Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Jul 13;74(Pt 8):1087–1092. doi: 10.1107/S205698901800974X

Mol­ecular structure, DFT studies and UV–Vis absorption of two new linear fused ring chalcones: (E)-1-(anthracen-9-yl)-3-(2-meth­oxy­phen­yl)prop-2-en-1-one and (E)-1-(anthracen-9-yl)-3-(3-fluoro-4-meth­oxy­phen­yl)prop-2-en-1-one

Dian Alwani Zainuri a, Ibrahim Abdul Razak a, Suhana Arshad a,*
PMCID: PMC6072983  PMID: 30116568

The title compounds were synthesized using the Claisen–Schmidt condensation method and characterized by UV–Vis spectroscopy. The geometrical parameters optimized using density functional theory (DFT) calculations show a good correlation with the experimental results. The small HOMO–LUMO energy gaps of 3.11 and 3.07 eV enhances the non-linear responses of these mol­ecular systems.

Keywords: chalcone, anthracene, crystal structure, DFT, UV–Vis

Abstract

The title compounds, C24H18O2 and C24H17FO2, were synthesized using the Claisen–Schmidt condensation method and characterized by UV–Vis spectroscopy. Weak inter­molecular C—H⋯O, C—H⋯π and π–π hydrogen-bonding inter­actions help to stabilize the crystal structures of both compounds. The geometrical parameters obtained from the mol­ecular structure were optimized using density functional theory (DFT) calculations at the B3LYP/6–311++G(d,p) level, showing a good correlation with the experimental results. The small HOMO–LUMO energy gaps of 3.11 and 3.07 eV enhances the non-linear responses of these mol­ecular systems.

Chemical context  

Conjugated organic systems contain delocalized π electrons, which often show excellent NLO properties as they can easily be polarized. There are three features essential for high non-linear activity in an organic compound which are: a strong electron donor, a highly polarizable π-conjugated bridged moiety and a strong π-electron acceptor. Chalcones generally satisfy these criteria given their π-conjugated bridged structures that can be functionalized with a wide range of substitutions. Recently, we found that the presence of an anthracene fused-ring system positioned at the terminal ring of these derivative compounds is useful in getting good quality single crystals with an easily synthesizable method. The structure of anthracene is benzene-like, having three six-membered rings fused together in a planar-like arrangement. These polyaromatic hydro­carbons containing π-conjugated materials show unique properties in terms of conductivity that have led to significant advancements in the field of organic electronics (Li et al., 2016). In this work, we report the synthesis and combined experimental and theoretical studies of two new anthracene chalcones C24H18O2 (I) and C24H17FO2 (II), containing methoxyphenyl (I) and fluoromethoxyphenyl (II) groups as substituents. Additionally, the UV–Vis absorption and HOMO–LUMO analysis are also reported herein.

Structural commentary  

The new chalcones C24H18O2 (I) and C24H17FO2 (II) consist of an anthracene fused-ring system and the substituent units 1-meth­oxy-2-methyl­benzene (A) and 2-fluoro-1-meth­oxy-4-methyl­benzene (B), respectively. These compounds represent DA π inter­molecular charge-transfer systems. Displacement ellipsoid plots and DFT optimized structures of the title compounds with their atom-labeling schemes are shown in Fig. 1. Compounds (I) and (II) crystallize in the monoclinic P21 /c and triclinic P Inline graphic space groups, respectively. Selected B3LYP/6-311++G(d,p) geometry-optimized calculated values (Frisch et al., 2009) for the bond lengths and angles of both compounds based on geometries in the gaseous state are compared to those of the crystalline structures in the solid state in Table S1 in the supporting information. The theoretical bond lengths and bond angles correlate well with the experimental data and are in normal ranges.graphic file with name e-74-01087-scheme1.jpg

Figure 1.

Figure 1

(a) The mol­ecular structure for compounds (I) and (II) showing the atom-numbering schemes and 50% probability ellipsoids; (b) The DFT-optimized structures at the B3LYP 6–311++G(d,p) level for compounds (I) and (II).

Both mol­ecular structures adopt an s-trans configuration with respect to the C16=C17 double bond across the ethyl­enic bridge (O1/C15–C17). The anthracene unit in both (I) and (II) is found to be twisted at the C14—C15 bond with the C1—C14—C15—C16 torsion angles being −95.91 (18)° in (I) and −106.3 (2)° in (II). This is probably due to the bulkiness of the strong electron donor. The corresponding DFT-calculated results give values of −95.94° (I) and −91.27°(II), respectively. The experimental and theoretical torsion-angle difference of 15.0° observed in (II) is most likely due to the formation of a weak inter­molecular C12—H12 O2 inter­action involving the anthracene fused-ring system with the terminal meth­oxy substituent unit.

The mean plane of the enone moiety in (I) [O1/C15–C17, maximum deviation of 0.0085 (18) Å at C16] forms dihedral angles of 88.15 (18) and 1.44 (19)° with the mean plane of the anthracene ring system (C1–C14) and the 1-meth­oxy-2-methyl­benzene (A) ring, respectively. The DFT geometry-optimization calculations give the same values as the experimental values. In (II) the mean plane of the enone moiety [O1/C15–C17, maximum deviation of 0.0092 (18) Å at C16] forms dihedral angles of 73.65 (18) and 2.40 (19)° with the mean planes of the anthracene ring system (C1–C14) and the 2-fluoro-1-meth­oxy-4-methyl­benzene ring (B). The corresponding DFT geometry-optimization calculation gives values of 89.99 and 0.01°, respectively. Additionally, the mean plane of the anthracene ring system (C1–C14) in the two compounds form dihedral angles of 87.52 (8)° (experimental and DFT) and 71.31 (7)° (experimental) and 90.00° (DFT) with the mean planes of A and B, respectively.

Supra­molecular features  

The crystal packing of both compounds is shown in Fig. 2 and details of the weak inter­molecular hydrogen-bonding inter­actions are given in Table 1. No classical hydrogen bonds are observed in either structure. The crystal packing of (I) shows only weak π–π inter­actions (Table 2) with centroid–centroid distances of 3.8804 (12) and 3.6725 (13) Å. The mol­ecules are further linked into infinite zigzag chains along the c-axis direction.

Figure 2.

Figure 2

(a) Crystal packing for compound (I) viewed along the a axis showing weak π–π inter­actions (dashed lines), where Cg1 and Cg2 are the centroids of the C1–C6 and C18–C22 rings, respectively, and (b) Weak C—H⋯ O, C—H⋯π and π–π inter­actions (dashed lines) for compound (II),, forming Inline graphic(14) ring graph-set motifs, where Cg3 and Cg4 are the centroids of the C8–C13 and C1–C6 rings, respectively.

Table 1. Hydrogen-bond geometry (Å, °) for (II) .

Cg4 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O2i 0.93 2.48 3.345 (2) 154
C19—H19A⋯O1ii 0.93 2.48 3.393 (3) 166
C24—H24DCg4iii 0.96 2.77 3.391 (3) 123

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Table 2. Weak π–π inter­actions in compounds (I) and (II).

Cg1 and Cg2 are the centroids of the C1–C6 and C18–C23 rings, respectively, in compound (I). Cg3 and Cg4 are the centroids of the C8–C13 and C1–C6 rings, respectively, in compound (II).

I J IJ Symmetry
Cg1 Cg1 3.8804 (12) 1 − x, 2 − y, 2 − z
Cg2 Cg2 3.6725 (13) 1 − x, 2 − y, 1 − z
Cg3 Cg3 3.7891 (12) 1 − x, 1 − y, 2 − z
Cg3 Cg4 3.8126 (11) 1 − x, −y, 2 − z

In (II), weak C19—H19A⋯O1ii and C12—H12A⋯O2i hydrogen bonds (Table 1) connect the mol­ecules into centrosymmetric dimers with Inline graphic(14) ring motifs. These dimers are further linked into infinite sheets stacked along the a-axis direction. Weak C24—H24⋯Cg4iii (Table 1) and π–π inter­actions [centroid–centroid distances = 3.8126 (11) and 3.789 (12) Å; Table 2] are also observed in the crystal packing and further stabilize the crystal structure. These weak inter­molecular C—H⋯O, C—H⋯π and π–π inter­actions are significant in bridging the mol­ecules into a three-dimensional supra­molecular network.

UV–Vis absorption analysis  

Experimental electronic absorption spectra of (I) and (II) have been measured and compared to the ground state (HOMO) and excited state (LUMO) mol­ecular orbital energies, calculated using time-dependent DFT B3LYP/6-311++G(d,p) theoretical calculations in the gas phase. The experimental absorption peaks (Fig. 3) of (I) and (II) are found at the same maximum wavelength of 387 nm, whereas the simulated values are observed at 386 nm and 394 nm, respectively. The shift of the theoretical values to higher wavelengths are due to the fact that the calculations are confined to a gaseous environment, whereas the observations are obtained from the solution state (Zainuri et al., 2017).

Figure 3.

Figure 3

UV–Vis absorption spectra of compounds (I) and (II).

The HOMO and LUMO energies characterize the ability of donating and accepting electrons, whereas the value of the energy gap between the HOMO and LUMO mol­ecular orbitals characterizes the mol­ecular chemical stability. The energy gaps are largely responsible for the chemical and spectroscopic properties of the compounds. In Fig. 4, the charge densities in the ground state (HOMO) are mainly delocalized over the entire anthrancenyl donor ring, while in the excited state (LUMO), the charge densities are accumulated on the π-conjugated enone bridge and the terminal electron-acceptor group. The HOMO and LUMO energy gaps were computed to be 3.24 eV for (I) and 3.25 eV for (II). Through an extrapolation of the linear trend observed in the optical spectra, the experimental energy band gaps for (I) and (II) become 3.11 eV and 3.07 eV, respectively. These optical band-gap values indicate the suitability of these compounds for opto-electronic applications as for structures of chalcones previously reported by Prabhu et al. (2016).

Figure 4.

Figure 4

Mol­ecular orbital electron distributions of the HOMO and LUMO energy levels for (I) and (II).

Database survey  

A survey of the Cambridge Structural Database (CSD, Version 5.39, last update November 2017; Groom et al., 2016) revealed several fused-ring substituted chalcones similar to (I) and (II). There are four compounds that have an anthrancene-ketone subtituent on the chalcone, including 9-anthryl styryl ketone and 9,10-anthryl bis­(styryl ketone) reported by Harlow et al. (1975). (2E)-1-(Anthracen-9-yl)-3-[4-(propan-2-yl)phenyl]prop-2-en-1-one was reported by Girisha et al. (2016), while (E)-1-(anthracen-9-yl)-3-(2-chloro-6-fluoro­phen­yl)prop-2-en-1-one was reported by Abdullah et al. (2016). Zainuri et al. (2018a ) reported a chalcone with two anthrancene substit­uents, viz. (E)-1,3-bis­(anthracen-9-yl)prop-2-en-1-one. Other related compounds include 1-(anthracen-9-yl)-2-methyl­prop-2-en-1-one (Agrahari et al., 2015), 9-anthroylacetone (Cicogna et al., 2004), (E)-1-(anthracen-9-yl)-3-(naphthalen-2-yl)prop-2-en-1-one and (E)-1-(anthracen-9-yl)-3-(pyren-1-yl)prop-2-en-1-one (Zainuri et al., 2018b ,c ).

Synthesis and crystallization  

A mixture of 9-acetyl­anthracene (0.5 mmol) and 2-meth­oxy­benzaldehyde (0.5 mmol) and 3-fluoro-4-meth­oxy­benzaldehyde (0.5 mmol) for compounds (I) and (II), respectively, was dissolved in methanol (20 ml). A catalytic amount of NaOH (5 ml, 20%) was added to the solutions, dropwise under vigorous stirring. The reaction mixtures were stirred for about 5-6 h at room temperature. After stirring, the contents of the flask were poured into ice-cold water (50 ml). The resultant crude products were filtered, washed successively with distilled water and recrystallized to get the corres­ponding chalcones (see scheme). Single crystals of (I) and (II) suitable for X-ray diffraction were obtained by the slow evaporation technique using acetone.

Refinement  

Crystal data collection and structure refinement details are summarized in Table 3. All H atoms were positioned geom­etrically [C—H = 0.93 and 0.96 Å in (I) and (II)] and refined using a riding model with U iso(H) = 1.2 or 1.5U eq(C). A rotating group model was applied to the methyl group. In the final refinement of (I), one outlier (Inline graphic 2 15) was omitted.

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C24H18O2 C24H17FO2
M r 338.38 356.37
Crystal system, space group Monoclinic, P21/c Triclinic, P Inline graphic
Temperature (K) 294 296
a, b, c (Å) 9.0554 (8), 17.4260 (15), 12.9217 (9) 8.6646 (5), 9.5752 (5), 11.5636 (6)
α, β, γ (°) 90, 119.916 (5), 90 100.593 (2), 105.443 (2), 92.422 (2)
V3) 1767.3 (3) 904.76 (9)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.08 0.09
Crystal size (mm) 0.60 × 0.23 × 0.15 0.99 × 0.31 × 0.25
 
Data collection
Diffractometer Bruker SMART APEXII DUO CCD area-detector Bruker SMART APEXII DUO CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2009) Multi-scan (SADABS; Bruker, 2009)
No. of measured, independent and observed [I > 2σ(I)] reflections 30614, 4249, 2916 34988, 5394, 3307
R int 0.045 0.045
(sin θ/λ)max−1) 0.661 0.711
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.054, 0.146, 1.08 0.059, 0.183, 1.02
No. of reflections 4249 5394
No. of parameters 236 245
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.17, −0.19 0.27, −0.20

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXL2014 (Sheldrick, 2014), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, II. DOI: 10.1107/S205698901800974X/jj2199sup1.cif

e-74-01087-sup1.cif (2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901800974X/jj2199Isup2.hkl

e-74-01087-Isup2.hkl (338.6KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S205698901800974X/jj2199IIsup3.hkl

e-74-01087-IIsup3.hkl (429KB, hkl)

Supporting information file. DOI: 10.1107/S205698901800974X/jj2199Isup4.cml

Supporting information file. DOI: 10.1107/S205698901800974X/jj2199IIsup5.cml

Comparison of selected experimental and DFT-optimized data for compounds (I) and (II). DOI: 10.1107/S205698901800974X/jj2199sup6.pdf

e-74-01087-sup6.pdf (73.4KB, pdf)

CCDC references: 1827020, 1817223

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

(I). Crystal data

C24H18O2 F(000) = 712
Mr = 338.38 Dx = 1.272 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 9.0554 (8) Å Cell parameters from 6535 reflections
b = 17.4260 (15) Å θ = 2.6–28.0°
c = 12.9217 (9) Å µ = 0.08 mm1
β = 119.916 (5)° T = 294 K
V = 1767.3 (3) Å3 Needle, yellow
Z = 4 0.60 × 0.23 × 0.15 mm

(I). Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer 2916 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.045
φ and ω scans θmax = 28.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −11→11
k = −22→23
30614 measured reflections l = −17→17
4249 independent reflections

(I). Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054 H-atom parameters constrained
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.063P)2 + 0.2604P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.001
4249 reflections Δρmax = 0.17 e Å3
236 parameters Δρmin = −0.19 e Å3

(I). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.53861 (18) 0.72502 (7) 0.79211 (12) 0.0752 (4)
O2 0.20209 (16) 1.03186 (6) 0.56513 (10) 0.0642 (3)
C1 0.53056 (19) 0.86680 (8) 0.94301 (13) 0.0478 (3)
C2 0.6917 (2) 0.88894 (10) 0.95792 (15) 0.0592 (4)
H2A 0.7215 0.8740 0.9017 0.071*
C3 0.8018 (3) 0.93154 (11) 1.05315 (18) 0.0738 (5)
H3A 0.9052 0.9465 1.0604 0.089*
C4 0.7618 (3) 0.95337 (12) 1.14117 (18) 0.0802 (6)
H4A 0.8400 0.9815 1.2071 0.096*
C5 0.6114 (3) 0.93389 (11) 1.13057 (16) 0.0731 (5)
H5A 0.5870 0.9487 1.1896 0.088*
C6 0.4886 (2) 0.89110 (9) 1.03106 (13) 0.0552 (4)
C7 0.3300 (2) 0.87229 (10) 1.01595 (15) 0.0615 (4)
H7A 0.3036 0.8876 1.0738 0.074*
C8 0.2100 (2) 0.83166 (9) 0.91831 (15) 0.0538 (4)
C9 0.0457 (3) 0.81257 (11) 0.90222 (19) 0.0713 (5)
H9A 0.0176 0.8282 0.9591 0.086*
C10 −0.0685 (3) 0.77249 (12) 0.8065 (2) 0.0787 (6)
H10A −0.1744 0.7609 0.7977 0.094*
C11 −0.0284 (2) 0.74811 (11) 0.7196 (2) 0.0757 (6)
H11A −0.1087 0.7209 0.6535 0.091*
C12 0.1255 (2) 0.76379 (9) 0.73108 (16) 0.0605 (4)
H12A 0.1497 0.7466 0.6730 0.073*
C13 0.25104 (19) 0.80611 (8) 0.83027 (14) 0.0478 (3)
C14 0.41240 (18) 0.82319 (8) 0.84557 (13) 0.0445 (3)
C15 0.4659 (2) 0.78700 (8) 0.76321 (14) 0.0500 (4)
C16 0.4322 (2) 0.82415 (9) 0.65306 (14) 0.0526 (4)
H16A 0.4648 0.7987 0.6044 0.063*
C17 0.35781 (19) 0.89218 (8) 0.61731 (12) 0.0459 (3)
H17A 0.3278 0.9171 0.6678 0.055*
C18 0.3182 (2) 0.93191 (9) 0.50726 (13) 0.0489 (4)
C19 0.3583 (2) 0.90106 (11) 0.42487 (15) 0.0640 (5)
H19A 0.4128 0.8538 0.4405 0.077*
C20 0.3189 (3) 0.93900 (14) 0.32089 (17) 0.0804 (6)
H20A 0.3470 0.9176 0.2670 0.096*
C21 0.2377 (3) 1.00888 (14) 0.29715 (17) 0.0813 (6)
H21A 0.2101 1.0343 0.2265 0.098*
C22 0.1965 (2) 1.04188 (11) 0.37628 (16) 0.0686 (5)
H22A 0.1424 1.0893 0.3594 0.082*
C23 0.2366 (2) 1.00373 (9) 0.48149 (13) 0.0527 (4)
C24 0.1245 (3) 1.10560 (10) 0.54615 (19) 0.0769 (6)
H24A 0.1028 1.1170 0.6100 0.115*
H24B 0.0190 1.1057 0.4717 0.115*
H24C 0.1994 1.1437 0.5440 0.115*

(I). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0919 (9) 0.0621 (7) 0.0778 (9) 0.0293 (7) 0.0470 (8) 0.0145 (6)
O2 0.0823 (8) 0.0544 (6) 0.0513 (7) 0.0117 (6) 0.0300 (6) 0.0043 (5)
C1 0.0516 (8) 0.0490 (8) 0.0389 (8) 0.0037 (6) 0.0197 (7) 0.0081 (6)
C2 0.0552 (10) 0.0622 (10) 0.0545 (10) −0.0019 (8) 0.0231 (8) 0.0058 (8)
C3 0.0619 (11) 0.0723 (12) 0.0692 (13) −0.0113 (9) 0.0191 (10) 0.0034 (10)
C4 0.0840 (15) 0.0739 (12) 0.0522 (12) −0.0120 (11) 0.0110 (10) −0.0062 (9)
C5 0.0892 (15) 0.0761 (12) 0.0414 (10) −0.0018 (10) 0.0231 (10) −0.0041 (9)
C6 0.0686 (11) 0.0583 (9) 0.0341 (8) 0.0049 (8) 0.0221 (8) 0.0073 (7)
C7 0.0750 (12) 0.0749 (11) 0.0449 (9) 0.0106 (9) 0.0377 (9) 0.0105 (8)
C8 0.0590 (10) 0.0583 (9) 0.0513 (10) 0.0092 (7) 0.0328 (8) 0.0177 (7)
C9 0.0678 (12) 0.0830 (12) 0.0783 (13) 0.0143 (10) 0.0479 (11) 0.0273 (11)
C10 0.0582 (11) 0.0746 (12) 0.1062 (17) 0.0024 (10) 0.0433 (12) 0.0263 (12)
C11 0.0574 (11) 0.0589 (10) 0.0954 (16) −0.0060 (8) 0.0265 (11) 0.0023 (10)
C12 0.0555 (10) 0.0526 (9) 0.0668 (11) 0.0000 (7) 0.0254 (9) −0.0020 (8)
C13 0.0499 (8) 0.0445 (7) 0.0482 (9) 0.0056 (6) 0.0241 (7) 0.0103 (6)
C14 0.0485 (8) 0.0440 (7) 0.0398 (8) 0.0056 (6) 0.0211 (7) 0.0077 (6)
C15 0.0499 (8) 0.0483 (8) 0.0502 (9) 0.0035 (7) 0.0237 (7) 0.0006 (7)
C16 0.0621 (10) 0.0557 (9) 0.0459 (9) 0.0033 (7) 0.0315 (8) −0.0045 (7)
C17 0.0504 (8) 0.0504 (8) 0.0375 (8) −0.0048 (6) 0.0223 (7) −0.0066 (6)
C18 0.0541 (9) 0.0543 (8) 0.0354 (8) −0.0121 (7) 0.0202 (7) −0.0058 (6)
C19 0.0771 (12) 0.0733 (11) 0.0459 (9) −0.0143 (9) 0.0340 (9) −0.0113 (8)
C20 0.0965 (15) 0.1083 (17) 0.0450 (11) −0.0302 (13) 0.0418 (11) −0.0149 (11)
C21 0.0902 (15) 0.1026 (16) 0.0408 (10) −0.0332 (13) 0.0249 (10) 0.0068 (10)
C22 0.0707 (12) 0.0707 (11) 0.0470 (10) −0.0156 (9) 0.0162 (9) 0.0103 (8)
C23 0.0546 (9) 0.0565 (9) 0.0367 (8) −0.0135 (7) 0.0149 (7) −0.0019 (7)
C24 0.0823 (13) 0.0525 (10) 0.0829 (14) 0.0105 (9) 0.0313 (11) 0.0054 (9)

(I). Geometric parameters (Å, º)

O1—C15 1.2226 (18) C11—H11A 0.9300
O2—C23 1.3574 (19) C12—C13 1.423 (2)
O2—C24 1.426 (2) C12—H12A 0.9300
C1—C14 1.401 (2) C13—C14 1.405 (2)
C1—C2 1.426 (2) C14—C15 1.509 (2)
C1—C6 1.431 (2) C15—C16 1.451 (2)
C2—C3 1.355 (3) C16—C17 1.327 (2)
C2—H2A 0.9300 C16—H16A 0.9300
C3—C4 1.408 (3) C17—C18 1.457 (2)
C3—H3A 0.9300 C17—H17A 0.9300
C4—C5 1.343 (3) C18—C19 1.393 (2)
C4—H4A 0.9300 C18—C23 1.406 (2)
C5—C6 1.421 (3) C19—C20 1.375 (3)
C5—H5A 0.9300 C19—H19A 0.9300
C6—C7 1.389 (2) C20—C21 1.376 (3)
C7—C8 1.381 (2) C20—H20A 0.9300
C7—H7A 0.9300 C21—C22 1.377 (3)
C8—C13 1.433 (2) C21—H21A 0.9300
C8—C9 1.435 (2) C22—C23 1.389 (2)
C9—C10 1.346 (3) C22—H22A 0.9300
C9—H9A 0.9300 C24—H24A 0.9600
C10—C11 1.406 (3) C24—H24B 0.9600
C10—H10A 0.9300 C24—H24C 0.9600
C11—C12 1.354 (2)
C23—O2—C24 118.55 (13) C14—C13—C8 119.06 (14)
C14—C1—C2 122.63 (14) C12—C13—C8 117.99 (14)
C14—C1—C6 119.23 (14) C1—C14—C13 121.04 (13)
C2—C1—C6 118.13 (15) C1—C14—C15 119.37 (13)
C3—C2—C1 120.73 (17) C13—C14—C15 119.27 (13)
C3—C2—H2A 119.6 O1—C15—C16 120.75 (14)
C1—C2—H2A 119.6 O1—C15—C14 117.85 (14)
C2—C3—C4 120.82 (19) C16—C15—C14 121.40 (13)
C2—C3—H3A 119.6 C17—C16—C15 124.17 (13)
C4—C3—H3A 119.6 C17—C16—H16A 117.9
C5—C4—C3 120.41 (19) C15—C16—H16A 117.9
C5—C4—H4A 119.8 C16—C17—C18 126.82 (14)
C3—C4—H4A 119.8 C16—C17—H17A 116.6
C4—C5—C6 121.37 (19) C18—C17—H17A 116.6
C4—C5—H5A 119.3 C19—C18—C23 117.97 (14)
C6—C5—H5A 119.3 C19—C18—C17 122.13 (15)
C7—C6—C5 122.56 (16) C23—C18—C17 119.90 (13)
C7—C6—C1 118.96 (15) C20—C19—C18 121.46 (19)
C5—C6—C1 118.48 (16) C20—C19—H19A 119.3
C8—C7—C6 122.45 (15) C18—C19—H19A 119.3
C8—C7—H7A 118.8 C19—C20—C21 119.51 (18)
C6—C7—H7A 118.8 C19—C20—H20A 120.2
C7—C8—C13 119.20 (14) C21—C20—H20A 120.2
C7—C8—C9 122.52 (16) C20—C21—C22 121.12 (17)
C13—C8—C9 118.27 (17) C20—C21—H21A 119.4
C10—C9—C8 121.30 (18) C22—C21—H21A 119.4
C10—C9—H9A 119.4 C21—C22—C23 119.45 (19)
C8—C9—H9A 119.4 C21—C22—H22A 120.3
C9—C10—C11 120.29 (17) C23—C22—H22A 120.3
C9—C10—H10A 119.9 O2—C23—C22 123.70 (16)
C11—C10—H10A 119.9 O2—C23—C18 115.80 (13)
C12—C11—C10 120.88 (19) C22—C23—C18 120.49 (16)
C12—C11—H11A 119.6 O2—C24—H24A 109.5
C10—C11—H11A 119.6 O2—C24—H24B 109.5
C11—C12—C13 121.27 (18) H24A—C24—H24B 109.5
C11—C12—H12A 119.4 O2—C24—H24C 109.5
C13—C12—H12A 119.4 H24A—C24—H24C 109.5
C14—C13—C12 122.95 (14) H24B—C24—H24C 109.5
C14—C1—C2—C3 179.60 (15) C2—C1—C14—C15 10.2 (2)
C6—C1—C2—C3 0.2 (2) C6—C1—C14—C15 −170.46 (13)
C1—C2—C3—C4 1.6 (3) C12—C13—C14—C1 178.29 (13)
C2—C3—C4—C5 −1.7 (3) C8—C13—C14—C1 −2.2 (2)
C3—C4—C5—C6 −0.1 (3) C12—C13—C14—C15 −8.3 (2)
C4—C5—C6—C7 −177.89 (18) C8—C13—C14—C15 171.27 (13)
C4—C5—C6—C1 1.9 (3) C1—C14—C15—O1 84.19 (18)
C14—C1—C6—C7 −1.5 (2) C13—C14—C15—O1 −89.38 (19)
C2—C1—C6—C7 177.85 (14) C1—C14—C15—C16 −95.91 (18)
C14—C1—C6—C5 178.68 (14) C13—C14—C15—C16 90.53 (18)
C2—C1—C6—C5 −1.9 (2) O1—C15—C16—C17 −178.25 (16)
C5—C6—C7—C8 179.05 (16) C14—C15—C16—C17 1.8 (2)
C1—C6—C7—C8 −0.7 (2) C15—C16—C17—C18 −178.99 (14)
C6—C7—C8—C13 1.5 (2) C16—C17—C18—C19 −0.7 (2)
C6—C7—C8—C9 −179.64 (16) C16—C17—C18—C23 179.15 (15)
C7—C8—C9—C10 −179.61 (17) C23—C18—C19—C20 −0.3 (3)
C13—C8—C9—C10 −0.8 (3) C17—C18—C19—C20 179.50 (16)
C8—C9—C10—C11 0.2 (3) C18—C19—C20—C21 −0.2 (3)
C9—C10—C11—C12 0.6 (3) C19—C20—C21—C22 0.6 (3)
C10—C11—C12—C13 −0.8 (3) C20—C21—C22—C23 −0.5 (3)
C11—C12—C13—C14 179.68 (15) C24—O2—C23—C22 −1.7 (2)
C11—C12—C13—C8 0.1 (2) C24—O2—C23—C18 177.97 (15)
C7—C8—C13—C14 −0.1 (2) C21—C22—C23—O2 179.57 (16)
C9—C8—C13—C14 −178.96 (13) C21—C22—C23—C18 −0.1 (2)
C7—C8—C13—C12 179.47 (14) C19—C18—C23—O2 −179.20 (14)
C9—C8—C13—C12 0.6 (2) C17—C18—C23—O2 0.9 (2)
C2—C1—C14—C13 −176.37 (13) C19—C18—C23—C22 0.5 (2)
C6—C1—C14—C13 3.0 (2) C17—C18—C23—C22 −179.34 (14)

(E)-1-(Anthracen-9-yl)-3-(3-fluoro-4-methoxyphenyl)prop-2-en-1-one (II) . Crystal data

C24H17FO2 Z = 2
Mr = 356.37 F(000) = 372
Triclinic, P1 Dx = 1.308 Mg m3
a = 8.6646 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.5752 (5) Å Cell parameters from 8625 reflections
c = 11.5636 (6) Å θ = 2.2–30.2°
α = 100.593 (2)° µ = 0.09 mm1
β = 105.443 (2)° T = 296 K
γ = 92.422 (2)° Block, yellow
V = 904.76 (9) Å3 0.99 × 0.31 × 0.25 mm

(E)-1-(Anthracen-9-yl)-3-(3-fluoro-4-methoxyphenyl)prop-2-en-1-one (II) . Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer 3307 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.045
φ and ω scans θmax = 30.4°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −12→12
k = −13→13
34988 measured reflections l = −16→16
5394 independent reflections

(E)-1-(Anthracen-9-yl)-3-(3-fluoro-4-methoxyphenyl)prop-2-en-1-one (II) . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059 H-atom parameters constrained
wR(F2) = 0.183 w = 1/[σ2(Fo2) + (0.0672P)2 + 0.4075P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
5394 reflections Δρmax = 0.27 e Å3
245 parameters Δρmin = −0.20 e Å3

(E)-1-(Anthracen-9-yl)-3-(3-fluoro-4-methoxyphenyl)prop-2-en-1-one (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(E)-1-(Anthracen-9-yl)-3-(3-fluoro-4-methoxyphenyl)prop-2-en-1-one (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 −0.05579 (15) 0.41714 (15) 0.24083 (12) 0.0805 (4)
O1 0.1312 (2) −0.03230 (17) 0.68989 (16) 0.0842 (6)
O2 0.12761 (17) 0.65677 (16) 0.28147 (14) 0.0642 (4)
C1 0.49638 (19) 0.04101 (17) 0.81471 (15) 0.0403 (4)
C2 0.5049 (3) −0.0702 (2) 0.71696 (18) 0.0572 (5)
H2A 0.4185 −0.0931 0.6467 0.069*
C3 0.6364 (3) −0.1434 (2) 0.7244 (2) 0.0700 (6)
H3A 0.6391 −0.2152 0.6589 0.084*
C4 0.7689 (3) −0.1126 (2) 0.8295 (2) 0.0661 (6)
H4A 0.8579 −0.1644 0.8333 0.079*
C5 0.7672 (2) −0.0079 (2) 0.92466 (19) 0.0548 (5)
H5A 0.8551 0.0111 0.9940 0.066*
C6 0.63319 (19) 0.07396 (18) 0.92079 (15) 0.0409 (4)
C7 0.63115 (19) 0.18423 (19) 1.01674 (15) 0.0436 (4)
H7A 0.7199 0.2054 1.0854 0.052*
C8 0.5005 (2) 0.26367 (18) 1.01297 (14) 0.0413 (4)
C9 0.5007 (2) 0.3788 (2) 1.11086 (17) 0.0556 (5)
H9A 0.5913 0.4024 1.1779 0.067*
C10 0.3724 (3) 0.4537 (2) 1.1079 (2) 0.0659 (6)
H10A 0.3746 0.5280 1.1728 0.079*
C11 0.2345 (3) 0.4199 (2) 1.0066 (2) 0.0655 (6)
H11A 0.1461 0.4719 1.0059 0.079*
C12 0.2286 (2) 0.3125 (2) 0.90999 (18) 0.0533 (4)
H12A 0.1364 0.2924 0.8440 0.064*
C13 0.36166 (19) 0.23022 (17) 0.90848 (15) 0.0399 (3)
C14 0.36231 (19) 0.11926 (17) 0.81074 (14) 0.0390 (3)
C15 0.2162 (2) 0.07711 (19) 0.70129 (17) 0.0494 (4)
C16 0.1775 (2) 0.1640 (2) 0.60830 (16) 0.0516 (4)
H16A 0.0893 0.1315 0.5407 0.062*
C17 0.2592 (2) 0.28637 (19) 0.61334 (15) 0.0442 (4)
H17A 0.3492 0.3150 0.6803 0.053*
C18 0.22475 (19) 0.38103 (18) 0.52646 (14) 0.0412 (4)
C19 0.0943 (2) 0.35137 (19) 0.42003 (16) 0.0453 (4)
H19A 0.0259 0.2681 0.4022 0.054*
C20 0.0689 (2) 0.4455 (2) 0.34319 (16) 0.0477 (4)
C21 0.1660 (2) 0.57237 (19) 0.36488 (16) 0.0453 (4)
C22 0.2941 (2) 0.6011 (2) 0.46933 (17) 0.0498 (4)
H22A 0.3621 0.6847 0.4869 0.060*
C23 0.3221 (2) 0.50661 (19) 0.54785 (15) 0.0481 (4)
H23A 0.4094 0.5281 0.6175 0.058*
C24 0.2160 (3) 0.7934 (3) 0.3095 (3) 0.0818 (7)
H24D 0.1755 0.8436 0.2447 0.123*
H24A 0.3276 0.7817 0.3177 0.123*
H24B 0.2043 0.8470 0.3850 0.123*

(E)-1-(Anthracen-9-yl)-3-(3-fluoro-4-methoxyphenyl)prop-2-en-1-one (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0667 (8) 0.0865 (9) 0.0653 (8) −0.0140 (7) −0.0250 (6) 0.0267 (7)
O1 0.0745 (10) 0.0659 (10) 0.0862 (11) −0.0277 (8) −0.0240 (8) 0.0265 (8)
O2 0.0579 (8) 0.0682 (9) 0.0672 (9) 0.0042 (7) 0.0063 (7) 0.0323 (7)
C1 0.0414 (8) 0.0376 (8) 0.0392 (8) −0.0023 (6) 0.0078 (6) 0.0073 (6)
C2 0.0593 (11) 0.0508 (10) 0.0517 (10) 0.0007 (9) 0.0088 (9) −0.0033 (8)
C3 0.0745 (15) 0.0583 (12) 0.0732 (14) 0.0090 (11) 0.0272 (12) −0.0069 (11)
C4 0.0548 (12) 0.0603 (12) 0.0862 (16) 0.0168 (10) 0.0260 (11) 0.0099 (11)
C5 0.0412 (9) 0.0592 (11) 0.0631 (12) 0.0090 (8) 0.0107 (8) 0.0148 (9)
C6 0.0360 (8) 0.0430 (8) 0.0430 (8) 0.0015 (6) 0.0078 (6) 0.0118 (7)
C7 0.0357 (8) 0.0511 (9) 0.0380 (8) 0.0005 (7) 0.0010 (6) 0.0086 (7)
C8 0.0413 (8) 0.0440 (9) 0.0353 (8) 0.0010 (7) 0.0054 (6) 0.0080 (6)
C9 0.0580 (11) 0.0593 (11) 0.0410 (9) 0.0038 (9) 0.0063 (8) 0.0002 (8)
C10 0.0721 (14) 0.0636 (13) 0.0555 (12) 0.0125 (11) 0.0162 (10) −0.0036 (10)
C11 0.0611 (12) 0.0653 (13) 0.0708 (14) 0.0223 (10) 0.0195 (10) 0.0102 (11)
C12 0.0448 (9) 0.0571 (11) 0.0535 (10) 0.0096 (8) 0.0043 (8) 0.0127 (8)
C13 0.0373 (8) 0.0400 (8) 0.0399 (8) 0.0028 (6) 0.0050 (6) 0.0104 (6)
C14 0.0379 (8) 0.0378 (8) 0.0367 (8) −0.0014 (6) 0.0015 (6) 0.0102 (6)
C15 0.0455 (9) 0.0454 (9) 0.0474 (9) −0.0023 (7) −0.0021 (7) 0.0083 (7)
C16 0.0462 (9) 0.0560 (11) 0.0412 (9) −0.0004 (8) −0.0056 (7) 0.0085 (8)
C17 0.0378 (8) 0.0524 (10) 0.0355 (8) 0.0037 (7) 0.0019 (6) 0.0039 (7)
C18 0.0384 (8) 0.0469 (9) 0.0349 (8) 0.0055 (7) 0.0076 (6) 0.0036 (7)
C19 0.0417 (8) 0.0443 (9) 0.0440 (9) −0.0001 (7) 0.0048 (7) 0.0057 (7)
C20 0.0379 (8) 0.0561 (10) 0.0411 (9) 0.0029 (7) −0.0011 (7) 0.0077 (7)
C21 0.0419 (9) 0.0502 (10) 0.0451 (9) 0.0073 (7) 0.0115 (7) 0.0128 (7)
C22 0.0485 (10) 0.0479 (10) 0.0490 (10) −0.0036 (8) 0.0097 (8) 0.0072 (8)
C23 0.0432 (9) 0.0553 (10) 0.0372 (8) −0.0027 (8) 0.0017 (7) 0.0037 (7)
C24 0.0764 (16) 0.0712 (15) 0.104 (2) −0.0004 (12) 0.0183 (14) 0.0456 (14)

(E)-1-(Anthracen-9-yl)-3-(3-fluoro-4-methoxyphenyl)prop-2-en-1-one (II) . Geometric parameters (Å, º)

F1—C20 1.3485 (19) C11—C12 1.361 (3)
O1—C15 1.220 (2) C11—H11A 0.9300
O2—C21 1.354 (2) C12—C13 1.426 (2)
O2—C24 1.425 (3) C12—H12A 0.9300
C1—C14 1.404 (2) C13—C14 1.403 (2)
C1—C2 1.424 (2) C14—C15 1.511 (2)
C1—C6 1.436 (2) C15—C16 1.457 (3)
C2—C3 1.354 (3) C16—C17 1.327 (3)
C2—H2A 0.9300 C16—H16A 0.9300
C3—C4 1.407 (3) C17—C18 1.455 (2)
C3—H3A 0.9300 C17—H17A 0.9300
C4—C5 1.349 (3) C18—C23 1.383 (2)
C4—H4A 0.9300 C18—C19 1.406 (2)
C5—C6 1.424 (2) C19—C20 1.363 (3)
C5—H5A 0.9300 C19—H19A 0.9300
C6—C7 1.388 (2) C20—C21 1.391 (3)
C7—C8 1.386 (2) C21—C22 1.380 (2)
C7—H7A 0.9300 C22—C23 1.380 (3)
C8—C9 1.427 (2) C22—H22A 0.9300
C8—C13 1.436 (2) C23—H23A 0.9300
C9—C10 1.345 (3) C24—H24D 0.9600
C9—H9A 0.9300 C24—H24A 0.9600
C10—C11 1.409 (3) C24—H24B 0.9600
C10—H10A 0.9300
C21—O2—C24 117.53 (17) C14—C13—C8 119.19 (14)
C14—C1—C2 123.01 (15) C12—C13—C8 117.62 (15)
C14—C1—C6 119.47 (15) C13—C14—C1 120.71 (14)
C2—C1—C6 117.52 (16) C13—C14—C15 120.79 (15)
C3—C2—C1 121.23 (19) C1—C14—C15 118.45 (15)
C3—C2—H2A 119.4 O1—C15—C16 119.73 (16)
C1—C2—H2A 119.4 O1—C15—C14 119.46 (16)
C2—C3—C4 121.1 (2) C16—C15—C14 120.80 (15)
C2—C3—H3A 119.5 C17—C16—C15 124.58 (16)
C4—C3—H3A 119.5 C17—C16—H16A 117.7
C5—C4—C3 120.13 (19) C15—C16—H16A 117.7
C5—C4—H4A 119.9 C16—C17—C18 127.67 (15)
C3—C4—H4A 119.9 C16—C17—H17A 116.2
C4—C5—C6 121.11 (19) C18—C17—H17A 116.2
C4—C5—H5A 119.4 C23—C18—C19 117.44 (16)
C6—C5—H5A 119.4 C23—C18—C17 119.75 (14)
C7—C6—C5 121.83 (16) C19—C18—C17 122.81 (15)
C7—C6—C1 119.24 (15) C20—C19—C18 119.55 (16)
C5—C6—C1 118.93 (16) C20—C19—H19A 120.2
C8—C7—C6 121.79 (15) C18—C19—H19A 120.2
C8—C7—H7A 119.1 F1—C20—C19 119.69 (16)
C6—C7—H7A 119.1 F1—C20—C21 117.16 (16)
C7—C8—C9 121.43 (15) C19—C20—C21 123.15 (15)
C7—C8—C13 119.59 (15) O2—C21—C22 125.48 (17)
C9—C8—C13 118.98 (16) O2—C21—C20 117.35 (15)
C10—C9—C8 121.19 (18) C22—C21—C20 117.17 (16)
C10—C9—H9A 119.4 C23—C22—C21 120.44 (17)
C8—C9—H9A 119.4 C23—C22—H22A 119.8
C9—C10—C11 120.17 (19) C21—C22—H22A 119.8
C9—C10—H10A 119.9 C22—C23—C18 122.25 (15)
C11—C10—H10A 119.9 C22—C23—H23A 118.9
C12—C11—C10 121.12 (19) C18—C23—H23A 118.9
C12—C11—H11A 119.4 O2—C24—H24D 109.5
C10—C11—H11A 119.4 O2—C24—H24A 109.5
C11—C12—C13 120.89 (17) H24D—C24—H24A 109.5
C11—C12—H12A 119.6 O2—C24—H24B 109.5
C13—C12—H12A 119.6 H24D—C24—H24B 109.5
C14—C13—C12 123.18 (15) H24A—C24—H24B 109.5
C14—C1—C2—C3 −179.92 (19) C8—C13—C14—C15 177.67 (15)
C6—C1—C2—C3 0.8 (3) C2—C1—C14—C13 −178.46 (16)
C1—C2—C3—C4 0.4 (4) C6—C1—C14—C13 0.8 (2)
C2—C3—C4—C5 −0.6 (4) C2—C1—C14—C15 4.1 (2)
C3—C4—C5—C6 −0.5 (3) C6—C1—C14—C15 −176.59 (15)
C4—C5—C6—C7 −178.44 (19) C13—C14—C15—O1 −104.9 (2)
C4—C5—C6—C1 1.7 (3) C1—C14—C15—O1 72.5 (3)
C14—C1—C6—C7 −1.0 (2) C13—C14—C15—C16 76.3 (2)
C2—C1—C6—C7 178.36 (16) C1—C14—C15—C16 −106.3 (2)
C14—C1—C6—C5 178.85 (16) O1—C15—C16—C17 178.2 (2)
C2—C1—C6—C5 −1.8 (2) C14—C15—C16—C17 −3.0 (3)
C5—C6—C7—C8 −179.87 (16) C15—C16—C17—C18 −177.76 (17)
C1—C6—C7—C8 0.0 (3) C16—C17—C18—C23 178.73 (18)
C6—C7—C8—C9 −178.66 (17) C16—C17—C18—C19 −0.9 (3)
C6—C7—C8—C13 1.2 (3) C23—C18—C19—C20 0.0 (3)
C7—C8—C9—C10 −178.64 (19) C17—C18—C19—C20 179.61 (16)
C13—C8—C9—C10 1.5 (3) C18—C19—C20—F1 179.80 (16)
C8—C9—C10—C11 −0.4 (3) C18—C19—C20—C21 −0.5 (3)
C9—C10—C11—C12 −0.5 (4) C24—O2—C21—C22 −6.9 (3)
C10—C11—C12—C13 0.3 (3) C24—O2—C21—C20 173.58 (19)
C11—C12—C13—C14 −179.42 (18) F1—C20—C21—O2 −0.1 (3)
C11—C12—C13—C8 0.8 (3) C19—C20—C21—O2 −179.88 (17)
C7—C8—C13—C14 −1.3 (2) F1—C20—C21—C22 −179.69 (17)
C9—C8—C13—C14 178.55 (16) C19—C20—C21—C22 0.6 (3)
C7—C8—C13—C12 178.46 (16) O2—C21—C22—C23 −179.74 (17)
C9—C8—C13—C12 −1.7 (2) C20—C21—C22—C23 −0.2 (3)
C12—C13—C14—C1 −179.46 (16) C21—C22—C23—C18 −0.2 (3)
C8—C13—C14—C1 0.3 (2) C19—C18—C23—C22 0.3 (3)
C12—C13—C14—C15 −2.1 (3) C17—C18—C23—C22 −179.30 (16)

(E)-1-(Anthracen-9-yl)-3-(3-fluoro-4-methoxyphenyl)prop-2-en-1-one (II) . Hydrogen-bond geometry (Å, º)

Cg4 is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
C12—H12A···O2i 0.93 2.48 3.345 (2) 154
C19—H19A···O1ii 0.93 2.48 3.393 (3) 166
C24—H24D···Cg4iii 0.96 2.77 3.391 (3) 123

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y, −z+1; (iii) −x+1, −y+1, −z+1.

Funding Statement

This work was funded by Ministry of Higher Education, Malaysia grants 203/PFIZIK/6711606, 203/PFIZIK/6711572, 304/PFIZIK/6313336, and My Brain15.

References

  1. Abdullah, A. A., Hassan, N. H. H., Arshad, S., Khalib, N. C. & Razak, I. A. (2016). Acta Cryst. E72, 648–651. [DOI] [PMC free article] [PubMed]
  2. Agrahari, A., Wagers, P. O., Schildcrout, S. M., Masnovi, J. & Youngs, W. J. (2015). Acta Cryst. E71, 357–359. [DOI] [PMC free article] [PubMed]
  3. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cicogna, F., Ingrosso, G., Lodato, F., Marchetti, F. & Zandomeneghi, M. (2004). Tetrahedron, 60, 11959–11968.
  5. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, V., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. C., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. Gaussian 09, Revision A1. Gaussian, Inc., Wallingford CT, USA.
  6. Girisha, M., Yathirajan, H. S., Jasinski, J. P. & Glidewell, C. (2016). Acta Cryst. E72, 1153–1158. [DOI] [PMC free article] [PubMed]
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Harlow, R. L., Loghry, R. A., Williams, H. J. & Simonsen, S. H. (1975). Acta Cryst. B31, 1344–1350.
  9. Li, X. C., Wang, C. Y., Lai, W. Y. & Huang, W. (2016). J. Mater. Chem. C, 4, 10574–10587.
  10. Prabhu, A. N., Upadhyaya, V., Jayarama, A. & Bhat, K. B. (2016). Mol. Cryst. Liq. Cryst. 637, 76–86.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Zainuri, D. A., Arshad, S., Khalib, N. C., Razak, A. I., Pillai, R. R., Sulaiman, F., Hashim, N. S., Ooi, K. L., Armaković, S., Armaković, S. J., Panicker, Y. & Van Alsenoy, C. (2017). J. Mol. Struct. 1128, 520–533.
  14. Zainuri, D. A., Razak, I. A. & Arshad, S. (2018a). Acta Cryst. E74, 492–496. [DOI] [PMC free article] [PubMed]
  15. Zainuri, D. A., Razak, I. A. & Arshad, S. (2018b). Acta Cryst. E74, 650–655. [DOI] [PMC free article] [PubMed]
  16. Zainuri, D. A., Razak, I. A. & Arshad, S. (2018c). Acta Cryst. E74, 780–785. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II. DOI: 10.1107/S205698901800974X/jj2199sup1.cif

e-74-01087-sup1.cif (2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901800974X/jj2199Isup2.hkl

e-74-01087-Isup2.hkl (338.6KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S205698901800974X/jj2199IIsup3.hkl

e-74-01087-IIsup3.hkl (429KB, hkl)

Supporting information file. DOI: 10.1107/S205698901800974X/jj2199Isup4.cml

Supporting information file. DOI: 10.1107/S205698901800974X/jj2199IIsup5.cml

Comparison of selected experimental and DFT-optimized data for compounds (I) and (II). DOI: 10.1107/S205698901800974X/jj2199sup6.pdf

e-74-01087-sup6.pdf (73.4KB, pdf)

CCDC references: 1827020, 1817223

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES