senescence. Blood. 2006;107:356–366. doi: 10.1182/blood-2005-04-1418. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Shao L, Feng W, Li H, Gardner D, Luo Y, Wang Y, Liu L, Meng A, Sharpless NE, Zhou D. Total body irradiation causes long-term mouse BM injury via induction of HSC premature senescence in anlnka-and Arf-independent manner. Blood. 2014;123:3105–3115. doi: 10.1182/blood-2013-07-515619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Zhang R, Kang KA, Kang SS, Park JW, Hyun JW. Morin (2’,3,4’,5,7-pentahydroxyflabone) protected cells against radiation-induced oxidative stress. Basic Clin. Pharmacol. 2011;108:63–72. doi: 10.1111/j.1742-7843.2010.00629.x. [DOI] [PubMed] [Google Scholar]
- 11.Mathew S, Abraham TE. Bioconversions of ferulic acid, a hydroxycinnamic acid. Crit. Rev. Microbiol. 2006;32:115–125. doi: 10.1080/10408410600709628. [DOI] [PubMed] [Google Scholar]
- 12.Masuda T, Ellsworth PC, Mesquita B, Leu J, Tanida S V, de Veerodonk E. Placing the face in context: Cultural difference in the perception of facial emotion. J. Pers. Soc. Psychol. 2008;94:365–381. doi: 10.1037/0022-3514.94.3.365. [DOI] [PubMed] [Google Scholar]
- 13.Song IH, Poddubnyy DA, Rudwaleit M, Sieper J. Benefits and risks of ankylosing spondylitis treatment with nonsteroidal anti-inflammatory drugs. Arthritis Rheum. 2008;58:929–938. doi: 10.1002/art.23275. [DOI] [PubMed] [Google Scholar]
- 14.Hudson EA, Dinh PA, Kokubun T, Simmonds MS, Gescher A. Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidem. Biomar. 2000;9:1167–1170. [PubMed] [Google Scholar]
- 15.Ma ZC, Hong Q, Wang YG, Tan HL, Xiao CR, Liang QD, Gao Y. Ferulic acid protects lymphocytes from radiation-predisposed oxidative stress through extracellular regulated kinase. Int. J. Radiat. Biol. 2011;87:130–140. doi: 10.3109/09553002.2011.523510. [DOI] [PubMed] [Google Scholar]
- 16.Piazzon A, Vrhovsek U, Masuero D, Mattivi F, Mandoi F, Nardini M. Antioxidant activity of phenolic acids and their metabolites: Synthesis and antioxidant properties of the sulfate derivatives of ferulic and caffeic acids and of the acyl glucuronide of ferulic acid. J. Agr. Food Chem. 2012;90:12312–12323. doi: 10.1021/jf304076z. [DOI] [PubMed] [Google Scholar]
- 17.Das U, Manna K, Sinha M, Datta S, Da DK, Chakraborty A, Ghosh M, Saha KD, Dey S. Role of ferulic acid in the amelioration of ionizing radiation induced inflammation: A murine model. PLoS ONE. 2014;9:97599. doi: 10.1371/journal.pone.0097599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Islam MS, Nagasaka R, Ohara K, Hosoya T, Ozaki H, Ushio H, Hori M. Biological abilities of rice bran-derived antioxidant phytochemicals for medical therapy. Curr. Top. Med. Chem. 2011;11:1847–1853. doi: 10.2174/156802611796235099. [DOI] [PubMed] [Google Scholar]
- 19.Baliga MS, Haniadka R, Pereira MM, Thilakchand KR, Rao S, Arora R. Radioprotective effects of Zingiber officinale Roscoe (ginger): Past, present and future. Food Funct. 2012;3:714–723. doi: 10.1039/c2fo10225k. [DOI] [PubMed] [Google Scholar]
- 20.Nagiev ER, Karpovich GA. Activity of alanine-and aspartate-aminotransferases of organs of albino rats subjected to total body gamma-radiation and physical exercise. Radiats. Biol. Radioecol. 1994;34:639–644. [PubMed] [Google Scholar]
- 21.Hosseinimehr SJ, Azadbakht M, Mousavi SM, Mahmoudzadeh A, Akhlaghpoor S. Radioprotective effects of hawthorn fruit extract against gamma irradiation in mouse bone marrow cells. J. Radiat. Res. 2007;48:63–68. doi: 10.1269/jrr.06032. [DOI] [PubMed] [Google Scholar]
- 22.Kim SB, Pandita RK, Eskiocak U, Ly P, Kaisani A, Kumar R, Cornelius C, Wright WE, Pandita TK, Shay JW. Targeting of Nrf2 induces DNA damage signaling and protects colonic epithelial cells from ionizing radiation. P. Natl. Acad. Sci. USA. 2012;109:E2949–E2955. doi: 10.1073/pnas.1207718109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Kim KA, Kook SH, Song JH, Lee JC. A phenolic acid phenethyl urea derivative protects against irradiation-induced osteoblast damage by modulating intracellular redox state. J. Cell. Biochem. 2014;115:1877–1887. doi: 10.1002/jcb.24857. [DOI] [PubMed] [Google Scholar]
- 24.Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J. Nutr. 2000;130:2073S–2085S. doi: 10.1093/jn/130.8.2073S. [DOI] [PubMed] [Google Scholar]
- 25.Kim SS, Son YO, Chun JC, Kim SE, Chung GH, Hwang KJ, Lee JC. Antioxidant property of an active compound purified from the leaves of paraquat-tolerant Rehmannia glutonosa. Redox Rep. 2005;10:311–318. doi: 10.1179/135100005X83734. [DOI] [PubMed] [Google Scholar]
- 26.King AD, Griffith JF, Abrigo JM, Leung SF, Yau FK, Tse GM, Ahuja AT. Osteoradionecrosis of the upper cervical spine: MR imaging following radiotherapy for nasopharyngeal carcinoma. Eur. J. Radiol. 2010;73:629–635. doi: 10.1016/j.ejrad.2008.12.016. [DOI] [PubMed] [Google Scholar]
- 27.Rana T, Schultz MA, Freeman ML, Biswas S. Loss of Nrf2 accelerates ionizing radiation-induced bone loss by upregulating RANKL. Free Radical Bio. Med. 2012;53:2298–2307. doi: 10.1016/j.freeradbiomed.2012.10.536. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Singh PK, Wise SY, Ducey EJ, Fatanmi OO, Elliott TB, Singh VK. a-Tocopherol succinate protects mice against radiation-induced gastrointestinal injury. J. Radiat. Res. 2012;177:133–145. doi: 10.1667/RR2627.1. [DOI] [PubMed] [Google Scholar]
- 29.Shimoi K, Masuda S, Shen B, Furugori M, Kinae N. Radioprotective effects of antioxidative plant flavonoids in mice. Mutat. Res. 1996;350:153–161. doi: 10.1016/0027-5107(95)00116-6. [DOI] [PubMed] [Google Scholar]
- 30.Shanthakumar J, Karthikeyan A, Bandugula V R, Prasad N. Ferulic acid, a dietary phenolic acid, modulates radiation effects in Swiss albino mice. Eur. J. Pharmacol. 2012;691:268–274. doi: 10.1016/j.ejphar.2012.06.027. [DOI] [PubMed] [Google Scholar]
- 31.Cinkilic N, Cetintas SK, Zorlu T, Vatan O, Yilmaz D, Cavas T, Tunc S, Ozkan L, Bilaloglu R. Radioprotection by two phenolic compounds: Chlorogenic and quinic acid, on X-ray induced DNA damage in human blood lymphocytes in vitro. Food Chem. Toxicol. 2013;53:359–363. doi: 10.1016/j.fct.2012.12.008. [DOI] [PubMed] [Google Scholar]