Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Jul 6;74(Pt 8):1063–1066. doi: 10.1107/S2056989018009416

Crystal structure and Hirshfeld surface analysis of (2E)-3-(3-bromo-4-fluoro­phen­yl)-1-(3,4-di­meth­oxy­phen­yl)prop-2-en-1-one

S N Sheshadri a, Zeliha Atioğlu b, Mehmet Akkurt c,*, M K Veeraiah d, Ching Kheng Quah e, C S Chidan Kumar f, B P Siddaraju g
PMCID: PMC6072984  PMID: 30116562

The title compound is constructed from two aromatic rings (3-bromo-4-fluoro­phenyl and 3,4-di­meth­oxy­phen­yl), which are linked by a C=C—C(=O)—C enone bridge and form a dihedral angle of 17.91 (17)°. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds enclosing rings of Inline graphic(14) graph-set motif to form layers parallel to (10Inline graphic).

Keywords: crystal structure, hydrogen contacts, 3-bromo-4-fluoro­phenyl ring, di­meth­oxy­phenyl ring, Hirshfeld surface

Abstract

In the mol­ecule of the title compound, C17H14BrFO3, the aromatic rings are tilted with respect to the enone bridge by 13.63 (14) and 4.27 (15)°, and form a dihedral angle 17.91 (17)°. In the crystal, centrosymmetrically related mol­ecules are linked by pairs of C—H⋯O hydrogen bonds into dimeric units, forming rings of R 2 2(14) graph-set motif. The dimers are further connected by weak C—H⋯O hydrogen inter­actions, forming layers parallel to (10Inline graphic). Hirshfeld surface analysis shows that van der Waals inter­actions constitute the major contribution to the inter­molecular inter­actions, with H⋯H contacts accounting for 29.7% of the surface.

Chemical context  

Natural products are important sources to search for new agents for cancer therapies with minimal side effects. Chalcones, which are considered to be the precursors of flavonoids and isoflavonoids, are abundant in edible plants. They consist of open-chain flavonoids in which the two aromatic rings are joined by a three-carbon α,β-unsaturated carbonyl system. These are coloured compounds because of the presence of the –CO—CH=CH– chromophore, the colour depending on the presence of other auxochromes. Accumulating evidence has shown that chalcones and their derivatives could inhibit tumor initiation and progression. In view of the above and in a continuation of our previous work on 3,4-dimeth­oxy chalcones (Sheshadri et al., 2018), herewith we report the crystal and mol­ecular structures of the title compound.graphic file with name e-74-01063-scheme1.jpg

Structural commentary  

The title compound (Fig. 1) is constructed by two aromatic rings (3-bromo-4-fluoro­phenyl and a 3,4-di­meth­oxy­phen­yl), which are linked by a C=C—C(=O)—C enone bridge. The mol­ecule is twisted substanti­ally about the enone bridge, as indicated by the dihedral angles of 13.63 (14) and 4.27 (15)° formed by the mean plane through C7–C8/O3 [maximum deviation 0.045 (4) Å for atom C7] and the C1–C6 and C10–C15 aromatic rings. The dihedral angle between the mean planes of the 3,4- meth­oxy­phenyl and 3-bromo-4-fluoro­phenyl rings is 17.91 (17)°. The H atoms of the central propenone group are trans configured. The two meth­oxy groups attached to C16 and C17 are almost coplanar with the benzene ring, with the deviations of 0.333 (6) Å for C16 and −0.124 (4) Å for C17. The bond lengths and angles are comparable with those found in the related compounds (2E)-3-(3-chloro­phen­yl)-1-(3,4-di­meth­oxy­phen­yl)-prop-2-en-1-one (Sheshadri et al., 2018), (E)-3-(3,4- di­meth­oxy­phen­yl)-1-(1-hy­droxy­naph­th­al­en-2­yl)prop-2-en-1-one (Ezhilarasi et al., 2015), (E)-1-(3-bromo­phen­yl)-3-(3,4-di­meth­oxy­phen­yl)prop-2-en-1-one (Esc­o­bar et al., 2012) and (E)-3-(2-bromo­phen­yl)-1-(3,4-di­meth­oxy­phen­yl)prop-2-en-1-one (Li et al., 2012).

Figure 1.

Figure 1

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Supra­molecular features  

In the crystal, centrosymmetrically related mol­ecules are linked by pairs of C—H⋯O hydrogen bonds into dimers forming rings with an Inline graphic (14) graph-set motif (Table 1, Fig. 2). The dimeric units are further connected by weak C—H⋯O hydrogen bonds, forming layers parallel to (10Inline graphic).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O2i 0.93 2.61 3.506 (5) 162
C11—H11A⋯O3ii 0.93 2.46 3.358 (5) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

A view along the a axis of the crystal packing of the title compound. H atoms not involved in hydrogen bonding (dashed lines) are omitted for clarity.

In addition, weak C—Br⋯π [C14—Br1 = 1.877 (3) Å, Br1⋯Cg1i = 3.7959 (16) Å, C14⋯Cg1i = 4.010 (4) Å, C14—Br1⋯Cg1i = 82.54 (11)°; symmetry code: (i) −1 + x, y, z; Cg1 is the centroid of the C1–C6 ring] and C—F⋯π [C13—F1 = 1.348 (4) Å, F1⋯Cg2ii = 3.454 (3) Å, C13⋯Cg2ii = 3.659 (4) Å, C13—F1⋯Cg2ii = 87.78 (19)°; symmetry code: (ii) −x, 1 − y, −z; Cg2 is the centroid of the C10–C15 ring] inter­actions help to stabilize the crystal structure.

Hirshfeld Surface Analysis  

Mol­ecular Hirshfeld surfaces (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) are constructed based on the electron distribution calculated as the sum of spherical atom electron densities (Spackman & Byrom, 1997). Hirshfeld surface analysis is a tool for visualizing the inter­molecular inter­actions; it can include comparisons to the van der Waals envelope, which other mol­ecules or atoms come into contact with when inter­actions are present. The Hirshfeld surface and two-diensional fingerprint plots of the title compound were calculated using CrystalExplorer17.5 (Turner et al., 2017). In the Hirshfeld surface plotted over d norm (Fig. 3), the white surfaces indicate contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter or longer than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots appearing near to O2, F1, Br1 and hydrogen atoms H15A, H16A, H17C indicate their role as donors and acceptors in the dominant C—H⋯O, C—H⋯F and C—H⋯Br contacts. The shape-index of the Hirshfeld surface is a tool to visualize the π–π stacking inter­actions by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π inter­actions. The Hirshfeld surface of the title compound plotted over shape-index (Fig. 4) clearly suggest that this is the case here. The overall two-dimensional fingerprint plot and those delineated into H⋯H, C⋯H/H⋯C, O⋯H/H⋯O, Br⋯H/H⋯Br and F⋯H/H⋯F contacts (McKinnon et al., 2007) are illustrated in Fig. 5 af, respectively. Their relative contributions to the Hirshfeld surface are given in Table 2. The most important inter­action is H⋯H, contributing 29.7% to the overall crystal packing, which is reflected as widely scattered points of high density due to the large hydrogen content of the mol­ecule. In the absence of C—H⋯π inter­actions in the crystal, shown as a pair of characteristic wings the fingerprint plot, H⋯C/C⋯H contacts contribute 19.2% to the Hirshfeld surface (Fig. 5 c). The O⋯H/H⋯O, Br⋯C/C⋯Br and F⋯C/C⋯F contacts in the structure with 17.9, 5.6 and 5.0% contributions, respectively, to the Hirshfeld surface have a symmetrical distribution of points (Fig. 5 df). The other Br⋯C / C⋯Br, F⋯C / C⋯F, C⋯C, F⋯O / O⋯F and C⋯O / O⋯C contacts, having only small contributions to the Hirshfeld surface, have negligible directional impact on the mol­ecular packing.

Figure 3.

Figure 3

The Hirshfeld surface mapped over d norm showing the C—H⋯O and C—H⋯F contacts.

Figure 4.

Figure 4

Hirshfeld surface of the title compound plotted over shape-index.

Figure 5.

Figure 5

The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O, (e) Br⋯H/H⋯Br and (f) F⋯H/H⋯F inter­actions [d e and d i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

Table 2. Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound.

Contact Percentage contribution
H⋯H 29.7
C⋯H/H⋯C 19.2
O⋯H/H⋯O 17.9
Br⋯H/H⋯Br 11.2
F⋯H/H⋯F 6.8
Br⋯C/C⋯Br 5.6
F⋯C/C⋯F 5.0
C⋯C 3.1
F⋯O/O⋯F 0.7
C⋯O/O⋯C 0.4

Synthesis and crystallization  

The reagents and solvents for the synthesis were obtained from the Aldrich Chemical Co., and were used without additional purification. The title compound was synthesized as per the procedure reported earlier (Kumar et al., 2013a ,b ; Chidan Kumar et al., 2014). 1-(3,4-Di­meth­oxy­phen­yl) ethanone (0.01mol) and 3-bromo-4-fluoro­benzaldehyde (0.01mol) were dissolved in 20 ml methanol. A catalytic amount of NaOH was added to the solution dropwise with vigorous stirring. The reaction mixture was stirred for about 6 h at room temperature. The progress of the reaction was monitored by TLC. The formed crude product was filtered, washed repeatedly with distilled water and recrystallized from ethanol to obtain the title chalcone. Crystals suitable for X-ray diffraction studies were obtained from an acetone solution by the slow evaporation technique at room temperature. The melting point (381–383 K) was determined by a Stuart Scientific (UK) apparatus. The purity of the compound was confirmed by thin layer chromatography using Merck silica gel 60 F254 coated aluminum plates.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.6 Å, and with U iso(H) = 1.2U eq(C) or 1.5U eq(C) for methyl H atoms.

Table 3. Experimental details.

Crystal data
Chemical formula C17H14BrFO3
M r 365.19
Crystal system, space group Monoclinic, P21/n
Temperature (K) 294
a, b, c (Å) 8.9212 (12), 8.6601 (11), 20.538 (3)
β (°) 96.896 (3)
V3) 1575.2 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.63
Crystal size (mm) 0.31 × 0.30 × 0.11
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2007)
T min, T max 0.465, 0.755
No. of measured, independent and observed [I > 2σ(I)] reflections 11919, 3240, 2287
R int 0.031
(sin θ/λ)max−1) 0.627
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.046, 0.149, 1.05
No. of reflections 3240
No. of parameters 199
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.78, −0.66

Computer programs: APEX2 and SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018009416/rz5240sup1.cif

e-74-01063-sup1.cif (425.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018009416/rz5240Isup2.hkl

e-74-01063-Isup2.hkl (258.8KB, hkl)

CCDC reference: 1852842

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors extend their appreciation to the Vidya Vikas Research & Development Centre for the facilities and encouragement.

supplementary crystallographic information

Crystal data

C17H14BrFO3 F(000) = 736
Mr = 365.19 Dx = 1.540 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 8.9212 (12) Å Cell parameters from 3205 reflections
b = 8.6601 (11) Å θ = 2.4–22.9°
c = 20.538 (3) Å µ = 2.63 mm1
β = 96.896 (3)° T = 294 K
V = 1575.2 (4) Å3 Block, colourless
Z = 4 0.31 × 0.30 × 0.11 mm

Data collection

Bruker APEXII CCD diffractometer 2287 reflections with I > 2σ(I)
φ and ω scans Rint = 0.031
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) θmax = 26.5°, θmin = 2.4°
Tmin = 0.465, Tmax = 0.755 h = −11→10
11919 measured reflections k = −10→10
3240 independent reflections l = −25→25

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046 H-atom parameters constrained
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0824P)2 + 0.5509P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
3240 reflections Δρmax = 0.78 e Å3
199 parameters Δρmin = −0.65 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 −0.03000 (5) 0.46149 (5) 0.15921 (2) 0.0788 (2)
F1 −0.2029 (2) 0.5975 (3) 0.03979 (14) 0.0862 (7)
O1 1.0604 (3) 0.8509 (4) 0.34912 (13) 0.0743 (8)
O2 1.1326 (3) 0.9899 (4) 0.24774 (15) 0.0803 (8)
O3 0.6831 (3) 0.9371 (4) 0.07316 (15) 0.0788 (8)
C1 0.7272 (4) 0.7591 (4) 0.23364 (19) 0.0575 (9)
H1A 0.636474 0.705562 0.231962 0.069*
C2 0.8261 (4) 0.7559 (4) 0.29089 (18) 0.0589 (9)
H2A 0.802350 0.699096 0.326693 0.071*
C3 0.9606 (4) 0.8373 (4) 0.29488 (18) 0.0550 (8)
C4 0.9977 (4) 0.9146 (4) 0.23886 (18) 0.0532 (8)
C5 0.8997 (4) 0.9162 (4) 0.18250 (18) 0.0541 (8)
H5A 0.925561 0.968527 0.145921 0.065*
C6 0.7591 (3) 0.8392 (4) 0.17906 (17) 0.0498 (7)
C7 0.6521 (4) 0.8551 (4) 0.11860 (18) 0.0570 (8)
C8 0.5024 (4) 0.7777 (4) 0.11436 (19) 0.0606 (9)
H8A 0.486595 0.702343 0.145064 0.073*
C9 0.3917 (4) 0.8126 (4) 0.06853 (17) 0.0543 (8)
H9A 0.414505 0.883278 0.037089 0.065*
C10 0.2365 (4) 0.7534 (4) 0.06104 (17) 0.0517 (8)
C11 0.1337 (4) 0.8057 (4) 0.01072 (18) 0.0620 (9)
H11A 0.164224 0.877235 −0.018805 0.074*
C12 −0.0149 (4) 0.7541 (5) 0.00294 (19) 0.0669 (10)
H12A −0.083256 0.790553 −0.031380 0.080*
C13 −0.0592 (4) 0.6488 (4) 0.0466 (2) 0.0610 (9)
C14 0.0408 (4) 0.5962 (4) 0.09817 (17) 0.0542 (8)
C15 0.1889 (4) 0.6462 (4) 0.10559 (17) 0.0514 (8)
H15A 0.256713 0.609080 0.139942 0.062*
C16 1.0182 (6) 0.7928 (8) 0.4101 (2) 0.1109 (19)
H16A 1.099315 0.809974 0.444494 0.166*
H16B 0.929428 0.845664 0.420378 0.166*
H16C 0.997848 0.684197 0.406049 0.166*
C17 1.1885 (5) 1.0598 (5) 0.1947 (2) 0.0817 (13)
H17A 1.283889 1.107434 0.209172 0.123*
H17B 1.201710 0.983432 0.162030 0.123*
H17C 1.118491 1.136934 0.176371 0.123*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0718 (3) 0.0733 (3) 0.0950 (4) −0.0108 (2) 0.0252 (2) 0.0155 (2)
F1 0.0526 (12) 0.0955 (17) 0.1080 (19) −0.0115 (13) −0.0013 (12) −0.0013 (15)
O1 0.0636 (15) 0.090 (2) 0.0675 (17) −0.0085 (15) 0.0020 (13) 0.0060 (14)
O2 0.0642 (17) 0.099 (2) 0.0778 (19) −0.0323 (16) 0.0096 (14) 0.0020 (16)
O3 0.0607 (16) 0.095 (2) 0.0808 (19) −0.0177 (15) 0.0098 (14) 0.0268 (16)
C1 0.0516 (19) 0.0472 (18) 0.076 (2) −0.0054 (15) 0.0188 (17) 0.0007 (16)
C2 0.057 (2) 0.058 (2) 0.065 (2) −0.0037 (17) 0.0155 (17) 0.0059 (16)
C3 0.0477 (17) 0.0525 (19) 0.066 (2) 0.0040 (15) 0.0128 (16) −0.0029 (16)
C4 0.0463 (17) 0.0494 (17) 0.066 (2) −0.0043 (15) 0.0138 (16) −0.0054 (16)
C5 0.0530 (19) 0.0452 (17) 0.068 (2) −0.0037 (15) 0.0226 (17) −0.0006 (15)
C6 0.0457 (16) 0.0420 (16) 0.064 (2) −0.0016 (14) 0.0159 (14) −0.0011 (14)
C7 0.0489 (18) 0.0544 (19) 0.070 (2) −0.0055 (16) 0.0150 (16) 0.0036 (17)
C8 0.052 (2) 0.059 (2) 0.071 (2) −0.0067 (17) 0.0109 (17) 0.0097 (18)
C9 0.0520 (19) 0.054 (2) 0.059 (2) −0.0062 (16) 0.0164 (16) 0.0026 (16)
C10 0.0502 (18) 0.0512 (19) 0.0548 (19) −0.0021 (15) 0.0104 (15) −0.0036 (14)
C11 0.069 (2) 0.058 (2) 0.059 (2) −0.0038 (18) 0.0096 (17) 0.0078 (17)
C12 0.058 (2) 0.075 (2) 0.064 (2) 0.004 (2) −0.0050 (17) 0.0049 (19)
C13 0.0466 (19) 0.061 (2) 0.075 (2) −0.0020 (17) 0.0068 (17) −0.0090 (18)
C14 0.0529 (19) 0.0468 (17) 0.064 (2) −0.0014 (16) 0.0130 (16) −0.0013 (15)
C15 0.0471 (17) 0.0505 (18) 0.057 (2) 0.0027 (15) 0.0079 (14) 0.0020 (15)
C16 0.104 (4) 0.155 (5) 0.069 (3) −0.039 (4) −0.006 (3) 0.020 (3)
C17 0.067 (3) 0.088 (3) 0.094 (3) −0.030 (2) 0.025 (2) 0.000 (2)

Geometric parameters (Å, º)

Br1—C14 1.877 (3) C8—H8A 0.9300
F1—C13 1.348 (4) C9—C10 1.466 (5)
O1—C3 1.345 (4) C9—H9A 0.9300
O1—C16 1.441 (5) C10—C11 1.374 (5)
O2—C4 1.362 (4) C10—C15 1.405 (5)
O2—C17 1.390 (5) C11—C12 1.390 (5)
O3—C7 1.231 (4) C11—H11A 0.9300
C1—C6 1.377 (5) C12—C13 1.371 (5)
C1—C2 1.383 (5) C12—H12A 0.9300
C1—H1A 0.9300 C13—C14 1.377 (5)
C2—C3 1.385 (5) C14—C15 1.381 (5)
C2—H2A 0.9300 C15—H15A 0.9300
C3—C4 1.405 (5) C16—H16A 0.9600
C4—C5 1.364 (5) C16—H16B 0.9600
C5—C6 1.414 (5) C16—H16C 0.9600
C5—H5A 0.9300 C17—H17A 0.9600
C6—C7 1.479 (5) C17—H17B 0.9600
C7—C8 1.487 (5) C17—H17C 0.9600
C8—C9 1.315 (5)
C3—O1—C16 118.2 (3) C11—C10—C9 120.0 (3)
C4—O2—C17 119.9 (3) C15—C10—C9 121.2 (3)
C6—C1—C2 122.0 (3) C10—C11—C12 121.5 (3)
C6—C1—H1A 119.0 C10—C11—H11A 119.3
C2—C1—H1A 119.0 C12—C11—H11A 119.3
C1—C2—C3 120.0 (3) C13—C12—C11 119.0 (3)
C1—C2—H2A 120.0 C13—C12—H12A 120.5
C3—C2—H2A 120.0 C11—C12—H12A 120.5
O1—C3—C2 125.2 (3) F1—C13—C12 119.7 (3)
O1—C3—C4 116.0 (3) F1—C13—C14 119.4 (3)
C2—C3—C4 118.8 (3) C12—C13—C14 120.8 (3)
O2—C4—C5 125.1 (3) C13—C14—C15 120.3 (3)
O2—C4—C3 114.2 (3) C13—C14—Br1 118.7 (3)
C5—C4—C3 120.7 (3) C15—C14—Br1 121.0 (3)
C4—C5—C6 120.8 (3) C14—C15—C10 119.7 (3)
C4—C5—H5A 119.6 C14—C15—H15A 120.1
C6—C5—H5A 119.6 C10—C15—H15A 120.1
C1—C6—C5 117.7 (3) O1—C16—H16A 109.5
C1—C6—C7 123.7 (3) O1—C16—H16B 109.5
C5—C6—C7 118.5 (3) H16A—C16—H16B 109.5
O3—C7—C6 120.6 (3) O1—C16—H16C 109.5
O3—C7—C8 119.8 (3) H16A—C16—H16C 109.5
C6—C7—C8 119.5 (3) H16B—C16—H16C 109.5
C9—C8—C7 122.0 (3) O2—C17—H17A 109.5
C9—C8—H8A 119.0 O2—C17—H17B 109.5
C7—C8—H8A 119.0 H17A—C17—H17B 109.5
C8—C9—C10 127.8 (3) O2—C17—H17C 109.5
C8—C9—H9A 116.1 H17A—C17—H17C 109.5
C10—C9—H9A 116.1 H17B—C17—H17C 109.5
C11—C10—C15 118.7 (3)
C6—C1—C2—C3 1.3 (5) C5—C6—C7—C8 −178.8 (3)
C16—O1—C3—C2 −7.8 (6) O3—C7—C8—C9 −11.1 (6)
C16—O1—C3—C4 171.3 (4) C6—C7—C8—C9 165.6 (3)
C1—C2—C3—O1 175.4 (3) C7—C8—C9—C10 −175.7 (3)
C1—C2—C3—C4 −3.7 (5) C8—C9—C10—C11 178.4 (4)
C17—O2—C4—C5 −8.4 (6) C8—C9—C10—C15 0.1 (6)
C17—O2—C4—C3 174.5 (4) C15—C10—C11—C12 −0.4 (5)
O1—C3—C4—O2 1.4 (5) C9—C10—C11—C12 −178.8 (3)
C2—C3—C4—O2 −179.4 (3) C10—C11—C12—C13 0.0 (6)
O1—C3—C4—C5 −175.8 (3) C11—C12—C13—F1 −180.0 (3)
C2—C3—C4—C5 3.3 (5) C11—C12—C13—C14 1.0 (6)
O2—C4—C5—C6 −177.4 (3) F1—C13—C14—C15 179.3 (3)
C3—C4—C5—C6 −0.5 (5) C12—C13—C14—C15 −1.7 (6)
C2—C1—C6—C5 1.6 (5) F1—C13—C14—Br1 −2.8 (5)
C2—C1—C6—C7 −175.4 (3) C12—C13—C14—Br1 176.2 (3)
C4—C5—C6—C1 −2.0 (5) C13—C14—C15—C10 1.2 (5)
C4—C5—C6—C7 175.1 (3) Br1—C14—C15—C10 −176.6 (2)
C1—C6—C7—O3 174.9 (3) C11—C10—C15—C14 −0.2 (5)
C5—C6—C7—O3 −2.1 (5) C9—C10—C15—C14 178.2 (3)
C1—C6—C7—C8 −1.9 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C15—H15A···O2i 0.93 2.61 3.506 (5) 162
C11—H11A···O3ii 0.93 2.46 3.358 (5) 162

Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) −x+1, −y+2, −z.

References

  1. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chidan Kumar, C. S., Fun, H. K., Parlak, C., Rhyman, L., Ramasami, P., Tursun, M., Chandraju, S. & Quah, C. K. (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 132, 174–182. [DOI] [PubMed]
  3. Escobar, C. A., Trujillo, A., Howard, J. A. K. & Fuentealba, M. (2012). Acta Cryst. E68, o887. [DOI] [PMC free article] [PubMed]
  4. Ezhilarasi, K. S., Reuben Jonathan, D., Vasanthi, R., Revathi, B. K. & Usha, G. (2015). Acta Cryst. E71, o371–o372. [DOI] [PMC free article] [PubMed]
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.
  7. Kumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013a). Molecules, 18, 11996–12011. [DOI] [PMC free article] [PubMed]
  8. Kumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013b). Molecules, 18, 12707–12724. [DOI] [PMC free article] [PubMed]
  9. Li, Z., Wang, Y., Peng, K., Chen, L. & Chu, S. (2012). Acta Cryst. E68, o776. [DOI] [PMC free article] [PubMed]
  10. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  11. Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  14. Sheshadri, S. N., Atioğlu, Z., Akkurt, M., Chidan Kumar, C. S., Quah, C. K., Siddaraju, B. P. & Veeraiah, M. K. (2018). Acta Cryst. E74, 935–938. [DOI] [PMC free article] [PubMed]
  15. Spackman, M. A. & Byrom, P. G. (1997). Chem. Phys. Lett. 267, 215–220.
  16. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  17. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  18. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17. The University of Western Australia.
  19. Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018009416/rz5240sup1.cif

e-74-01063-sup1.cif (425.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018009416/rz5240Isup2.hkl

e-74-01063-Isup2.hkl (258.8KB, hkl)

CCDC reference: 1852842

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES