Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Jul 20;74(Pt 8):1130–1133. doi: 10.1107/S2056989018010162

Structural analysis of 2-iodo­benzamide and 2-iodo-N-phenyl­benzamide

Keshab M Bairagi a, Vipin B S Kumar a, Subhrajyoti Bhandary b, Katharigatta N Venugopala c,*, Susanta K Nayak a,*
PMCID: PMC6072987  PMID: 30116577

The mol­ecular and crystal structures of 2-iodo benzamide and 2-iodo-N-phenyl­benzamide are reported. In both crystals, N—H⋯O hydrogen bonds and C—I⋯π(ring) inter­actions stabilize the packing with additional C—H⋯π(ring) contacts found in the latter.

Keywords: crystal structure, benzamide, dimer, tetra­mer, hydrogen bonds, C—I⋯π(ring) inter­actions

Abstract

The title compounds, 2-iodo­benzamide, C7H6INO (I), and 2-iodo-N-phenyl­benzamide, C13H10INO (II), were both synthesized from 2-iodo­benzoic acid. In the crystal structure of (I), N—H⋯O and hydrogen bonds form two sets of closed rings, generating dimers and tetra­mers. These combine with C—I⋯π(ring) halogen bonds to form sheets of mol­ecules in the bc plane. For (II), N—H⋯O hydrogen bonds form chains along the a-axis direction, while inversion-related C—I⋯π(ring) contacts supported by C—H⋯π(ring) interactions generate sheets of mol­ecules along the ab diagonal.

Chemical context  

Aromatic amides can be found in a wide range of aromatic molecules and they also serve as inter­mediates in the production of many pharmaceutical compounds (Suchetan et al., 2016). Aromatic amides and N-aryl amides display a wide spectrum of pharmacological properties and are used as anti­bacterial (Ragavan et al., 2010), analgesic (Starmer et al., 1971), anti­viral (Hu et al., 2008), anti-inflammatory (Kalgutkar et al., 2000) and anti-cancer (Pradidphol et al., 2012) agents. Furthermore, N-aryl amides are known to act as anti-tumor agents against a broad spectrum of human tumors (Abdou et al., 2004). In view of their potential importance, the title compounds (I) and (II) were synthesized and we report herein a comparison of their structures.graphic file with name e-74-01130-scheme1.jpg

Structural commentary  

Both compounds (I) and (II) crystallize with one mol­ecule in the asymmetric unit (Z′ = 1). The mol­ecular structures of the mol­ecules are shown in Figs. 1 and 2, respectively. In (I) the aromatic ring is inclined to the O1/C1/N1 plane of the amide by 44.37 (1)° whereas in (II) the two aromatic rings are almost orthogonal with an angle of 79.84 (6)° between them. The iodo­benzene ring plane is inclined to the O1/C1/N1 amide plane by 52.01 (1)°, somewhat similar to the inclination found for (I), while the phenyl ring of the amide is inclined by 28.45 (5)° to this plane.

Figure 1.

Figure 1

The mol­ecular structure of (I) showing the atom numbering with ellipsoids drawn at the 50% probability level.

Figure 2.

Figure 2

The mol­ecular structure of (II) showing the atom numbering with ellipsoids drawn at the 50% probability level.

Supra­molecular features  

In the crystal structure of compound (I), strong classical N1—H1A⋯O1 and N1—H1B⋯O1 hydrogen bonds, Table 1, arrange the mol­ecules in two linked sets of closed rings, forming both dimers with an Inline graphic(8) graph-set motif and tetra­mers that enclose Inline graphic(8) rings (Etter et al., 1990). These contacts form chains of mol­ecules along the a-axis direction (Fig. 3). In addition, C3—I1⋯Cg1 halogen bonds, Table 1, combine with the previously mentioned inversion dimers to generate sheets of mol­ecules in the bc plane (Fig. 4).

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

Cg1 is the centroid of the C2–C7 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.11 2.951 (2) 164
N1—H1B⋯O1ii 0.86 2.05 2.843 (2) 154
C3—I1⋯Cg1iii 2.11 (1) 3.99 (1) 5.877 (2) 148 (1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 3.

Figure 3

Chains of mol­ecules of (I) along the a-axis direction, showing the dimers and tetra­mers formed by N—H⋯O hydrogen bonds.

Figure 4.

Figure 4

N—H⋯O and C—I⋯π(ring) contacts forming sheets of mol­ecules of (I) in the bc plane.

For compound (II), the absence of a second H atom on the N1 amine nitro­gen atom limits the formation of classical hydrogen bonds to N1—H1⋯O1 contacts that generate C(4) mol­ecular chains along the a-axis direction (Fig. 5, Table 2). Additional weak inversion-related C3—I1⋯Cg2 inter­actions (Table 2), in this instance also supported by C6—H6⋯Cg2 contacts that also lie about an inversion centre, form sheets of mol­ecules along the ab diagonal (Fig. 6, Table 2).

Figure 5.

Figure 5

N—H⋯O hydrogen bonds forming chains of mol­ecules of (II) along the a-axis direction.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

Cg2 is the centroid of the C8–C13 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 2.15 2.942 (2) 150
C3—I1⋯Cg2ii 2.10 (1) 3.83 (1) 5.816 (2) 156 (1)
C6—H6⋯Cg2iii 0.95 2.81 3.627 (2) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 6.

Figure 6

C—I⋯π(ring) and C—H⋯π(ring) contacts generating sheets of mol­ecules of (II) along the ab diagonal

Database survey  

A search for the crystal structures of 2-iodo­benzamide and 2-iodo-N-phenyl­benzamide was carried out in the Cambridge Structural Database (Conquest Version 1.17; CSD Version 5.39, last update November 2017; Groom et al., 2016). Compound (I) was found to have been previously reported from film data (IBNZAM; Nakata et al., 1976), but there were no hits for compound (II). Four other related structures were observed: two fluorine-substituted 2-iodo­benzamides, FAHSAK and FAHSIS (Nayak et al., 2012) and two nitro substituted 2-iodo­benzamides, TAQBIX (Garden et al., 2005) and WAWMAJ (Wardell et al., 2005).

Synthesis and crystallization  

The synthesis of the title compounds was carried out using a reported procedure (Jursic & Zdravkovski, 1993; Kavala et al., 2012; Mao et al., 2012). Single crystals for both compounds were grown by the slow evaporation method from di­chloro­methane and hexane (v/v 1:1) at low temperature for (I), whereas those for compound (II) were obtained from aceto­nitrile solvent at room temperature. The melting points of (I) and (II) are 398.2 and 419.6 K, respectively. Infra-red (IR) spectra confirm the presence of various functional groups as follows: compound (I) (cm−1): N—H = 3362, 3177, C=O = 1644, C=C = 1581–1470, ortho-substituted ring = 734; compound (II) (cm−1): N—H = 3235, Csp 2—H = 3037, C=O = 1646, C=C = 1536–1488, ortho-substituted ring = 752, N—H bending = 1597.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were refined using a riding model with d(N—H) = 0.86 Å, U iso(H) = 1.2U eq(N) and d(C—H) = 0.93 Å, U iso(H) = 1.2U eq(C) for (I) and d(N—H) = 0.88 Å, U iso(H) = 1.2U eq(N) and d(C—H) = 0.95 Å, U iso(H) = 1.2U eq(C) for (II).

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C7H6INO C13H10INO
M r 247.03 323.12
Crystal system, space group Monoclinic, P21/n Triclinic, P Inline graphic
Temperature (K) 296 120
a, b, c (Å) 5.0531 (2), 11.4478 (5), 13.2945 (5) 5.1225 (2), 10.4572 (4), 12.2167 (5)
α, β, γ (°) 90, 93.245 (1), 90 66.034 (2), 78.882 (2), 85.760 (2)
V3) 767.81 (5) 586.76 (4)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 4.10 2.71
Crystal size (mm) 0.23 × 0.22 × 0.21 0.23 × 0.22 × 0.21
 
Data collection
Diffractometer Bruker Kappa APEXII DUO Bruker Kappa APEXII DUO
Absorption correction Multi-scan (SADABS; Bruker, 2014) Multi-scan (SADABS; Bruker, 2014)
T min, T max 0.429, 0.456 0.546, 0.570
No. of measured, independent and observed [I > 2σ(I)] reflections 5827, 1504, 1461 13292, 2309, 2278
R int 0.021 0.018
(sin θ/λ)max−1) 0.617 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.014, 0.033, 1.16 0.017, 0.042, 1.08
No. of reflections 1504 2309
No. of parameters 92 145
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.35 0.81, −0.48

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXS14 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009), Mercury (Macrae et al., 2008), WinGX (Farrugia, 2012) and PARST (Nardelli, 1995).

Supplementary Material

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989018010162/sj5558sup1.cif

e-74-01130-sup1.cif (691.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018010162/sj5558Isup2.hkl

e-74-01130-Isup2.hkl (121.5KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989018010162/sj5558IIsup3.hkl

e-74-01130-IIsup3.hkl (185KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018010162/sj5558Isup4.cml

Supporting information file. DOI: 10.1107/S2056989018010162/sj5558IIsup5.cml

CCDC references: 1855731, 1855730

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Dr Deepak Chopra, IISER, Bhopal for the single-crystal X-ray data collection.

supplementary crystallographic information

2-Iodobenzamide (I). Crystal data

C7H6INO F(000) = 464
Mr = 247.03 Dx = 2.137 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 5.0531 (2) Å Cell parameters from 1504 reflections
b = 11.4478 (5) Å θ = 2.3–26.0°
c = 13.2945 (5) Å µ = 4.10 mm1
β = 93.245 (1)° T = 296 K
V = 767.81 (5) Å3 Plate, colorless
Z = 4 0.23 × 0.22 × 0.21 mm

2-Iodobenzamide (I). Data collection

Bruker Kappa APEXII DUO diffractometer 1504 independent reflections
Radiation source: fine-focus sealed tube 1461 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.021
ω scans θmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2014) h = −6→6
Tmin = 0.429, Tmax = 0.456 k = −14→11
5827 measured reflections l = −15→16

2-Iodobenzamide (I). Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.014 w = 1/[σ2(Fo2) + (0.0075P)2 + 0.6908P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.033 (Δ/σ)max = 0.002
S = 1.16 Δρmax = 0.45 e Å3
1504 reflections Δρmin = −0.35 e Å3
92 parameters Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0170 (5)

2-Iodobenzamide (I). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

2-Iodobenzamide (I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.14922 (2) 0.55570 (2) 0.18090 (2) 0.01703 (7)
O1 0.3073 (3) 0.43218 (14) 0.39426 (11) 0.0177 (3)
N1 0.7508 (3) 0.44020 (16) 0.41536 (14) 0.0168 (4)
H1A 0.7438 0.4650 0.4762 0.020*
H1B 0.9018 0.4297 0.3900 0.020*
C5 0.6303 (4) 0.2793 (2) 0.06578 (17) 0.0219 (5)
H5 0.6514 0.2473 0.0024 0.026*
C6 0.7846 (4) 0.23997 (19) 0.14775 (17) 0.0202 (5)
H6 0.9113 0.1824 0.1396 0.024*
C7 0.7504 (4) 0.28652 (19) 0.24225 (17) 0.0165 (4)
H7 0.8555 0.2598 0.2972 0.020*
C2 0.5610 (4) 0.37276 (18) 0.25648 (15) 0.0125 (4)
C1 0.5297 (4) 0.41830 (18) 0.36086 (15) 0.0125 (4)
C4 0.4440 (4) 0.3662 (2) 0.07746 (16) 0.0193 (5)
H4 0.3416 0.3931 0.0219 0.023*
C3 0.4101 (4) 0.41317 (18) 0.17218 (16) 0.0138 (4)

2-Iodobenzamide (I). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.01454 (9) 0.01736 (10) 0.01910 (10) 0.00237 (5) 0.00030 (5) 0.00353 (5)
O1 0.0082 (7) 0.0300 (9) 0.0152 (8) −0.0007 (6) 0.0019 (5) −0.0026 (6)
N1 0.0094 (8) 0.0280 (11) 0.0132 (9) −0.0003 (7) 0.0021 (6) −0.0044 (8)
C5 0.0286 (12) 0.0200 (11) 0.0177 (12) −0.0038 (9) 0.0070 (9) −0.0071 (9)
C6 0.0210 (11) 0.0125 (11) 0.0277 (12) −0.0010 (9) 0.0085 (9) −0.0048 (9)
C7 0.0138 (9) 0.0140 (10) 0.0220 (11) −0.0022 (8) 0.0024 (8) 0.0013 (9)
C2 0.0100 (9) 0.0122 (10) 0.0154 (10) −0.0034 (7) 0.0019 (7) −0.0003 (8)
C1 0.0118 (9) 0.0117 (9) 0.0142 (10) −0.0002 (8) 0.0015 (7) 0.0036 (8)
C4 0.0213 (10) 0.0226 (12) 0.0140 (11) −0.0042 (9) −0.0002 (8) −0.0012 (9)
C3 0.0120 (9) 0.0122 (10) 0.0173 (11) −0.0019 (8) 0.0025 (8) 0.0005 (8)

2-Iodobenzamide (I). Geometric parameters (Å, º)

I1—C3 2.105 (2) C6—C7 1.385 (3)
O1—C1 1.242 (2) C6—H6 0.9300
N1—C1 1.321 (3) C7—C2 1.395 (3)
N1—H1A 0.8600 C7—H7 0.9300
N1—H1B 0.8600 C2—C3 1.398 (3)
C5—C6 1.379 (3) C2—C1 1.499 (3)
C5—C4 1.384 (3) C4—C3 1.389 (3)
C5—H5 0.9300 C4—H4 0.9300
C1—N1—H1A 120.0 C7—C2—C3 118.20 (19)
C1—N1—H1B 120.0 C7—C2—C1 118.73 (18)
H1A—N1—H1B 120.0 C3—C2—C1 123.07 (18)
C6—C5—C4 120.2 (2) O1—C1—N1 122.29 (19)
C6—C5—H5 119.9 O1—C1—C2 121.37 (18)
C4—C5—H5 119.9 N1—C1—C2 116.32 (16)
C5—C6—C7 119.8 (2) C5—C4—C3 120.0 (2)
C5—C6—H6 120.1 C5—C4—H4 120.0
C7—C6—H6 120.1 C3—C4—H4 120.0
C6—C7—C2 121.1 (2) C4—C3—C2 120.61 (19)
C6—C7—H7 119.4 C4—C3—I1 117.38 (16)
C2—C7—H7 119.4 C2—C3—I1 121.81 (15)
C4—C5—C6—C7 0.9 (3) C6—C5—C4—C3 −0.7 (3)
C5—C6—C7—C2 0.2 (3) C5—C4—C3—C2 −0.6 (3)
C6—C7—C2—C3 −1.5 (3) C5—C4—C3—I1 174.29 (16)
C6—C7—C2—C1 178.91 (18) C7—C2—C3—C4 1.7 (3)
C7—C2—C1—O1 −135.1 (2) C1—C2—C3—C4 −178.75 (18)
C3—C2—C1—O1 45.3 (3) C7—C2—C3—I1 −172.99 (14)
C7—C2—C1—N1 43.5 (3) C1—C2—C3—I1 6.6 (3)
C3—C2—C1—N1 −136.1 (2)

2-Iodobenzamide (I). Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C2–C7 phenyl ring.

D—H···A D—H H···A D···A D—H···A
N1—H1A···O1i 0.86 2.11 2.951 (2) 164
N1—H1B···O1ii 0.86 2.05 2.843 (2) 154
C3—I1···Cg1iii 2.11 (1) 3.99 (1) 5.877 (2) 148 (1)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x+1/2, y+1/2, −z+1/2.

2-Iodo-N-phenylbenzamide (II) . Crystal data

C13H10INO Z = 2
Mr = 323.12 F(000) = 312
Triclinic, P1 Dx = 1.829 Mg m3
a = 5.1225 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.4572 (4) Å Cell parameters from 2309 reflections
c = 12.2167 (5) Å θ = 1.9–26.0°
α = 66.034 (2)° µ = 2.71 mm1
β = 78.882 (2)° T = 120 K
γ = 85.760 (2)° Plate, colorless
V = 586.76 (4) Å3 0.23 × 0.22 × 0.21 mm

2-Iodo-N-phenylbenzamide (II) . Data collection

Bruker Kappa APEXII DUO diffractometer 2309 independent reflections
Radiation source: fine-focus sealed tube 2278 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.018
ω scans θmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2014) h = −6→6
Tmin = 0.546, Tmax = 0.570 k = −12→12
13292 measured reflections l = −15→14

2-Iodo-N-phenylbenzamide (II) . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.017 H-atom parameters constrained
wR(F2) = 0.042 w = 1/[σ2(Fo2) + (0.0207P)2 + 0.7193P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
2309 reflections Δρmax = 0.81 e Å3
145 parameters Δρmin = −0.48 e Å3

2-Iodo-N-phenylbenzamide (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

2-Iodo-N-phenylbenzamide (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 −0.30400 (3) 0.03723 (2) 0.77480 (2) 0.01972 (6)
O1 −0.1224 (3) 0.31161 (18) 0.51921 (14) 0.0233 (3)
N1 0.3285 (3) 0.2852 (2) 0.49180 (16) 0.0169 (4)
H1 0.4668 0.2731 0.5279 0.020*
C1 0.0875 (4) 0.2939 (2) 0.55727 (19) 0.0161 (4)
C2 0.0968 (4) 0.2802 (2) 0.68392 (19) 0.0148 (4)
C3 −0.0677 (4) 0.1861 (2) 0.7861 (2) 0.0156 (4)
C4 −0.0629 (4) 0.1793 (2) 0.9014 (2) 0.0194 (4)
H4 −0.1751 0.1151 0.9704 0.023*
C5 0.1069 (4) 0.2670 (2) 0.9157 (2) 0.0206 (4)
H5 0.1091 0.2632 0.9945 0.025*
C6 0.2728 (4) 0.3597 (2) 0.8154 (2) 0.0198 (4)
H6 0.3893 0.4191 0.8255 0.024*
C7 0.2685 (4) 0.3657 (2) 0.7005 (2) 0.0169 (4)
H7 0.3838 0.4289 0.6321 0.020*
C8 0.3800 (4) 0.2938 (2) 0.37055 (19) 0.0159 (4)
C9 0.2215 (4) 0.3717 (2) 0.2855 (2) 0.0180 (4)
H9 0.0683 0.4185 0.3083 0.022*
C10 0.2897 (4) 0.3802 (2) 0.1671 (2) 0.0191 (4)
H10 0.1821 0.4334 0.1089 0.023*
C11 0.5124 (4) 0.3123 (2) 0.1323 (2) 0.0203 (4)
H11 0.5579 0.3190 0.0510 0.024*
C12 0.6677 (4) 0.2343 (2) 0.2180 (2) 0.0209 (5)
H12 0.8204 0.1873 0.1952 0.025*
C13 0.6024 (4) 0.2245 (2) 0.3364 (2) 0.0192 (4)
H13 0.7094 0.1703 0.3945 0.023*

2-Iodo-N-phenylbenzamide (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.01580 (8) 0.01876 (9) 0.02535 (9) −0.00291 (5) −0.00378 (6) −0.00904 (6)
O1 0.0114 (7) 0.0402 (10) 0.0194 (8) −0.0006 (7) −0.0035 (6) −0.0126 (7)
N1 0.0106 (8) 0.0271 (10) 0.0150 (9) 0.0003 (7) −0.0026 (7) −0.0103 (8)
C1 0.0134 (10) 0.0183 (10) 0.0171 (10) −0.0018 (8) −0.0013 (8) −0.0078 (8)
C2 0.0118 (9) 0.0171 (10) 0.0169 (10) 0.0039 (8) −0.0035 (8) −0.0084 (8)
C3 0.0109 (9) 0.0172 (10) 0.0214 (11) 0.0004 (8) −0.0028 (8) −0.0105 (9)
C4 0.0178 (10) 0.0221 (11) 0.0160 (10) 0.0002 (8) 0.0004 (8) −0.0069 (9)
C5 0.0207 (11) 0.0270 (12) 0.0174 (10) 0.0026 (9) −0.0042 (8) −0.0124 (9)
C6 0.0186 (10) 0.0216 (11) 0.0235 (11) 0.0002 (8) −0.0063 (9) −0.0124 (9)
C7 0.0131 (10) 0.0180 (10) 0.0187 (10) −0.0005 (8) −0.0013 (8) −0.0070 (9)
C8 0.0129 (9) 0.0206 (10) 0.0161 (10) −0.0047 (8) −0.0003 (8) −0.0095 (9)
C9 0.0139 (10) 0.0213 (11) 0.0203 (11) −0.0010 (8) −0.0018 (8) −0.0103 (9)
C10 0.0179 (10) 0.0220 (11) 0.0179 (10) −0.0045 (8) −0.0046 (8) −0.0071 (9)
C11 0.0208 (11) 0.0247 (11) 0.0182 (10) −0.0076 (9) 0.0010 (8) −0.0121 (9)
C12 0.0152 (10) 0.0256 (12) 0.0259 (12) −0.0031 (9) 0.0014 (9) −0.0159 (10)
C13 0.0138 (10) 0.0244 (11) 0.0218 (11) 0.0004 (8) −0.0046 (8) −0.0109 (9)

2-Iodo-N-phenylbenzamide (II) . Geometric parameters (Å, º)

I1—C3 2.104 (2) C6—H6 0.9500
O1—C1 1.225 (3) C7—H7 0.9500
N1—C1 1.354 (3) C8—C13 1.392 (3)
N1—C8 1.420 (3) C8—C9 1.394 (3)
N1—H1 0.8800 C9—C10 1.388 (3)
C1—C2 1.505 (3) C9—H9 0.9500
C2—C7 1.395 (3) C10—C11 1.388 (3)
C2—C3 1.399 (3) C10—H10 0.9500
C3—C4 1.387 (3) C11—C12 1.388 (3)
C4—C5 1.390 (3) C11—H11 0.9500
C4—H4 0.9500 C12—C13 1.382 (3)
C5—C6 1.385 (3) C12—H12 0.9500
C5—H5 0.9500 C13—H13 0.9500
C6—C7 1.384 (3)
C1—N1—C8 126.37 (18) C6—C7—C2 120.8 (2)
C1—N1—H1 116.8 C6—C7—H7 119.6
C8—N1—H1 116.8 C2—C7—H7 119.6
O1—C1—N1 124.4 (2) C13—C8—C9 119.80 (19)
O1—C1—C2 121.64 (19) C13—C8—N1 117.79 (19)
N1—C1—C2 113.98 (18) C9—C8—N1 122.38 (19)
C7—C2—C3 118.70 (19) C10—C9—C8 119.4 (2)
C7—C2—C1 119.60 (19) C10—C9—H9 120.3
C3—C2—C1 121.68 (18) C8—C9—H9 120.3
C4—C3—C2 120.61 (19) C11—C10—C9 121.1 (2)
C4—C3—I1 117.07 (16) C11—C10—H10 119.5
C2—C3—I1 122.08 (15) C9—C10—H10 119.5
C3—C4—C5 119.7 (2) C10—C11—C12 119.0 (2)
C3—C4—H4 120.1 C10—C11—H11 120.5
C5—C4—H4 120.1 C12—C11—H11 120.5
C6—C5—C4 120.3 (2) C13—C12—C11 120.7 (2)
C6—C5—H5 119.9 C13—C12—H12 119.7
C4—C5—H5 119.9 C11—C12—H12 119.7
C7—C6—C5 119.9 (2) C12—C13—C8 120.1 (2)
C7—C6—H6 120.1 C12—C13—H13 120.0
C5—C6—H6 120.1 C8—C13—H13 120.0
C8—N1—C1—O1 −0.6 (4) C5—C6—C7—C2 0.6 (3)
C8—N1—C1—C2 179.69 (19) C3—C2—C7—C6 −1.2 (3)
O1—C1—C2—C7 −127.2 (2) C1—C2—C7—C6 177.16 (19)
N1—C1—C2—C7 52.6 (3) C1—N1—C8—C13 −152.1 (2)
O1—C1—C2—C3 51.1 (3) C1—N1—C8—C9 29.9 (3)
N1—C1—C2—C3 −129.1 (2) C13—C8—C9—C10 −0.7 (3)
C7—C2—C3—C4 0.9 (3) N1—C8—C9—C10 177.34 (19)
C1—C2—C3—C4 −177.47 (19) C8—C9—C10—C11 0.1 (3)
C7—C2—C3—I1 −173.28 (15) C9—C10—C11—C12 0.3 (3)
C1—C2—C3—I1 8.4 (3) C10—C11—C12—C13 −0.1 (3)
C2—C3—C4—C5 0.1 (3) C11—C12—C13—C8 −0.4 (3)
I1—C3—C4—C5 174.51 (16) C9—C8—C13—C12 0.8 (3)
C3—C4—C5—C6 −0.7 (3) N1—C8—C13—C12 −177.3 (2)
C4—C5—C6—C7 0.4 (3)

2-Iodo-N-phenylbenzamide (II) . Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the C8–C13 benzene ring.

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.88 2.15 2.942 (2) 150
C3—I1···Cg2ii 2.10 (1) 3.83 (1) 5.816 (2) 156 (1)
C6—H6···Cg2iii 0.95 2.81 3.627 (2) 144

Symmetry codes: (i) x+1, y, z; (ii) −x, −y, −z+1; (iii) −x+1, −y+1, −z+1.

Funding Statement

This work was funded by Visvesvaraya Technological University grant . National Research Foundation grants 91995 and 96807. Durban University of Technology grant .

References

  1. Abdou, I. M., Saleh, A. M. & Zohdi, H. F. (2004). Molecules, 9, 109–116. [DOI] [PMC free article] [PubMed]
  2. Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Garden, S. J., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o450–o451. [DOI] [PubMed]
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Hu, D.-Y., Wan, Q.-Q., Yang, S., Song, B.-A., Bhadury, P. S., Jin, L.-H., Yan, K., Liu, F., Chen, Z. & Xue, W. (2008). J. Agric. Food Chem. 56, 998–1001. [DOI] [PubMed]
  8. Jursic, B. S. & Zdravkovski, Z. (1993). Synth. Commun. 23, 2761–2770.
  9. Kalgutkar, A. S., Marnett, A. B., Crews, B. C., Remmel, R. P. & Marnett, L. J. (2000). J. Med. Chem. 43, 2860–2870. [DOI] [PubMed]
  10. Kavala, V., Wang, C.-C., Barange, D. K., Kuo, C.-W., Lei, P.-M. & Yao, C.-F. (2012). J. Org. Chem. 77, 5022–5029. [DOI] [PubMed]
  11. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  12. Mao, W., Ning, M., Liu, Z., Zhu, Q., Leng, Y. & Zhang, A. (2012). Bioorg. Med. Chem. 20, 2982–2991. [DOI] [PubMed]
  13. Nakata, K., Tateno, T. & Sakurai, K. (1976). Mem. Osaka Kyoiku Univ. Ser. 3, 25, 61.
  14. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  15. Nayak, S. K., Reddy, M. K., Chopra, D. & Guru Row, T. N. (2012). CrystEngComm, 14, 200–210.
  16. Pradidphol, N., Kongkathip, N., Sittikul, P., Boonyalai, N. & Kongkathip, B. (2012). Eur. J. Med. Chem. 49, 253–270. [DOI] [PubMed]
  17. Ragavan, R. V., Vijayakumar, V. & Kumari, N. S. (2010). Eur. J. Med. Chem. 45, 1173–1180. [DOI] [PubMed]
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  20. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  21. Starmer, G., McLean, S. & Thomas, J. (1971). Toxicol. Appl. Pharmacol. 19, 20–28. [DOI] [PubMed]
  22. Suchetan, P. A., Suresha, E., Naveen, S. & Lokanath, N. K. (2016). Acta Cryst. E72, 819–823. [DOI] [PMC free article] [PubMed]
  23. Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o634–o638. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989018010162/sj5558sup1.cif

e-74-01130-sup1.cif (691.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018010162/sj5558Isup2.hkl

e-74-01130-Isup2.hkl (121.5KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989018010162/sj5558IIsup3.hkl

e-74-01130-IIsup3.hkl (185KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018010162/sj5558Isup4.cml

Supporting information file. DOI: 10.1107/S2056989018010162/sj5558IIsup5.cml

CCDC references: 1855731, 1855730

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES