Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Jul 10;74(Pt 8):1071–1074. doi: 10.1107/S2056989018009544

The crystal structure of (E)-2-ethyl-N-(4-nitro­benzyl­idene)aniline: three-dimensional supra­molecular assembly mediated by C—H⋯O hydrogen bonds and nitro⋯π(arene) inter­actions

Marisiddaiah Girisha a,*, Belakavadi K Sagar a, Hemmige S Yathirajan a, Ravindranath S Rathore b, Christopher Glidewell c
PMCID: PMC6072986  PMID: 30116564

The 2-ethyl­phenyl group in the title compound is disordered over two sets of atomic sites and the mol­ecules are linked into a three-dimensional array by a combination of C—H⋯O hydrogen bonds and nitro⋯π(arene) inter­actions.

Keywords: Schiff bases, crystal structure, disorder, mol­ecular conformation, hydrogen bonding, nitro⋯π(arene) inter­actions, supra­molecular assembly

Abstract

In the mol­ecule of the title compound, C15H14N2O2, the 2-ethyl­phenyl group is disordered over two sets of atomic sites having occupancies of 0.515 (19) and 0.485 (19), and the dihedral angle between the two partial-occupancy aryl rings is 6(2)°. A combination of C—H⋯O hydrogen bonds and nitro⋯π(arene) inter­actions links the mol­ecules into a continuous three-dimensional framework structure. Comparisons are made with the structures of some related compounds.

Chemical context  

Schiff bases exhibit a very wide range of biological activities (da Silva et al., 2011) and are also of inter­est because of their photochromic and thermochromic properties (Hadjoudis & Mavridis, 2004; Minkin et al., 2011). In view of the general importance of Schiff bases, and in a continuation of our own structural study of compounds of this type (Girisha et al., 2017, 2018) we report here the mol­ecular and supra­moleuclar structure of (E)-2-ethyl-N-(4-nitro­benzyl­idene)aniline (I) (Fig. 1), where the ethyl group turns out to be disordered over two sets of atomic sites and where the mol­ecules are linked into a three-dimensional supra­molecular array.graphic file with name e-74-01071-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of compound (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level, and for the disordered 2-ethyl­phenyl group, the major component is drawn using solid lines and the minor component is drawn using dashed lines.

Structural commentary  

The 2-ethyl­phenyl group in compound (I) is disordered over two sets of atomic sites having occupancies of 0.515 (19) and 0.485 (19) and it is possible that the ethyl group is simply making full use of an available space within the structure: the dihedral angle between the two components of the disordered aryl ring is 6(2)°. The nitro group is almost coplanar with the adjacent aryl ring, with a dihedral angle of only 8.3 (2)° between these two units; on the other hand, the dihedral angles between the nitrated aryl ring and the major and minor components of the disordered ring are 36.7 (10)° and 42.6 (11)°, respectively. The mol­ecules of (I) are therefore conformationally chiral but, in the absence of significant resonant scattering, it was not possible to determine the absolute configuration of the mol­ecules in the crystal selected for data collection. It is reasonable to assume that, in solution, the two conformational enanti­omers will be in rapid equilibrium.

The conformational behaviour of compound (I) may be compared with that of some closely related compounds. In (E)-N-(4-nitro­benzyl­idene)-2,3-di­methyl­aniline, (II) (Tariq et al., 2010), and (E)-N-(4-nitro­benzyl­idene)-3,4-di­meth­oxy­aniline, (III) (Akkurt et al., 2008), the dihedral angles between the two aryl rings are 24.52 (5) and 29.52 (8)°, respectively. By contrast, in (E)-N-(4-nitro­benzyl­idene)-2-hy­droxy­aniline), (IV) (Madhuprasad et al., 2014), and (E)-N-(4-chloro­benzyl­idene)-2-hy­droxy­aniline, (V) (Girisha et al., 2018), the dihedral angles between the rings are 0.52° [the atomic coordinates retrieved from the CSD (Groom et al., 2016) carry no s.u.s] and 3.31 (9)° respectively, reflecting the influence of the intra­molecular O—H⋯N hydrogen bonds in these two compounds.

