Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2017 Feb 28;26(1):207–212. doi: 10.1007/s10068-017-0028-z

Gelidium amansii ethanol extract suppresses fat accumulation by down-regulating adipogenic transcription factors in ob/ob mice model

Mi-Hwa Park 1, Ji-Hye Kang 2, Hak-Ju Kim 3, Ji-Sook Han 2,
PMCID: PMC6049497  PMID: 30263530

Abstract

The purpose of this study was to determine the anti-obesity effects of Gelidium amansii extract (GAE) in the C57BL/6J-ob/ob mice. The ob/ob mice were fed GAE at 0.5% for 4 weeks, after which body weight, epididymal adipose tissue weight, plasma triglycerides, and hepatic lipid accumulation were significantly reduced in GAE-fed mice compared with ob/ob control mice. Plasma adiponectin levels were significantly higher in GAE-fed mice than in ob/ob control mice. These findings were supported by the expression levels of enzymes and proteins related to lipid metabolism assessed by western blotting: protein expression levels of the peroxisome proliferator-activated receptor γ and CCATT/enhancer binding protein α decreased significantly, while hormone-sensitive lipase and phospho-AMP-activated protein kinase levels increased in the GAE-fed mice compared with ob/ob control mice. These findings demonstrate that GAE regulates plasma lipid profiles and increasing highdensity lipoprotein cholesterol levels as well as by regulating the expression levels of lipid metabolic factors, resulting in reduced weight gain in ob/ob mice.

Keywords: Gelidium amansii extract, C57BL/6J ob/ob mice, adipogenesis, lipolysis, anti-obesity

References

  • 1.Nieves JW, Komar L, Cosman F, Lindsay R. Calcium potentiates the effect of estrogen and calcitonin on bone mass: Review and analysis. Am. J. Clin. Nutr. 1998;67:18–24. doi: 10.1093/ajcn/67.1.18. [DOI] [PubMed] [Google Scholar]
  • 2.Kopelman PG. Obesity as a medical problem. Nature. 2000;404:635–643. doi: 10.1038/35007508. [DOI] [PubMed] [Google Scholar]
  • 3.Jobu K, Yokota J, Yoshioka S, Moriyama H, Murata S, Ohishi M, Ukeda H, Miyamura M. Effects of Goishi tea on diet-induced obesity in mice. Food Res. Int. 2013;54:324–329. doi: 10.1016/j.foodres.2013.07.037. [DOI] [Google Scholar]
  • 4.Spiegelman BM, Flier JS. Obesity and the regulation of energy balance. Cell. 2001;104:531–543. doi: 10.1016/S0092-8674(01)00240-9. [DOI] [PubMed] [Google Scholar]
  • 5.Lee YS, Cha BY, Choi SS, Wang XX, Choi BK, Yonezawa T, Teruya T, Nagai K, Woo JT. Effects of a Citrus depressa Hayata (shiikuwavsa) extract on obesity in high-fat diet-induced obese mice. Phytomedicine. 2001;18:648–654. doi: 10.1016/j.phymed.2010.11.005. [DOI] [PubMed] [Google Scholar]
  • 6.Hofbauer KC, Nicholson JR. Pharmacotherapy of obesity. Exp. Clin. Endocr. Diab. 2006;114:475–484. doi: 10.1055/s-2006-924241. [DOI] [PubMed] [Google Scholar]
  • 7.Ho CH, Kingree JB, Thompson MP. Associations between juvenile delinquency and weight-related variables: Analyses from a national sample of high school students. Int. J. Eat. Disorder. 2006;39:477–483. doi: 10.1002/eat.20271. [DOI] [PubMed] [Google Scholar]
  • 8.Moreno D, Ilic N, Poulev A, Brasaemle D, Fried S, Raskin I. Inhibitory effects of grape seed extract on lipases. Nutrition. 2003;19:876–879. doi: 10.1016/S0899-9007(03)00167-9. [DOI] [PubMed] [Google Scholar]
  • 9.Kadam SU, Prabhasankar P. Marine foods as functional ingredients in bakery and pasta products. Food Res. Int. 2010;43:1975–1980. doi: 10.1016/j.foodres.2010.06.007. [DOI] [Google Scholar]
  • 10.Yan X, Nagata T. Antioxidative activities in some common seaweeds. Plant Food. Hum. Nutr. 1998;52:253–262. doi: 10.1023/A:1008007014659. [DOI] [PubMed] [Google Scholar]
  • 11.Fu YW, Hou WY. The immunostimulatory effects of hot-water extract of Gelidium amansii via immersion, injection and dietary administrations on white shrimp Litopenaeus vannamei and its resistance against Vibro alginolyticus. Fish Shellfish Immun. 2007;22:673–685. doi: 10.1016/j.fsi.2006.08.014. [DOI] [PubMed] [Google Scholar]
  • 12.Yusan H, Song J. Immunomodulation and antitumor activity of kappacarrageenan oligosaccharides. Cancer Lett. 2006;243:228–234. doi: 10.1016/j.canlet.2005.11.032. [DOI] [PubMed] [Google Scholar]
  • 13.Meda A, Lamien CE, Romito J, Nacoulma OG. Determination of the total phenolic, flavonoid and praline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem. 2005;91:571–577. doi: 10.1016/j.foodchem.2004.10.006. [DOI] [Google Scholar]
  • 14.Biglari F, Alkarkhi AFM, Easa AM. Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chem. 2008;107:1636–1641. doi: 10.1016/j.foodchem.2007.10.033. [DOI] [Google Scholar]
  • 15.Friedewald WT, Levy RI, Fredirickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifusege. Clin. Chem. 1972;18:499–502. [PubMed] [Google Scholar]
  • 16.Folch J, Less M, sloan-Stanley GH. A simple method for isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957;226:497–509. [PubMed] [Google Scholar]
  • 17.Lee JS, Kim KJ, Kim YH, Kim DB, Shin GH, Cho JH, Kim BK, Lee BY, Lee OH. Codonopsis lanceolata extract prevents diets-induced obesity in C57BL/6 mice. Nutrients. 2014;6:4663–4677. doi: 10.3390/nu6114663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Lee J, Chae K, Ha J, Park BY, Lee HS, Jeong S, Kim MY, Yoon M. Regulation of obesity and lipid disorders by herbal extracts from Morus alba, Melissa officinalis, and Artemisia capillaries in high-fat diet-induced obese mice. J. Ethnopharmacol. 2008;115:263–270. doi: 10.1016/j.jep.2007.09.029. [DOI] [PubMed] [Google Scholar]
  • 19.Loncar D, Afzelius BA, Cannon B. Epididymal white adipose tissue after cold stress in rats. I. Nonmitochondrial changes. J. Ultra. Mol. Struct. R. 1988;101:109–122. doi: 10.1016/0889-1605(88)90001-8. [DOI] [PubMed] [Google Scholar]
  • 20.Caesar R, Drevon CA. Pancreatic contamination of mesenteric adipose tissue samples can be avoided by adjusted dissection procedures. J. Lipid Res. 2008;49:1588–1594. doi: 10.1194/jlr.D800013-JLR200. [DOI] [PubMed] [Google Scholar]
  • 21.Jung HA, Jung HJ, Jeong HY, Kwon HJ, Ali MY, Choi JS. Phlorotannins isolated from the edible brown alga Ecklonia stolonifera exert anti-adipogenic activity on 3T3-L1 adipocytes by downregulating C/EBPa and PPAR? Fitoterapia. 2014;92:260–269. doi: 10.1016/j.fitote.2013.12.003. [DOI] [PubMed] [Google Scholar]
  • 22.Hossain MK, Dayem AA, Han J, Yin Y, Kim K, Saha SK, Yang GM, Choi HY, Cho SG. Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. Int. J. Mol. Sci. 2016;17:569. doi: 10.3390/ijms17040569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.den Boer M, Voshol PJ, Kuipers F, Havekes LM, Romijn JA. Hepatic steatosis: A mediator of the metabolic syndrome. Lessons from animal models. Arterioscl. Throm. Vas. 2004;24:644–649. doi: 10.1161/01.ATV.0000116217.57583.6e. [DOI] [PubMed] [Google Scholar]
  • 24.Arsenault BJ, Boekholdt SM, Kastelein JJ. Lipid parameters for measuring risk of cardiovascular disease. Nat. Rev. Cardiol. 2011;8:197–206. doi: 10.1038/nrcardio.2010.223. [DOI] [PubMed] [Google Scholar]
  • 25.Okai Y, Higashi-Okai K, Yano Y, Otani S. Identification of antimutagenic substances in an extract of edible red alga, Porphyra tenera (Asakusa-nori) Cancer Lett. 1996;100:235–240. doi: 10.1016/0304-3835(95)04101-X. [DOI] [PubMed] [Google Scholar]
  • 26.He ML, Wang Y, You JS, Mir PS, McAllister TA. Effect of a seaweed extract on fatty acid accumulation and glycerol-3-phosphate dehydrogenase activity in 3T3-L1 adipocytes. Lipids. 2009;44:125–132. doi: 10.1007/s11745-008-3256-4. [DOI] [PubMed] [Google Scholar]
  • 27.Kim MJ, Chang UJ, Lee JS. Inhibitory effects of fucoidan in 3T3-L1 adipocyte differentiation. Mar. Biotechnol. 2009;5:557–562. doi: 10.1007/s10126-008-9170-1. [DOI] [PubMed] [Google Scholar]
  • 28.Seo MJ, Lee OH, Choi HS, Lee BY. Extract from edible red seaweed (Gelidium amansii) inhibits lipid accumulation and ROS production during differentiation in 3T3-L1 cells. Prev. Nutr. Food Sci. 2012;17:129–135. doi: 10.3746/pnf.2012.17.2.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Díez JJ, Iglesias P. The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur. J. Endocrinol. 2003;148:293–300. doi: 10.1530/eje.0.1480293. [DOI] [PubMed] [Google Scholar]
  • 30.Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem. 1996;271:10697–10703. doi: 10.1074/jbc.271.18.10697. [DOI] [PubMed] [Google Scholar]
  • 31.Bruun JM, Lihn AS, Werdich C, Pedersen SB, Toubro S, Astrup A, Richelsen B. Regulation of adiponectin by adipose tissue-derived cytokines: In vivo and in vitro investigations in humans. Am. J. Physiol.-Endoc. M. 2003;285:527–533. doi: 10.1152/ajpendo.00110.2003. [DOI] [PubMed] [Google Scholar]
  • 32.Kitano Y, Murazumi K, Duan J, Kurose K, Kobayashi S, Sugawara T, Hirata T. Effect of dietary porphyrin from the red alga, Porphyra yezoenosis, on glucose metabolism in diabetic KK-Ay mice. J. Nutr. Sci. Vitaminol. 2012;58:14–19. doi: 10.3177/jnsv.58.14. [DOI] [PubMed] [Google Scholar]
  • 33.Ducharme NA, Bickel PE. Lipid droplets in lipogenesis and lipolysis. Endocrinology. 2008;149:942–949. doi: 10.1210/en.2007-1713. [DOI] [PubMed] [Google Scholar]
  • 34.Holm C. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochem. Soc. T. 2003;31:1120–1124. doi: 10.1042/bst0311120. [DOI] [PubMed] [Google Scholar]
  • 35.Jaworski K, Sarkadi-Nagy E, Duncan RE, Ahmadian M, Sul HS. Regulation of triglyceride metabolism. IV. Hormonal regulation of lipolysis in adipose tissue. Am. J. Physiol.-Gastr. L. 2007;293:1–4. doi: 10.1152/ajpgi.00554.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Garmen GY, Victor SM. Signalling mechanisms regulating lipolysis. Cell. Signal. 2006;18:401–408. doi: 10.1016/j.cellsig.2005.08.009. [DOI] [PubMed] [Google Scholar]
  • 37.Jungtrakoon P, Plengvidhya N, Tangjittipokin W, Chimnaronk S, Salaemae W, Chongjaroen N, Charnprasert K, Sujjitjoon J, Srisawat C, Yenchitsomanus PT. Novel adiponection variants identified in type 2 diabetic patients reveal multimerization and secretion defects. PLoS ONE. 2011;6:26792. doi: 10.1371/journal.pone.0026792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Carling D. The AMP-activated protein kinase cascade-a unifying system for energy control. Trends Biochem. Sci. 2004;29:18–24. doi: 10.1016/j.tibs.2003.11.005. [DOI] [PubMed] [Google Scholar]
  • 39.Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujji N, Musi N, Hirshman MF, Goodyear LJ, Moller DE. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 2001;108:1167–1174. doi: 10.1172/JCI13505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol. Rev. 1998;78:783–809. doi: 10.1152/physrev.1998.78.3.783. [DOI] [PubMed] [Google Scholar]
  • 41.Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol. 2006;7:885–896. doi: 10.1038/nrm2066. [DOI] [PubMed] [Google Scholar]
  • 42.Tontonoz P, Spiegelman BM. Fat and beyond: The diverse biology of PPARgamma. Annu. Rev. Biochem. 2008;77:289–312. doi: 10.1146/annurev.biochem.77.061307.091829. [DOI] [PubMed] [Google Scholar]
  • 43.Woo MS, Choi HS, Lee OH, Lee BY. The edible red alga, Gracilaria verrucosa, inhibits lipid accumulation and ROS production, but improves glucose uptake in 3T3-L1 cells. Phytother. Res. 2013;27:1102–1105. doi: 10.1002/ptr.4813. [DOI] [PubMed] [Google Scholar]
  • 44.Mohammed A, Al-Numair KS, Balakrishana A. Docking studies on the interaction of flavonoids with fat mass and obesity associated protein. Pak. J. Pharm. Sci. 2015;28:1647–1653. [PubMed] [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES