Skip to main content
Emerging Infectious Diseases logoLink to Emerging Infectious Diseases
. 2018 Aug;24(8):1584–1585. doi: 10.3201/eid2408.180033

Dapsone Resistance in Leprosy Patients Originally from American Samoa, United States, 2010–2012

Diana L Williams 1,2,3,, Sergio Araujo 1,2,3, Barbara M Stryjewska 1,2,3, David Scollard 1,2,3
PMCID: PMC6056125  PMID: 30016255

Abstract

Skin biopsies from US leprosy patients were tested for mutations associated with drug resistance. Dapsone resistance was found in 4 of 6 biopsies from American Samoa patients. No resistance was observed in patients from other origins. The high rate of dapsone resistance in patients from American Samoa warrants further investigation.

Keywords: leprosy, dapsone resistance, American Samoa, United States, rifampin, National Hansen’s Disease Programs, folP1, rpoB, tuberculosis and other mycobacteria, Mycobacterium leprae, antimicrobial resistance, bacteria


Standard treatment for leprosy is multidrug therapy with dapsone, rifampin, and clofazimine (1). Resistance to dapsone and rifampin has been observed in many leprosy-endemic regions of the world (25). The Global Sentinel Surveillance for Drug Resistance in Leprosy program was established by the World Health Organization to monitor global leprosy drug resistance among cases of relapse (6). With this program, 9 cases of dapsone resistance and 1 case of rifampin resistance were found among 72 leprosy relapse patients from 8 participating countries in 2010 (7). However, some leprosy-endemic countries and countries with low incidence, such as the United States (≈200 cases/y), are not involved in this program, even though most US patients with leprosy migrated from endemic areas where drug resistance has been identified (8).

Previously, we performed a survey of drug resistance among US leprosy patients referred to the National Hansen’s Disease Programs (Baton Rouge, Louisiana, USA) during 2010–2012 (8). Of 39 patients with origins in the Pacific Islands (n = 18), Central or South America (n = 5), Asia (n = 2), and the United States (n = 14), 1 patient had dapsone-resistant Mycobacterium leprae and 1 had dapsone- and rifampin-resistant M. leprae (9). Both of these cases originated in American Samoa.

We expanded this previous survey by evaluating an additional 11 US leprosy patients from American Samoa and US patients from other geographic origins for susceptibility to dapsone and rifampin. All specimens had been referred to the National Hansen’s Disease Programs for histopathologic diagnosis and were tested by using previously published molecular drug susceptibility protocols (6). We were able to obtain susceptibility results for only 4 of the 11 US patients from American Samoa. Mutations in folP1, a gene associated with dapsone resistance (4), were detected in 2 of these patients; no drug resistance was observed in US patients from other origins (Table). Combining these results with our previously published data, 4 of 6 US patients from American Samoa had dapsone-resistant M. leprae, and 1 of these was also resistant to rifampin. All 4 dapsone-resistant isolates had distinct mutations (P55L, P55R, T53I, and T53A) in the drug resistance–determining region of the M. leprae folP1 gene. The data strongly suggest that these M. leprae isolates are not clonal in origin (i.e., did not originate from a single dapsone-resistant clone). In addition, all patients with resistance seemed to have primary resistance to dapsone because biopsies were taken before known treatment with antileprosy drugs.

Table. Drug resistance in leprosy patients with and without origins in American Samoa, USA, 2012–2015*.

Sample no. Clinical classification† Drug susceptibility‡
DRDR sequence
Location§
Dapsone Rifampin folP1 rpoB
US patients of American Samoa origin
NHDP1 BL No Yes T53I Wild type Louisiana, USA
NHDP2 LL Yes Yes Wild type Wild type Hawaii, USA
NHDP3 LL No Yes P55R Wild type Washington, USA
NHDP4 LL Yes Yes Wild type Wild type Massachusetts, USA
NHDP5 (9) BL No No T53A S456L Hawaii, USA
NHDP6 (8)
LL
No
Yes

P55L
Wild type
California, USA
US patients not of American Samoa origin
NHDP7 BL Yes Yes Wild type Wild type Africa
NHDP8 LL Yes Yes Wild type Wild type Burma
NHDP9 LL Yes Yes Wild type Wild type Micronesia
NHDP10 LL Yes Yes Wild type Wild type Micronesia
NHDP11 LL-BL Yes Yes Wild type Wild type Micronesia
NHDP12 BL Yes Yes Wild type Wild type Micronesia
NHDP13 LL Yes Yes Wild type Wild type Pacific Islands
NHDP14 LL Yes Yes Wild type Wild type Pacific Islands
NHDP15 LL Yes Yes Wild type Wild type Marshall Islands
NHDP16 BL Yes Yes Wild type Wild type Marshall Islands
NHDP17 BL Yes Yes Wild type Wild type Marshall Islands
NHDP18 BL Yes Yes Wild type Wild type The Philippines
NHDP19 LL Yes Yes Wild type Wild type The Philippines
NHDP20 BL Yes Yes Wild type Wild type Alaska, USA
NHDP21 LL Yes Yes Wild type Wild type Alaska, USA
NHDP22 LL Yes Yes Wild type Wild type Florida, USA
NHDP23 LL Yes Yes Wild type Wild type Florida, USA
NHDP24 LL Yes Yes Wild type Wild type Florida, USA
NHDP25 LL-BL Yes Yes Wild type Wild type Louisiana, USA
NHDP26 LL Yes Yes Wild type Wild type Louisiana, USA

*BL, borderline leprosy; DRDR, drug resistance–determining region; LL, lepromatous leprosy; NHDP, National Hansen’s Disease Programs.
†Classification according to the Ridley-Jopling scale.
‡Molecular drug susceptibility testing done according to the World Health Organization guidelines (6). A susceptible Mycobacterium leprae isolate had no mutations in the DRDR of folP1 or rpoB (i.e., the isolate was wild type). A drug-resistant M. leprae isolate had a mutation in the DRDR of the folP1 or rpoB gene (4,5).
§Location for patients of American Samoa origin refers to the US state where the leprosy diagnosis was made. Location for patients not of American Samoa origin refers to their location of origin.

The registry of the National Hansen’s Disease Programs indicates that 23 patients from American Samoa were given leprosy diagnoses in the United States during 2002–2014. Because of insufficient DNA or specimen unavailability, drug susceptibility of only 6 patients could be determined. Findings indicate that at least 4 (17%) of these 23 patients were infected with dapsone-resistant M. leprae. Biopsy results of 20 US leprosy patients known to be originally from other locations given diagnoses during this time interval did not demonstrate dapsone or rifampin resistance. Eleven (55%) of these patients had Pacific Island origins.

Dapsone resistance in American Samoa could have developed before implementation of multidrug therapy in this population, when dapsone was used as a monotherapy for leprosy. Several patients from American Samoa indicated that frequent visits occur between friends and relatives in American Samoa and Western Samoa; however, no information is currently available regarding drug resistance in Western Samoa.

Dapsone resistance might not necessarily have clinical significance when patients take multidrug therapy as recommended by the World Health Organization. However, in patients with a high bacteria load, resistance to dapsone essentially results in dual therapy with rifampin and clofazimine, placing the burden on just 2 drugs in the multidrug therapy regimen. Moreover, in this regimen, rifampin is taken only once monthly, so the patient is receiving only 1 effective drug (clofazimine) daily. In addition, patient noncompliance might result in the selection of multidrug-resistant M. leprae. In another study, resistance to dapsone and rifampin was found in 1 of 4 dapsone-resistant cases, with the 1 case occurring in a relapse patient (9). Therefore, M. leprae drug resistance (including the identification and evaluation of new markers for dapsone resistance) should be further studied in the American Samoa population (5). This research will most likely require correlation of epidemiologic, clinical, and molecular drug susceptibility data from a large number of leprosy patients in this leprosy-endemic region (10).

Biography

Dr. Williams is an adjunct associate professor of pathobiological sciences at Louisiana State University School of Veterinary Medicine in Baton Rouge, Louisiana, USA. She is a molecular biologist retired from the Laboratory Research Branch of the National Hansen’s Disease Programs. Her research interests include the study of the molecular biology of mycobacterial pathogens.

Footnotes

Suggested citation for this article: Williams DL, Araujo S, Stryjewska BM, Scollard D. Dapsone resistance in leprosy patients originally from American Samoa, United States, 2010–2012. Emerg Infect Dis. 2018 Aug [date cited]. https://doi.org/10.3201/eid2408.180033

References

  • 1.World Health Organization Study Group on Leprosy for Control Programmes. Chemotherapy of leprosy for control programmes: report of a WHO study group [meeting held in Geneva from 12 to 16 October 1981]. Geneva: World Health Organization; 1982. [cited 2018 Jan 8]. http://www.who.int/iris/handle/10665/38984
  • 2.Cambau E, Perani E, Guillemin I, Jamet P, Ji B. Multidrug-resistance to dapsone, rifampicin, and ofloxacin in Mycobacterium leprae. Lancet. 1997;349:103–4. 10.1016/S0140-6736(05)60888-4 [DOI] [PubMed] [Google Scholar]
  • 3.Matsuoka M. Drug resistance in leprosy. Jpn J Infect Dis. 2010;63:1–7. [PubMed] [Google Scholar]
  • 4.Williams DL, Gillis TP. Drug-resistant leprosy: monitoring and current status. Lepr Rev. 2012;83:269–81. [PubMed] [Google Scholar]
  • 5.Benjak A, Avanzi C, Singh P, Loiseau C, Girma S, Busso P, et al. Phylogenomics and antimicrobial resistance of the leprosy bacillus Mycobacterium leprae. Nat Commun. 2018;9:352. 10.1038/s41467-017-02576-z [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.World Health Organization. Guidelines for global surveillance of drug resistance in leprosy. New Delhi (India): The Organization; 2009. [cited 2018 Jan 8]. http://www.searo.who.int/entity/global_leprosy_programme/publications/guide_surv_drug_res_2009.pdf
  • 7.World Health Organization. Surveillance of drug resistance in leprosy: 2010. Wkly Epidemiol Rec. 2011;86:237–40. [PubMed] [Google Scholar]
  • 8.Williams DL, Lewis C, Sandoval FG, Robbins N, Keas S, Gillis TP, et al. Drug resistance in patients with leprosy in the United States. Clin Infect Dis. 2014;58:72–3. 10.1093/cid/cit628 [DOI] [PubMed] [Google Scholar]
  • 9.Williams DL, Hagino T, Sharma R, Scollard D. Primary multidrug-resistant leprosy, United States. Emerg Infect Dis. 2013;19:179–81. 10.3201/eid1901.120864 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.World Health Organization. Epidemiological review of leprosy in the WHO Western Pacific Region, 2000. Manila (Philippines): The Organization; 2002. [cited 2018 Jan 8]. http://www.wpro.who.int/leprosy/documents/leprosy_review_2000.pdf p.3

Articles from Emerging Infectious Diseases are provided here courtesy of Centers for Disease Control and Prevention

RESOURCES