Supra­molecular features  

The supra­molecular assembly depends upon a combination of one C—H⋯O hydrogen bond (Table 1) and three N—O⋯π(arene) inter­actions (Kaafarani et al., 2003; Báuza et al., 2016) (Table 2), and the three-dimensional assembly can readily be analysed in terms of three one-dimensional substructures (Ferguson et al., 1998a ,b ; Gregson et al., 2000). Thus, the action of the C—H⋯O hydrogen bond alone is to link mol­ecules related by the 21 screw axis along (0.75, 0.5, z) into a C(6) chain running parallel to the [001] direction (Fig. 2). The action of the two nitro⋯π(arene) inter­actions links mol­ecules related by the 21 screw axis along (x, 0.25, 0.5) into a chain running parallel to the [100] direction (Fig. 3), while the combined action of the hydrogen bond and the nitro⋯π(arene) inter­actions links the mol­ecules into a chain running parallel to the [010] direction (Fig. 4). The combination of chain motifs parallel to the [100], [010] and [001] directions then generates a continuous three-dimensional assembly.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O141i 0.93 2.54 3.456 (5) 167

Symmetry code: (i) Inline graphic.

Table 2. Parameters (Å, °) for nitro⋯π(arene) inter­actions.

Cg1 and Cg2 are the centroids of the C1A–C6A and C1B–C6B rings, respectively.

N—O⋯Cg N—O O⋯Cg N⋯Cg N—O⋯Cg
N14—O141⋯Cg1i 1.215 (4) 3.88 (2) 3.91 (2) 82.5 (3)
N14—O141⋯Cg2i 1.215 (4) 3.82 (2) 3.79 (2) 79.4 (3)
N14—O142⋯Cg1ii 1.220 (4) 3.97 (2) 3.85 (2) 75.1 (3)

Symmetry codes: (i) −Inline graphic + x, Inline graphic − y, 1 − z; (ii) Inline graphic + x, Inline graphic − y, 1 − z.

Figure 2.

Figure 2

Part of the crystal structure of compound (I) showing the formation of a C(6) hydrogen-bonded chain along [001]. For the sake of clarity, the H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*), a hash (#) or a dollar sign ($) are at the symmetry positions (Inline graphic − x, 1 − y, Inline graphic + z), (x, y, 1 + z) and (Inline graphic − x, 1 − y, −Inline graphic + z), respectively. For the disordered 2-ethyl­phenyl group, the major component is drawn using solid lines and the minor component is drawn using dashed lines.

Figure 3.

Figure 3

Part of the crystal structure of compound (I) showing the formation of a chain along [100] built from nitro⋯π(arene) inter­actions. For the sake of clarity, the H atoms have all been omitted. The atoms marked with an asterisk (*), a hash (#) or a dollar sign ($) are at the symmetry positions (Inline graphic + x, Inline graphic − y, 1 − z), (−Inline graphic + x, Inline graphic − y, 1 − z) and (−1 + x, y, z), respectively. For the disordered 2-ethyl­phenyl group, the major component is drawn using solid lines and the minor component is drawn using dashed lines.

Figure 4.

Figure 4

Part of the crystal structure of compound (I) showing the formation of a chain parallel to the [010] direction built from alternating C—H⋯O hydrogen bonds and nitro⋯π(arene) inter­actions. For the sake of clarity, the H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*), a hash (#), a dollar sign ($) or an ampersand (&) are at the symmetry positions (Inline graphic − x, 1 − y, Inline graphic + z), (1 − x, Inline graphic + y, Inline graphic − z), (−Inline graphic + x, Inline graphic − y, 1 − z) and (x, 1 + y, z), respectively. For the disordered 2-ethyl­phenyl group, the major component is drawn using solid lines and the minor component is drawn using dashed lines.

Database survey  

It is of inter­est to briefly compare the three-dimensional supra­molecular assembly in compound (I), with the patterns of aggregation found in related compounds (II)–(V). In compound (II), two independent aromatic π–π stacking inter­actions combine to link the mol­ecules into chains (Tariq et al., 2010). The structure of compound (III) (Akkurt et al., 2008) contains three short C—H⋯O contacts, but two of these involve an H atom in a methyl group, while for the third the C—H⋯O angle is only 131°, so that none of these contacts is likely to be structurally significant (Wood et al., 2009). The mol­ecules of compound (IV) (Madhuprasad et al., 2014) are linked into centrosymmetric dimers by inversion-related O—H⋯O hydrogen bonds, while those of compound (V) are linked into a three-dimensional framework structure by a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds and an aromatic π–π stacking inter­action (Girisha et al., 2018).

Other Schiff bases which are derived from nitro­benzaldehydes and whose structures have been reported recently include N-(2-nitro­benzyl­idene)aniline (Naveen et al., 2006), 4-meth­oxy-N-(2-nitro­benzyl­idene)aniline (Ren & Jian, 2008), 2,3-dimethyl-N-(2-nitro­benzyl­idene)aniline (Tahir et al., 2010) and 2-fluoro-N-(3-nitro­benzyl­idene)-5-(tri­fluoro­meth­yl)aniline (Yang et al., 2007).

Synthesis and crystallization  

Solutions of 2-ethyl­aniline (100 mg, 0.826 mmol) and 4-nitro­benzaldehyde (124 mg, 0.826 mmol), each in ethanol (15 ml). were mixed and a catalytic amount of glacial acetic acid was added. The resulting mixture was heated under reflux for 3 h, when completion of the reaction was confirmed using thin layer chromatography. The solid product was collected by filtration and recrystallized from aceto­nitrile to give crystals of (I) suitable for single crystal X-ray diffraction; yield 150mg, 0.590 mmol, 71%; m.p. 369–373 K.

Refinement  

It was apparent from an early stage in the refinement that the methyl group of the ethyl substituent was disordered over two sets of atomic sites having unequal occupancies, and satisfactory resolution of the disorder required a model in which the whole 2-ethyl­phenyl unit was disordered over two sets of atomic sites. For the minor disorder component, the bonded distances and the 1,3 non-bonded distances were restrained to be the same as the corresponding distances in the major disorder component, subject to s.u. values of 0.01 and 0.02 Å, respectively. In addition, the anisotropic displacement parameters for the corresponding pairs of C atoms in the disordered ring were constrained to be identical. All H atoms apart from those in the ethyl unit were located in difference maps and then treated as riding atoms with C—H 0.93 Å and U iso(H) = 1.2U eq(C); the H atoms of the ethyl unit were included in calculated positions with C—H distances of 0.96 Å (CH3) or 0.97 Å (CH2) and with U iso(H) = kU eq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for the CH2 groups. Subject to these conditions, the occupancies of the two disorder components refined to 0.515 (19) and 0.485 (19). Although the coverage of Friedel pairs was 98%, it was not possible to determine the absolute configuration of the mol­ecules in the crystal selected for study, as the value of the Flack x parameter (Flack, 1983), calculated using 484 quotients of the type [(I +) − (I )]/[(I  + )+(I )] (Parsons et al., 2013), was −0.5 (7), and value calculated for the Hooft y parameter (Hooft et al., 2008) was −0.4 (7). Crystal data, data collection and structure refinement details are summarized in Table 3.

Table 3. Experimental details.

Crystal data
Chemical formula C15H14N2O2
M r 254.28
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 7.6419 (7), 11.8889 (13), 14.8082 (16)
V3) 1345.4 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.15 × 0.10 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012)
T min, T max 0.841, 0.992
No. of measured, independent and observed [I > 2σ(I)] reflections 20309, 2535, 1401
R int 0.055
(sin θ/λ)max−1) 0.612
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.040, 0.120, 1.04
No. of reflections 2535
No. of parameters 209
No. of restraints 17
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.11, −0.11

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989018009544/zl2733sup1.cif

e-74-01071-sup1.cif (606.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018009544/zl2733Isup3.hkl

e-74-01071-Isup3.hkl (203.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018009544/zl2733Isup3.cml

CCDC reference: 1853291

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

BKS thanks the University of Mysore for the research facilities.

supplementary crystallographic information

Crystal data

C15H14N2O2 Dx = 1.255 Mg m3
Mr = 254.28 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 2535 reflections
a = 7.6419 (7) Å θ = 2.2–25.8°
b = 11.8889 (13) Å µ = 0.09 mm1
c = 14.8082 (16) Å T = 296 K
V = 1345.4 (2) Å3 Block, colourless
Z = 4 0.15 × 0.10 × 0.10 mm
F(000) = 536

Data collection

Bruker APEXII CCD diffractometer 2535 independent reflections
Radiation source: fine focus sealed tube 1401 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.055
φ and ω scans θmax = 25.8°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2012) h = −6→9
Tmin = 0.841, Tmax = 0.992 k = −14→14
20309 measured reflections l = −17→17

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0486P)2 + 0.1129P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.120 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.11 e Å3
2535 reflections Δρmin = −0.11 e Å3
209 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
17 restraints Extinction coefficient: 0.009 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.6122 (4) 0.1423 (2) 0.56000 (17) 0.0657 (8)
C17 0.6533 (5) 0.2454 (3) 0.5623 (2) 0.0643 (9)
H17 0.6916 0.2765 0.6164 0.077*
C11 0.6423 (4) 0.3173 (3) 0.4820 (2) 0.0582 (9)
C12 0.5825 (5) 0.2760 (3) 0.3999 (2) 0.0651 (10)
H12 0.5473 0.2014 0.3951 0.078*
C13 0.5754 (5) 0.3451 (3) 0.3261 (2) 0.0689 (10)
H13 0.5353 0.3177 0.2710 0.083*
C14 0.6277 (5) 0.4549 (3) 0.3339 (2) 0.0659 (9)
C15 0.6878 (5) 0.4979 (3) 0.4132 (3) 0.0744 (11)
H15 0.7234 0.5725 0.4171 0.089*
C16 0.6949 (5) 0.4281 (3) 0.4880 (2) 0.0704 (10)
H16 0.7355 0.4562 0.5427 0.084*
N14 0.6223 (5) 0.5279 (4) 0.2537 (3) 0.0934 (11)
O141 0.5892 (5) 0.4855 (3) 0.1810 (2) 0.1275 (13)
O142 0.6516 (5) 0.6280 (3) 0.2643 (2) 0.1273 (13)
C1A 0.6204 (4) 0.0777 (3) 0.6407 (2) 0.0618 (9) 0.515 (19)
C2A 0.652 (3) −0.0381 (8) 0.6399 (9) 0.060 (3) 0.515 (19)
C21A 0.739 (2) −0.0913 (13) 0.5561 (11) 0.089 (6) 0.515 (19)
H21A 0.7893 −0.0320 0.5192 0.107* 0.515 (19)
H21B 0.8340 −0.1398 0.5757 0.107* 0.515 (19)
C22A 0.612 (2) −0.1593 (16) 0.4994 (10) 0.121 (6) 0.515 (19)
H22A 0.5162 −0.1121 0.4810 0.181* 0.515 (19)
H22B 0.5675 −0.2210 0.5344 0.181* 0.515 (19)
H22C 0.6707 −0.1878 0.4469 0.181* 0.515 (19)
C3A 0.664 (6) −0.0915 (16) 0.7237 (12) 0.073 (3) 0.515 (19)
H3A 0.6967 −0.1668 0.7255 0.087* 0.515 (19)
C4A 0.628 (5) −0.0372 (17) 0.8034 (10) 0.072 (4) 0.515 (19)
H4A 0.6420 −0.0747 0.8580 0.087* 0.515 (19)
C5A 0.573 (8) 0.072 (2) 0.8022 (10) 0.075 (3) 0.515 (19)
H5A 0.5359 0.1075 0.8550 0.090* 0.515 (19)
C6A 0.572 (13) 0.130 (3) 0.7204 (13) 0.0739 (19) 0.515 (19)
H6A 0.5383 0.2049 0.7193 0.089* 0.515 (19)
C1B 0.6204 (4) 0.0777 (3) 0.6407 (2) 0.0618 (9) 0.485 (19)
C2B 0.693 (3) −0.0285 (9) 0.6285 (9) 0.060 (3) 0.485 (19)
C21B 0.704 (3) −0.0772 (10) 0.5319 (10) 0.079 (6) 0.485 (19)
H21C 0.6174 −0.0412 0.4936 0.095* 0.485 (19)
H21D 0.8188 −0.0627 0.5065 0.095* 0.485 (19)
C22B 0.671 (4) −0.2034 (12) 0.5351 (15) 0.179 (11) 0.485 (19)
H22D 0.6559 −0.2315 0.4748 0.268* 0.485 (19)
H22E 0.5664 −0.2180 0.5694 0.268* 0.485 (19)
H22F 0.7682 −0.2403 0.5631 0.268* 0.485 (19)
C3B 0.691 (6) −0.1024 (17) 0.7018 (13) 0.073 (3) 0.485 (19)
H3B 0.7289 −0.1762 0.6937 0.087* 0.485 (19)
C4B 0.635 (5) −0.0684 (17) 0.7854 (11) 0.072 (4) 0.485 (19)
H4B 0.6331 −0.1195 0.8329 0.087* 0.485 (19)
C5B 0.583 (9) 0.040 (2) 0.7992 (11) 0.075 (3) 0.485 (19)
H5B 0.5538 0.0648 0.8569 0.090* 0.485 (19)
C6B 0.574 (14) 0.113 (3) 0.7262 (14) 0.0739 (19) 0.485 (19)
H6B 0.5364 0.1871 0.7349 0.089* 0.485 (19)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0710 (19) 0.0625 (19) 0.0635 (18) −0.0032 (15) −0.0085 (15) 0.0061 (15)
C17 0.069 (2) 0.065 (2) 0.059 (2) 0.000 (2) −0.0101 (19) −0.0022 (19)
C11 0.059 (2) 0.058 (2) 0.057 (2) 0.0020 (17) −0.0041 (17) −0.0012 (17)
C12 0.073 (2) 0.062 (2) 0.061 (2) −0.0010 (17) −0.0050 (19) −0.0024 (18)
C13 0.072 (2) 0.080 (3) 0.054 (2) 0.006 (2) 0.0016 (19) −0.0050 (19)
C14 0.064 (2) 0.072 (2) 0.062 (2) 0.0094 (19) 0.0053 (18) 0.0149 (19)
C15 0.081 (3) 0.059 (2) 0.082 (3) −0.001 (2) 0.002 (2) 0.004 (2)
C16 0.082 (3) 0.066 (2) 0.063 (2) 0.001 (2) −0.0072 (19) −0.0086 (19)
N14 0.085 (2) 0.109 (3) 0.085 (3) 0.009 (2) 0.008 (2) 0.033 (3)
O141 0.148 (3) 0.165 (3) 0.069 (2) −0.008 (2) −0.001 (2) 0.032 (2)
O142 0.146 (3) 0.101 (2) 0.135 (3) −0.002 (2) 0.000 (2) 0.053 (2)
C1A 0.060 (2) 0.065 (2) 0.060 (2) −0.0052 (19) −0.0073 (17) 0.0066 (18)
C2A 0.049 (10) 0.060 (3) 0.070 (4) −0.021 (4) 0.019 (4) 0.008 (3)
C21A 0.120 (11) 0.079 (10) 0.067 (9) −0.012 (7) −0.018 (7) 0.030 (7)
C22A 0.131 (11) 0.132 (14) 0.100 (9) −0.048 (10) −0.002 (7) −0.009 (9)
C3A 0.086 (12) 0.057 (4) 0.075 (7) 0.007 (3) 0.026 (10) 0.011 (5)
C4A 0.105 (4) 0.049 (9) 0.064 (5) 0.003 (9) 0.002 (7) −0.001 (6)
C5A 0.102 (7) 0.059 (12) 0.064 (3) 0.006 (14) 0.003 (2) 0.002 (4)
C6A 0.086 (3) 0.066 (7) 0.070 (3) 0.004 (10) −0.004 (6) 0.009 (3)
C1B 0.060 (2) 0.065 (2) 0.060 (2) −0.0052 (19) −0.0073 (17) 0.0066 (18)
C2B 0.049 (10) 0.060 (3) 0.070 (4) −0.021 (4) 0.019 (4) 0.008 (3)
C21B 0.123 (12) 0.050 (6) 0.065 (9) 0.004 (7) −0.002 (8) 0.001 (7)
C22B 0.30 (3) 0.085 (10) 0.147 (17) −0.007 (13) 0.039 (17) −0.044 (10)
C3B 0.086 (12) 0.057 (4) 0.075 (7) 0.007 (3) 0.026 (10) 0.011 (5)
C4B 0.105 (4) 0.049 (9) 0.064 (5) 0.003 (9) 0.002 (7) −0.001 (6)
C5B 0.102 (7) 0.059 (12) 0.064 (3) 0.006 (14) 0.003 (2) 0.002 (4)
C6B 0.086 (3) 0.066 (7) 0.070 (3) 0.004 (10) −0.004 (6) 0.009 (3)

Geometric parameters (Å, º)

N1—C17 1.266 (4) C22A—H22B 0.9600
N1—C1A 1.422 (4) C22A—H22C 0.9600
C17—C11 1.466 (4) C3A—C4A 1.372 (10)
C17—H17 0.9300 C3A—H3A 0.9300
C11—C16 1.381 (5) C4A—C5A 1.370 (9)
C11—C12 1.387 (4) C4A—H4A 0.9300
C12—C13 1.369 (4) C5A—C6A 1.390 (8)
C12—H12 0.9300 C5A—H5A 0.9300
C13—C14 1.369 (5) C6A—H6A 0.9300
C13—H13 0.9300 C2B—C3B 1.397 (9)
C14—C15 1.361 (5) C2B—C21B 1.547 (11)
C14—N14 1.471 (5) C21B—C22B 1.523 (13)
C15—C16 1.385 (5) C21B—H21C 0.9700
C15—H15 0.9300 C21B—H21D 0.9700
C16—H16 0.9300 C22B—H22D 0.9600
N14—O141 1.215 (4) C22B—H22E 0.9600
N14—O142 1.220 (4) C22B—H22F 0.9600
C1A—C6A 1.383 (8) C3B—C4B 1.370 (10)
C1A—C2A 1.398 (8) C3B—H3B 0.9300
C2A—C3A 1.397 (9) C4B—C5B 1.368 (9)
C2A—C21A 1.545 (11) C4B—H4B 0.9300
C21A—C22A 1.520 (13) C5B—C6B 1.391 (9)
C21A—H21A 0.9700 C5B—H5B 0.9300
C21A—H21B 0.9700 C6B—H6B 0.9300
C22A—H22A 0.9600
C17—N1—C1A 119.3 (3) H22A—C22A—H22B 109.5
N1—C17—C11 121.9 (3) C21A—C22A—H22C 109.5
N1—C17—H17 119.1 H22A—C22A—H22C 109.5
C11—C17—H17 119.1 H22B—C22A—H22C 109.5
C16—C11—C12 119.3 (3) C4A—C3A—C2A 122.5 (9)
C16—C11—C17 119.1 (3) C4A—C3A—H3A 118.7
C12—C11—C17 121.6 (3) C2A—C3A—H3A 118.7
C13—C12—C11 120.0 (3) C5A—C4A—C3A 119.8 (10)
C13—C12—H12 120.0 C5A—C4A—H4A 120.1
C11—C12—H12 120.0 C3A—C4A—H4A 120.1
C12—C13—C14 119.5 (3) C4A—C5A—C6A 118.6 (9)
C12—C13—H13 120.2 C4A—C5A—H5A 120.7
C14—C13—H13 120.2 C6A—C5A—H5A 120.7
C15—C14—C13 121.9 (3) C1A—C6A—C5A 121.6 (9)
C15—C14—N14 118.9 (4) C1A—C6A—H6A 119.2
C13—C14—N14 119.1 (4) C5A—C6A—H6A 119.2
C14—C15—C16 118.6 (3) C3B—C2B—C21B 118.9 (11)
C14—C15—H15 120.7 C22B—C21B—C2B 109.3 (11)
C16—C15—H15 120.7 C22B—C21B—H21C 109.8
C11—C16—C15 120.6 (3) C2B—C21B—H21C 109.8
C11—C16—H16 119.7 C22B—C21B—H21D 109.8
C15—C16—H16 119.7 C2B—C21B—H21D 109.8
O141—N14—O142 123.8 (4) H21C—C21B—H21D 108.3
O141—N14—C14 118.4 (4) C21B—C22B—H22D 109.5
O142—N14—C14 117.8 (4) C21B—C22B—H22E 109.5
C6A—C1A—C2A 119.6 (10) H22D—C22B—H22E 109.5
C6A—C1A—N1 117.7 (7) C21B—C22B—H22F 109.5
C2A—C1A—N1 122.2 (6) H22D—C22B—H22F 109.5
C3A—C2A—C1A 116.8 (9) H22E—C22B—H22F 109.5
C3A—C2A—C21A 120.0 (10) C4B—C3B—C2B 121.3 (10)
C1A—C2A—C21A 118.9 (9) C4B—C3B—H3B 119.4
C22A—C21A—C2A 112.5 (13) C2B—C3B—H3B 119.4
C22A—C21A—H21A 109.1 C5B—C4B—C3B 120.4 (10)
C2A—C21A—H21A 109.1 C5B—C4B—H4B 119.8
C22A—C21A—H21B 109.1 C3B—C4B—H4B 119.8
C2A—C21A—H21B 109.1 C4B—C5B—C6B 119.3 (10)
H21A—C21A—H21B 107.8 C4B—C5B—H5B 120.4
C21A—C22A—H22A 109.5 C6B—C5B—H5B 120.4
C21A—C22A—H22B 109.5 C5B—C6B—H6B 119.8
C1A—N1—C17—C11 −178.1 (3) C17—N1—C1A—C2A −151.9 (12)
N1—C17—C11—C16 −177.7 (3) C6A—C1A—C2A—C3A −12 (6)
N1—C17—C11—C12 1.4 (5) N1—C1A—C2A—C3A 178 (2)
C16—C11—C12—C13 −0.3 (5) C6A—C1A—C2A—C21A −168 (5)
C17—C11—C12—C13 −179.4 (3) N1—C1A—C2A—C21A 21 (2)
C11—C12—C13—C14 0.0 (5) C3A—C2A—C21A—C22A 97 (3)
C12—C13—C14—C15 0.3 (5) C1A—C2A—C21A—C22A −107 (2)
C12—C13—C14—N14 179.0 (3) C1A—C2A—C3A—C4A 7 (5)
C13—C14—C15—C16 −0.4 (5) C21A—C2A—C3A—C4A 163 (3)
N14—C14—C15—C16 −179.1 (3) C2A—C3A—C4A—C5A 3 (7)
C12—C11—C16—C15 0.2 (5) C3A—C4A—C5A—C6A −7 (9)
C17—C11—C16—C15 179.4 (3) C2A—C1A—C6A—C5A 7 (11)
C14—C15—C16—C11 0.1 (5) N1—C1A—C6A—C5A 179 (6)
C15—C14—N14—O141 171.1 (4) C4A—C5A—C6A—C1A 2 (12)
C13—C14—N14—O141 −7.7 (5) C3B—C2B—C21B—C22B 12 (4)
C15—C14—N14—O142 −8.9 (5) C21B—C2B—C3B—C4B −162 (4)
C13—C14—N14—O142 172.3 (4) C2B—C3B—C4B—C5B −1 (7)
C17—N1—C1A—C6A 37 (5) C3B—C4B—C5B—C6B 5 (10)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C16—H16···O141i 0.93 2.54 3.456 (5) 167

Symmetry code: (i) −x+3/2, −y+1, z+1/2.

Funding Statement

This work was funded by University Grants Commission grants UGC-BSR Faculty Fellowship and Rajeev Gandhi Fellowship.

References

  1. Akkurt, M., Jarrahpour, A., Aye, M., Gençaslan, M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o2087. [DOI] [PMC free article] [PubMed]
  2. Báuza, A., Frontera, A. & Mooibroek, T. J. (2016). Cryst. Growth Des. 16, 5520–5524.
  3. Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.
  5. Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Girisha, M., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2017). Acta Cryst. E73, 1835–1839. [DOI] [PMC free article] [PubMed]
  8. Girisha, M., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2018). Acta Cryst. E74, 376–379. [DOI] [PMC free article] [PubMed]
  9. Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57. [DOI] [PubMed]
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. Hadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579–588. [DOI] [PubMed]
  12. Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. [DOI] [PMC free article] [PubMed]
  13. Kaafarani, B. R., Wex, B., Oliver, A. G., Krause Bauer, J. A. & Neckers, D. C. (2003). Acta Cryst. E59, o227–o229.
  14. Madhuprasad, Swathi, N., Manjunatha, J. R., Das, U. K., Shetty, A. N. & Trivedi, D. R. (2014). New J. Chem. 38, 1484–1492.
  15. Minkin, V. I., Tsukanov, A. V., Dubonosov, A. D. & Bren, V. A. (2011). J. Mol. Struct. 998, 179–191.
  16. Naveen, S., Anil Kumar, K., Channe Gowda, D., Sridhar, M. A. & Shashidhara Prasad, J. (2006). Acta Cryst. E62, o3790–o3791.
  17. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  18. Ren, X.-Y. & Jian, F.-F. (2008). Acta Cryst. E64, o2027. [DOI] [PMC free article] [PubMed]
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  21. Silva, C. M. da, da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M. A., Martins, C. V. B., de Fátima, A. & Ângelo, (2011). J. Adv. Res. 2, 1–8.
  22. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  23. Tahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Ather, A. Q. (2010). Acta Cryst. E66, o1817. [DOI] [PMC free article] [PubMed]
  24. Tariq, M. I., Ahmad, S., Tahir, M. N., Sarfaraz, M. & Hussain, I. (2010). Acta Cryst. E66, o1561. [DOI] [PMC free article] [PubMed]
  25. Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.
  26. Yang, M.-H., Yan, G.-B. & Zheng, Y.-F. (2007). Acta Cryst. E63, o3202.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989018009544/zl2733sup1.cif

e-74-01071-sup1.cif (606.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018009544/zl2733Isup3.hkl

e-74-01071-Isup3.hkl (203.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018009544/zl2733Isup3.cml

CCDC reference: 1853291

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES