Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Jul 31;74(Pt 8):1182–1185. doi: 10.1107/S2056989018010514

Crystal structure of tetra­kis­(1,1,1,5,5,5-hexa­fluoro­acetyl­acetonato)hafnium(IV)

W Franklin Schwandt a, Toby J Woods b, Gregory S Girolami a,*
PMCID: PMC6072989  PMID: 30116589

The crystal structure of the square-anti­prismatic complex tetra­kis­(1,1,1,5,5,5-hexa­fluoro­acetyl­acetonato)hafnium(IV) is reported.

Keywords: crystal structure, hafnium, hexa­fluoro­acetyl­acetonate

Abstract

The crystal structure of the title compound, [Hf(C5HF6O2)4], has been determined. The asymmetric unit contains two Hf(hfac)4 mol­ecules (hfac = 1,1,1,5,5,5-hexa­fluoro­acetyl­acetonate); both are located on general positions and have identical structures apart from the disorder involving three CF3 groups in one of the two mol­ecules. The mol­ecules of Hf(hfac)4 are arranged in layers that are parallel to the ab plane, and the coordination geometry of each hafnium(IV) center is a distorted square anti­prism. An inter­esting aspect of the structure is that the hfac ligands are arranged so that the Hf(hfac)4 mol­ecules have idealized 2 point symmetry, in which two of the hfac groups bridge between the two squares. Although all other M(β-diketonate)4 compounds of Hf (and Zr) also have square-anti­prismatic geometries; in almost all of them the ligands are arranged so that the mol­ecules have 222 point symmetry (in which none of the hfac ligands bridges between the two squares). The factors that favor one structure over another are not clear.

Chemical context  

The mol­ecule tetra­kis­(1,1,1,5,5,5-hexa­fluoro­acetyl­acetonato)hafnium(IV), Hf(hfac)4, has a relatively high vapor pressure for a hafnium compound, and in part for this reason it has been identified as a potential chemical vapor deposition (CVD) precursor for thin films of hafnium dioxide (Balog et al., 1977; Morozova et al., 2008; Wilk et al., 2001; Zherikova & Morozova, 2012; Zherikova et al., 2008).graphic file with name e-74-01182-scheme1.jpg

Thin films of HfO2 are widely used as the gate oxide in integrated circuits because of its high dielectric constant. Although most CVD precursors for HfO2, such as the di­alkyl­amide Hf(NMe2)4, have mol­ecular weights less than 500, it has recently been discovered that higher mol­ecular weight precursors can enable superconformal growth in high aspect ratio features (i.e., faster growth deeper in the feature), which is an important goal in the microelectronics industry (Wang et al., 2014). The mol­ecular weight of Hf(hfac)4 is quite high (1006.8), but it nevertheless is highly volatile owing to the fluorine substit­uents, which reduce the strength of inter­molecular inter­actions (Jones et al., 2009). Here we report on the crystal structure of Hf(hfac)4.

Structural commentary  

There are two crystallographically inequivalent Hf(hfac)4 mol­ecules in the asymmetric unit (Fig. 1). The two mol­ecules are structurally identical (r.m.s. deviation = 0.004 Å), except that three of the CF3 substituents in the Hf1 mol­ecule are disordered over two sites (Fig. 2). Each hafnium atom is bound to four bidentate hfac ligands; the eight oxygen atoms define a square anti­prism in which two of the hfac ligands bridge between the squares, giving an idealized point symmetry of 2. The Hf—O bond lengths range from 2.134 (2) to 2.210 (3) Å, whereas the C—O bond lengths range from 1.247 (5) to 1.275 (5) Å. All of the distances are as expected except that the C—F bond distances vary over a larger range than usual owing to the disorder.

Figure 1.

Figure 1

The asymmetric unit of Hf(hfac)4 with displacement ellipsoids drawn at the 50% probability level. F10A–F12A, F16A–F18A and F22A–F24A are the minor components of the F atoms of the disordered CF3 groups in the Hf1 molecule. Color coding: C – grey, O – red, H – white, F– green, Hf – blue.

Figure 2.

Figure 2

Overlay of the crystallographically inequivalent Hf(hfac)4 mol­ecules with mol­ecule 1 in orange, mol­ecule 2 in blue, and the disordered CF3 groups in green; r.m.s. deviation = 0.004 Å.

Supra­molecular features  

The mol­ecules are well separated and the shortest Hf⋯Hf distance is 8.3610 (1) Å. The mol­ecules form layers parallel to the ab plane (Figs. 3 and 4). Of the inter­molecular C—H⋯F contacts (ignoring the minor site F atoms; Table 1), only three are comparable to the 2.60 Å sum of the van der Waals radii (1.2 Å for H, and 1.40 Å for F attached to a primary alkyl (Bondi, 1964): H8⋯F5 (2.50 Å), H13⋯F35 (2.65 Å), and H3⋯F24 (2.68 Å). Only one inter­molecular F⋯F inter­action (again ignoring the minor site F atoms) is shorter than 2.8 Å, the sum of van der Waals radii for two F atoms attached to a primary alkyl, that involving F2⋯F22 (2.76 Å). All these inter­molecular contacts must be weak, given that the compound sublimes in moderate vacuum only slightly above room temperature.

Figure 3.

Figure 3

A single layer of Hf(hfac)4 mol­ecules as viewed along the c axis.

Figure 4.

Figure 4

The layered structure of Hf(hfac)4 as viewed along the a axis.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯F23A i 0.95 2.57 3.374 (10) 143
C3—H3⋯F24i 0.95 2.68 3.375 (8) 130
C8—H8⋯F5ii 0.95 2.50 3.427 (5) 166
C33—H33⋯F11A iii 0.95 2.49 3.292 (9) 142
C13—H13⋯F35iii 0.95 2.65 3.528 (5) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Database survey  

A search of the Cambridge Structural Database (CSD) returned 21 structures of the form Hf(RCOCHCOR′)4 and 21 of the form Zr(RCOCHCOR′)4 (Groom et al., 2016). The R and R′ groups, which could either be the same or different, included Me, CF3, iPr, CH2 tBu, tBu, thio­furanyl, CMe2(OMe), OSiMe3, OMe, OEt, OtBu, Ph, and CH2COOtBu. In all cases, the eight oxygen atoms describe a square anti­prism about the metal center. This is the geometry expected for M(bidentate)4 mol­ecules in which the bidentate ligand has a large bite angle (Kepert, 1982).

Inter­estingly, of the 42 structures in the CSD, three different arrangements of the ligands have been seen, corres­ponding to the three idealized mol­ecular point symmetries possible for a square-anti­prismatic coordination geometry with four bidentate ligands (Fig. 5) (Marchi et al., 1943; Hoard & Silverton, 1963; Muetterties & Wright, 1967). The majority of them describe mol­ecules with idealized 222 symmetry (in which none of the ligands bridge between the two squares), two describe mol­ecules with idealized point symmetries of 2 (in which two of the ligands bridge between the two squares), and one describes a mol­ecule with idealized 422 symmetry (in which all four ligands bridge between the two squares; in all cases, these point symmetries describe the arrangement of the ligands, and neglect differences between the R and R′ groups, if any).

Figure 5.

Figure 5

The three different isomers of square anti­prismatic tetra­kis­(bidentate) metal complexes. Point symmetries: (a) 2, (b) 222, (c) 422.

The current mol­ecule Hf(hfac)4 adds to the small number of group 4 M(RCOCHCOR′)4 complexes that adopt the structure with an idealized point symmetry of 2; inter­estingly, one of the others is the zirconium analog Zr(hfac)4 (Calderazzo et al., 1998). There is no obvious reason why Hf(hfac)4 and Zr(hfac)4 adopt this geometry rather than one of the other two. Irrespective of the structure adopted, the Hf—O and Zr—O bond distances in all Zr and Hf β-diketonates are all near 2.2 Å.

The NMR data for Hf(hfac)4 show that all four C—H groups and all eight CF3 groups are chemically equivalent on the NMR time scale at room temperature, so that there must be a dynamic process that inter­converts the different hfac environments.

Synthesis and crystallization  

To a mixture of sodium 1,1,1,5,5,5-hexa­fluoro­acetyl­acetonate (Harada & Girolami, 2007) (1.46 g, 6.36 mmol) and hafnium tetra­chloride (0.51 g, 1.59 mmol) at 195 K was added diethyl ether (10 mL). The mixture was warmed to room temperature and allowed to stir overnight. The solution was filtered, and the filtrate was taken to dryness under vacuum. The colorless product Hf(hfac)4 was sublimed out of the brown residue at 15 mTorr and 303 K onto a water-cooled cold finger. Yield: 0.44 g (28%). 1H NMR (400 MHz, C6D6): δ 6.12 (s). 19F NMR (400 MHz, C6D6): δ −77.01 (s). The NMR spectra are similar to those previously reported for this compound in CCl4 (1H NMR: δ 6.54; 19F NMR: δ −74.7); note that this previous work used the opposite chemical shift sign convention and a different 19F NMR shift reference (Chattoraj et al., 1968).

X-ray quality crystals were grown by allowing Hf(hfac)4 (0.1 g) to sublime inside an evacuated 50 mL Schlenk tube placed on top of a warm oven. After 12 h, crystals had formed on the cooler parts of the tube.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H-atom positions were positioned geometrically and refined as riding: C—H = 0.95 Å with U iso(H) = 1.2U eq(C). The F10–F12, F16–F18, and F22–F24 atoms are disordered over two sites; their occupancies refine to 0.644 (18):0.356 (18), 0.507 (6):0.493 (6) and 0.61 (2):0.39 (2), respectively. Within each disordered CF3 group, the C—F distances were restrained to 1.35±0.01 Å, and the F—C—F and C—C—F bond angles were limited to near-tetra­hedral values by restraining the F⋯F and β-C⋯F distances to 2.15 (1) and 2.3 (5) Å, respectively. The displacement parameters for all F atoms were restrained to be approximately isotropic (ISOR 0.005). The (Inline graphic11), (021), (011), (110), (113), (122), (111), (220), and (Inline graphic21) reflections were obscured by the beam stop and were omitted from the final refinement. The largest electron density peak in the difference map (4.36 e Å−3) is located 0.85 Å from Hf2 and is certainly a Fourier truncation ripple.

Table 2. Experimental details.

Crystal data
Chemical formula [Hf(C5HF6O2)4]
M r 1006.72
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 15.3042 (3), 20.0723 (4), 19.4935 (4)
β (°) 96.158 (1)
V3) 5953.7 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 3.70
Crystal size (mm) 0.23 × 0.22 × 0.19
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.661, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 211180, 14806, 12738
R int 0.044
(sin θ/λ)max−1) 0.668
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.031, 0.074, 1.10
No. of reflections 14806
No. of parameters 1039
No. of restraints 369
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 4.36, −1.89

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXT2014 (Sheldrick, 2015b ), SHELXL2014 (Sheldrick, 2015a ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018010514/sj5560sup1.cif

e-74-01182-sup1.cif (6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018010514/sj5560Isup2.hkl

e-74-01182-Isup2.hkl (1.1MB, hkl)

CCDC reference: 1857253

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Sumeng Liu for helpful suggestions.

supplementary crystallographic information

Crystal data

[Hf(C5HF6O2)4] F(000) = 3808
Mr = 1006.72 Dx = 2.246 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 15.3042 (3) Å Cell parameters from 58639 reflections
b = 20.0723 (4) Å θ = 2.3–28.2°
c = 19.4935 (4) Å µ = 3.70 mm1
β = 96.158 (1)° T = 100 K
V = 5953.7 (2) Å3 Prism, colourless
Z = 8 0.23 × 0.22 × 0.19 mm

Data collection

Bruker APEXII CCD diffractometer 12738 reflections with I > 2σ(I)
φ and ω scans Rint = 0.044
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 28.3°, θmin = 1.3°
Tmin = 0.661, Tmax = 0.746 h = −20→20
211180 measured reflections k = −26→26
14806 independent reflections l = −26→26

Refinement

Refinement on F2 369 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031 H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0259P)2 + 18.914P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max = 0.003
14806 reflections Δρmax = 4.36 e Å3
1039 parameters Δρmin = −1.89 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Hf1 0.54873 (2) 0.38630 (2) 0.77866 (2) 0.01927 (4)
O1 0.53844 (16) 0.28122 (12) 0.80247 (12) 0.0205 (5)
O2 0.62501 (17) 0.38168 (13) 0.87740 (13) 0.0241 (5)
C1 0.5399 (3) 0.1738 (2) 0.8474 (2) 0.0350 (9)
F1 0.45392 (19) 0.16898 (15) 0.8499 (2) 0.0679 (10)
F2 0.57856 (17) 0.13531 (12) 0.89695 (13) 0.0370 (6)
F3 0.5599 (3) 0.14822 (14) 0.78807 (15) 0.0677 (10)
C2 0.5686 (2) 0.24662 (19) 0.85349 (19) 0.0236 (7)
C3 0.6221 (2) 0.2677 (2) 0.91177 (19) 0.0250 (7)
H3 0.6416 0.2367 0.9470 0.030*
C4 0.6470 (2) 0.33396 (19) 0.91818 (18) 0.0228 (7)
C5 0.7101 (3) 0.3559 (2) 0.9803 (2) 0.0282 (8)
F4 0.72420 (19) 0.30906 (16) 1.02815 (13) 0.0514 (7)
F5 0.6798 (2) 0.40941 (17) 1.00909 (15) 0.0596 (9)
F6 0.78750 (16) 0.37207 (15) 0.96098 (13) 0.0419 (6)
O3 0.44467 (16) 0.37390 (13) 0.84384 (13) 0.0233 (5)
O4 0.54190 (16) 0.48451 (13) 0.82534 (13) 0.0231 (5)
C6 0.3275 (3) 0.3795 (2) 0.9110 (2) 0.0315 (9)
F7 0.34891 (17) 0.31919 (13) 0.93486 (15) 0.0447 (7)
F8 0.26091 (15) 0.37342 (14) 0.86177 (14) 0.0428 (6)
F9 0.29883 (17) 0.41418 (14) 0.96194 (14) 0.0441 (6)
C7 0.4053 (2) 0.41242 (19) 0.88110 (18) 0.0229 (7)
C8 0.4239 (3) 0.4783 (2) 0.8948 (2) 0.0301 (8)
H8 0.3900 0.5027 0.9242 0.036*
C9 0.4925 (2) 0.50954 (19) 0.86582 (19) 0.0244 (7)
C10 0.5104 (3) 0.5827 (2) 0.8848 (2) 0.0337 (9)
F10 0.5280 (9) 0.5913 (5) 0.9485 (4) 0.075 (3) 0.644 (18)
F11 0.4377 (3) 0.6185 (3) 0.8640 (4) 0.0410 (16) 0.644 (18)
F12 0.5689 (5) 0.6093 (3) 0.8483 (6) 0.061 (2) 0.644 (18)
F10A 0.4662 (13) 0.6251 (7) 0.8458 (7) 0.082 (5) 0.356 (18)
F11A 0.5975 (6) 0.5965 (7) 0.8883 (10) 0.066 (4) 0.356 (18)
F12A 0.4944 (9) 0.5948 (8) 0.9513 (5) 0.042 (3) 0.356 (18)
O5 0.60640 (16) 0.45575 (13) 0.71347 (13) 0.0240 (5)
O6 0.67729 (16) 0.34269 (13) 0.76348 (14) 0.0258 (5)
C11 0.6729 (3) 0.5152 (2) 0.6296 (2) 0.0324 (9)
F13 0.69778 (19) 0.56731 (13) 0.66855 (14) 0.0458 (7)
F14 0.59588 (18) 0.52931 (14) 0.59612 (14) 0.0461 (7)
F15 0.7301 (2) 0.50791 (15) 0.58351 (16) 0.0560 (8)
C12 0.6679 (2) 0.4527 (2) 0.67444 (19) 0.0270 (8)
C13 0.7281 (3) 0.4021 (2) 0.6715 (2) 0.0347 (9)
H13 0.7680 0.4024 0.6374 0.042*
C14 0.7295 (2) 0.3506 (2) 0.7193 (2) 0.0297 (8)
C15 0.8009 (3) 0.2969 (3) 0.7202 (3) 0.0502 (13)
F16 0.8107 (7) 0.2602 (5) 0.7724 (5) 0.076 (4) 0.507 (6)
F17 0.8811 (3) 0.3284 (3) 0.7178 (3) 0.0359 (14) 0.507 (6)
F18 0.7919 (5) 0.2634 (5) 0.6628 (5) 0.075 (3) 0.507 (6)
F16A 0.8637 (7) 0.3108 (6) 0.6835 (7) 0.134 (5) 0.493 (6)
F17A 0.7623 (6) 0.2390 (4) 0.6979 (6) 0.096 (4) 0.493 (6)
F18A 0.8322 (7) 0.2835 (5) 0.7855 (4) 0.082 (4) 0.507 (6)
O7 0.43069 (16) 0.43040 (13) 0.72452 (12) 0.0234 (5)
O8 0.52769 (17) 0.33355 (13) 0.68213 (13) 0.0244 (5)
C16 0.3184 (3) 0.4779 (2) 0.6483 (2) 0.0299 (8)
F19 0.24631 (16) 0.44484 (13) 0.66136 (16) 0.0458 (7)
F20 0.3066 (2) 0.49750 (15) 0.58295 (14) 0.0522 (8)
F21 0.32427 (18) 0.53092 (12) 0.68787 (14) 0.0432 (6)
C17 0.3988 (2) 0.43221 (19) 0.66260 (19) 0.0242 (7)
C18 0.4258 (2) 0.3952 (2) 0.6084 (2) 0.0263 (8)
H18 0.4022 0.4036 0.5621 0.032*
C19 0.4879 (2) 0.34600 (19) 0.62377 (19) 0.0242 (7)
C20 0.5124 (3) 0.3000 (2) 0.5672 (2) 0.0333 (9)
F22 0.4891 (8) 0.3242 (6) 0.5060 (5) 0.044 (2) 0.61 (2)
F23 0.4621 (7) 0.2422 (3) 0.5695 (4) 0.050 (2) 0.61 (2)
F24 0.5912 (5) 0.2793 (7) 0.5737 (4) 0.062 (3) 0.61 (2)
F22A 0.5122 (14) 0.2372 (4) 0.5819 (6) 0.069 (4) 0.39 (2)
F23A 0.5991 (5) 0.3159 (9) 0.5588 (6) 0.048 (3) 0.39 (2)
F24A 0.4703 (9) 0.3102 (9) 0.5044 (7) 0.036 (3) 0.39 (2)
Hf2 0.05011 (2) 0.34812 (2) 0.29307 (2) 0.02059 (4)
O9 0.03888 (16) 0.24362 (13) 0.31851 (13) 0.0254 (5)
O10 0.13316 (16) 0.34335 (13) 0.38817 (13) 0.0238 (5)
C21 0.0339 (3) 0.1385 (2) 0.3698 (2) 0.0317 (9)
F25 0.0415 (2) 0.10771 (14) 0.31083 (15) 0.0584 (8)
F26 −0.05068 (17) 0.14064 (13) 0.37891 (17) 0.0482 (7)
F27 0.0740 (2) 0.10128 (13) 0.42026 (15) 0.0495 (7)
C22 0.0703 (2) 0.20906 (19) 0.36922 (19) 0.0237 (7)
C23 0.1315 (2) 0.2302 (2) 0.42349 (19) 0.0263 (8)
H23 0.1542 0.1991 0.4576 0.032*
C24 0.1591 (2) 0.2953 (2) 0.42804 (18) 0.0235 (7)
C25 0.2278 (2) 0.3170 (2) 0.48612 (19) 0.0297 (8)
F28 0.19783 (18) 0.36545 (15) 0.52273 (14) 0.0467 (7)
F29 0.29945 (16) 0.33921 (15) 0.46019 (13) 0.0432 (6)
F30 0.25335 (17) 0.26747 (14) 0.52928 (12) 0.0413 (6)
O11 −0.05268 (16) 0.33560 (13) 0.35927 (13) 0.0259 (6)
O12 0.04500 (16) 0.44602 (13) 0.34183 (13) 0.0234 (5)
C26 −0.1791 (2) 0.3432 (2) 0.4163 (2) 0.0296 (8)
F31 −0.16297 (17) 0.28179 (14) 0.43867 (15) 0.0468 (7)
F32 −0.24156 (15) 0.33971 (13) 0.36372 (14) 0.0400 (6)
F33 −0.21122 (18) 0.37811 (15) 0.46555 (15) 0.0502 (7)
C27 −0.0975 (2) 0.3758 (2) 0.39135 (19) 0.0248 (8)
C28 −0.0814 (2) 0.4423 (2) 0.40295 (19) 0.0274 (8)
H28 −0.1194 0.4677 0.4282 0.033*
C29 −0.0091 (2) 0.4728 (2) 0.37765 (18) 0.0237 (7)
C30 0.0080 (3) 0.5464 (2) 0.3921 (2) 0.0319 (9)
F34 −0.0084 (3) 0.58166 (15) 0.33567 (16) 0.0698 (10)
F35 0.09035 (17) 0.55646 (14) 0.41741 (16) 0.0496 (7)
F36 −0.04077 (19) 0.57065 (14) 0.43865 (16) 0.0495 (7)
O13 0.10713 (16) 0.41745 (13) 0.22774 (13) 0.0243 (5)
O14 0.17452 (16) 0.30105 (13) 0.27081 (13) 0.0247 (5)
C31 0.1684 (3) 0.4764 (2) 0.1407 (2) 0.0332 (9)
F37 0.1948 (2) 0.52825 (14) 0.17918 (16) 0.0552 (8)
F38 0.09032 (19) 0.49093 (14) 0.10948 (15) 0.0511 (7)
F39 0.2232 (2) 0.46960 (16) 0.09337 (18) 0.0682 (10)
C32 0.1645 (2) 0.41349 (19) 0.18522 (19) 0.0249 (7)
C33 0.2210 (3) 0.3614 (2) 0.1775 (2) 0.0278 (8)
H33 0.2579 0.3615 0.1413 0.033*
C34 0.2231 (2) 0.30842 (19) 0.22395 (19) 0.0241 (7)
C35 0.2891 (3) 0.2518 (2) 0.2196 (2) 0.0319 (9)
F40 0.33034 (18) 0.23785 (15) 0.28025 (15) 0.0519 (7)
F41 0.3485 (2) 0.26543 (16) 0.17714 (18) 0.0621 (9)
F42 0.2483 (2) 0.19740 (14) 0.19608 (19) 0.0601 (9)
O15 −0.06754 (16) 0.39771 (14) 0.24297 (13) 0.0246 (5)
O16 0.01956 (16) 0.29709 (14) 0.19657 (13) 0.0254 (5)
C36 −0.1771 (3) 0.4516 (2) 0.1697 (2) 0.0324 (9)
F43 −0.25120 (16) 0.41942 (16) 0.17806 (18) 0.0560 (8)
F44 −0.18531 (19) 0.47703 (14) 0.10659 (14) 0.0488 (7)
F45 −0.16958 (18) 0.50112 (14) 0.21439 (14) 0.0465 (7)
C37 −0.1003 (2) 0.40286 (19) 0.18149 (19) 0.0247 (8)
C38 −0.0762 (2) 0.3666 (2) 0.1256 (2) 0.0268 (8)
H38 −0.0983 0.3778 0.0797 0.032*
C39 −0.0191 (2) 0.31374 (19) 0.13900 (19) 0.0250 (7)
C40 −0.0013 (3) 0.2665 (2) 0.0799 (2) 0.0324 (9)
F46 −0.0464 (3) 0.21060 (15) 0.08203 (16) 0.0623 (9)
F47 0.0824 (2) 0.2514 (2) 0.08321 (15) 0.0695 (11)
F48 −0.02508 (17) 0.29400 (13) 0.01846 (12) 0.0396 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Hf1 0.01424 (7) 0.02359 (8) 0.02007 (7) 0.00008 (5) 0.00223 (5) −0.00098 (5)
O1 0.0196 (12) 0.0175 (12) 0.0244 (12) −0.0022 (9) 0.0017 (9) 0.0004 (10)
O2 0.0238 (13) 0.0251 (13) 0.0227 (12) −0.0015 (11) −0.0004 (10) 0.0004 (10)
C1 0.039 (2) 0.026 (2) 0.039 (2) 0.0008 (18) −0.0011 (18) 0.0032 (17)
F1 0.0335 (15) 0.0406 (16) 0.124 (3) −0.0167 (13) −0.0194 (17) 0.0279 (18)
F2 0.0397 (14) 0.0284 (12) 0.0429 (14) 0.0032 (11) 0.0039 (11) 0.0071 (10)
F3 0.134 (3) 0.0309 (15) 0.0361 (15) 0.0035 (17) −0.0021 (18) −0.0064 (12)
C2 0.0182 (17) 0.0268 (19) 0.0267 (18) −0.0002 (14) 0.0070 (14) −0.0022 (15)
C3 0.0217 (17) 0.0296 (19) 0.0239 (18) 0.0024 (15) 0.0035 (14) 0.0013 (15)
C4 0.0158 (16) 0.0309 (19) 0.0223 (17) 0.0007 (14) 0.0045 (13) −0.0038 (14)
C5 0.0246 (19) 0.035 (2) 0.0245 (18) −0.0006 (16) −0.0007 (14) −0.0025 (16)
F4 0.0577 (18) 0.0619 (18) 0.0303 (13) −0.0183 (15) −0.0151 (12) 0.0127 (13)
F5 0.0524 (17) 0.076 (2) 0.0462 (16) 0.0190 (16) −0.0125 (13) −0.0371 (15)
F6 0.0255 (12) 0.0609 (17) 0.0379 (14) −0.0113 (12) −0.0028 (10) −0.0009 (12)
O3 0.0188 (12) 0.0264 (13) 0.0255 (13) −0.0040 (10) 0.0062 (10) −0.0030 (10)
O4 0.0182 (12) 0.0254 (13) 0.0258 (13) −0.0026 (10) 0.0024 (10) −0.0003 (10)
C6 0.026 (2) 0.032 (2) 0.038 (2) 0.0018 (17) 0.0136 (16) 0.0044 (17)
F7 0.0374 (14) 0.0361 (14) 0.0643 (18) 0.0058 (11) 0.0229 (13) 0.0221 (13)
F8 0.0199 (12) 0.0537 (16) 0.0552 (16) −0.0074 (11) 0.0060 (11) 0.0047 (13)
F9 0.0392 (14) 0.0495 (16) 0.0483 (15) 0.0039 (12) 0.0266 (12) 0.0013 (13)
C7 0.0168 (16) 0.0292 (19) 0.0229 (17) 0.0027 (14) 0.0029 (13) 0.0045 (14)
C8 0.0261 (19) 0.026 (2) 0.040 (2) 0.0032 (16) 0.0128 (16) −0.0035 (17)
C9 0.0198 (17) 0.0252 (18) 0.0276 (18) 0.0020 (14) 0.0000 (14) −0.0015 (15)
C10 0.035 (2) 0.025 (2) 0.042 (2) −0.0024 (17) 0.0084 (18) −0.0042 (17)
F10 0.119 (7) 0.047 (4) 0.049 (4) −0.022 (5) −0.040 (4) −0.001 (3)
F11 0.035 (2) 0.021 (2) 0.067 (4) 0.0040 (18) 0.006 (2) 0.005 (2)
F12 0.051 (4) 0.029 (3) 0.111 (6) −0.014 (2) 0.040 (4) −0.018 (3)
F10A 0.131 (10) 0.053 (6) 0.058 (7) −0.007 (7) −0.018 (7) 0.020 (5)
F11A 0.046 (6) 0.048 (6) 0.111 (9) −0.019 (4) 0.036 (6) −0.035 (6)
F12A 0.053 (6) 0.038 (5) 0.040 (5) −0.017 (5) 0.027 (5) −0.015 (4)
O5 0.0195 (12) 0.0276 (14) 0.0260 (13) 0.0024 (10) 0.0074 (10) 0.0027 (10)
O6 0.0181 (12) 0.0296 (14) 0.0301 (14) 0.0014 (11) 0.0043 (10) 0.0012 (11)
C11 0.033 (2) 0.034 (2) 0.033 (2) 0.0026 (17) 0.0123 (17) 0.0064 (17)
F13 0.0559 (17) 0.0321 (14) 0.0493 (16) −0.0095 (12) 0.0058 (13) 0.0042 (12)
F14 0.0388 (14) 0.0513 (17) 0.0469 (15) 0.0044 (13) −0.0019 (12) 0.0151 (13)
F15 0.0627 (19) 0.0538 (18) 0.0585 (18) 0.0189 (15) 0.0395 (15) 0.0211 (14)
C12 0.0247 (18) 0.031 (2) 0.0259 (18) 0.0001 (16) 0.0044 (14) −0.0017 (15)
C13 0.025 (2) 0.043 (2) 0.039 (2) 0.0070 (18) 0.0166 (17) 0.0074 (19)
C14 0.0182 (17) 0.034 (2) 0.038 (2) 0.0053 (16) 0.0047 (15) 0.0012 (17)
C15 0.040 (3) 0.047 (3) 0.068 (4) 0.021 (2) 0.024 (2) 0.020 (3)
F16 0.067 (6) 0.072 (6) 0.095 (6) 0.024 (4) 0.039 (5) 0.045 (5)
F17 0.014 (2) 0.043 (3) 0.051 (3) 0.009 (2) 0.005 (2) 0.003 (2)
F18 0.055 (4) 0.066 (5) 0.100 (6) 0.029 (4) −0.015 (4) −0.046 (4)
F16A 0.118 (8) 0.122 (8) 0.178 (9) 0.055 (6) 0.093 (7) 0.052 (7)
F17A 0.100 (6) 0.061 (5) 0.122 (7) 0.049 (5) −0.008 (5) −0.029 (5)
F18A 0.055 (5) 0.075 (7) 0.104 (6) 0.030 (4) −0.038 (4) 0.009 (5)
O7 0.0180 (12) 0.0305 (14) 0.0217 (12) 0.0018 (10) 0.0019 (9) −0.0019 (10)
O8 0.0231 (13) 0.0285 (14) 0.0213 (12) 0.0051 (11) 0.0009 (10) −0.0021 (10)
C16 0.0260 (19) 0.028 (2) 0.035 (2) 0.0030 (16) −0.0015 (16) −0.0009 (16)
F19 0.0212 (12) 0.0384 (14) 0.077 (2) 0.0039 (11) 0.0022 (12) −0.0007 (13)
F20 0.0564 (17) 0.0603 (18) 0.0382 (14) 0.0324 (15) −0.0023 (12) 0.0073 (13)
F21 0.0462 (15) 0.0266 (13) 0.0557 (16) 0.0102 (11) 0.0005 (12) −0.0081 (11)
C17 0.0169 (16) 0.0250 (19) 0.0309 (19) −0.0006 (14) 0.0029 (14) 0.0003 (15)
C18 0.0228 (18) 0.030 (2) 0.0247 (18) 0.0027 (15) −0.0022 (14) −0.0015 (15)
C19 0.0219 (17) 0.0248 (18) 0.0259 (18) −0.0003 (15) 0.0029 (14) −0.0005 (15)
C20 0.034 (2) 0.039 (2) 0.026 (2) 0.0125 (19) −0.0004 (16) −0.0071 (17)
F22 0.050 (5) 0.054 (5) 0.028 (3) 0.009 (4) 0.001 (3) −0.008 (3)
F23 0.067 (5) 0.032 (3) 0.053 (3) 0.002 (3) 0.009 (3) −0.015 (2)
F24 0.039 (3) 0.093 (6) 0.050 (3) 0.040 (4) −0.011 (2) −0.036 (4)
F22A 0.108 (10) 0.039 (5) 0.062 (6) 0.020 (6) 0.014 (6) −0.001 (4)
F23A 0.029 (4) 0.072 (7) 0.043 (5) 0.007 (4) 0.004 (3) −0.035 (5)
F24A 0.026 (5) 0.052 (7) 0.027 (4) 0.005 (4) −0.011 (3) −0.019 (4)
Hf2 0.01420 (7) 0.02665 (8) 0.02060 (7) −0.00038 (6) 0.00031 (5) −0.00107 (6)
O9 0.0186 (12) 0.0308 (14) 0.0260 (13) 0.0009 (11) −0.0007 (10) 0.0004 (11)
O10 0.0186 (12) 0.0286 (14) 0.0234 (12) −0.0018 (10) −0.0016 (9) 0.0003 (11)
C21 0.037 (2) 0.0241 (19) 0.034 (2) 0.0031 (17) 0.0047 (17) 0.0010 (16)
F25 0.098 (3) 0.0342 (15) 0.0448 (16) −0.0029 (15) 0.0155 (16) −0.0124 (12)
F26 0.0317 (14) 0.0352 (14) 0.078 (2) −0.0096 (11) 0.0088 (13) 0.0022 (13)
F27 0.0558 (17) 0.0322 (14) 0.0580 (17) −0.0022 (12) −0.0043 (14) 0.0149 (12)
C22 0.0181 (16) 0.0286 (19) 0.0253 (18) 0.0033 (14) 0.0073 (13) −0.0009 (14)
C23 0.0244 (18) 0.034 (2) 0.0212 (17) 0.0028 (16) 0.0037 (14) 0.0032 (15)
C24 0.0149 (16) 0.037 (2) 0.0192 (16) 0.0037 (15) 0.0051 (13) −0.0022 (15)
C25 0.0216 (18) 0.044 (2) 0.0229 (18) 0.0022 (17) −0.0005 (14) −0.0011 (17)
F28 0.0448 (15) 0.0562 (17) 0.0366 (14) 0.0125 (13) −0.0071 (11) −0.0217 (12)
F29 0.0226 (12) 0.0686 (19) 0.0369 (14) −0.0117 (12) −0.0035 (10) 0.0035 (13)
F30 0.0379 (14) 0.0540 (16) 0.0293 (12) 0.0035 (12) −0.0089 (10) 0.0052 (11)
O11 0.0196 (12) 0.0306 (14) 0.0277 (13) −0.0020 (11) 0.0033 (10) −0.0004 (11)
O12 0.0176 (12) 0.0299 (14) 0.0227 (12) −0.0016 (10) 0.0020 (9) −0.0018 (10)
C26 0.0196 (18) 0.035 (2) 0.036 (2) 0.0030 (16) 0.0073 (15) 0.0095 (17)
F31 0.0313 (13) 0.0470 (16) 0.0641 (18) 0.0078 (12) 0.0139 (12) 0.0304 (14)
F32 0.0199 (11) 0.0465 (15) 0.0528 (16) −0.0037 (10) −0.0006 (10) 0.0140 (12)
F33 0.0407 (15) 0.0632 (19) 0.0515 (16) −0.0037 (14) 0.0281 (13) −0.0019 (14)
C27 0.0170 (16) 0.035 (2) 0.0225 (17) 0.0024 (15) 0.0005 (13) 0.0054 (15)
C28 0.0211 (18) 0.037 (2) 0.0247 (18) 0.0028 (16) 0.0041 (14) 0.0000 (16)
C29 0.0192 (17) 0.033 (2) 0.0178 (16) 0.0016 (15) −0.0015 (13) −0.0017 (14)
C30 0.030 (2) 0.036 (2) 0.030 (2) −0.0020 (17) 0.0048 (16) −0.0046 (17)
F34 0.128 (3) 0.0372 (16) 0.0409 (16) −0.0097 (18) −0.0050 (18) 0.0070 (13)
F35 0.0303 (13) 0.0480 (16) 0.0709 (19) −0.0102 (12) 0.0076 (13) −0.0248 (14)
F36 0.0466 (16) 0.0405 (15) 0.0652 (18) −0.0007 (13) 0.0237 (14) −0.0183 (13)
O13 0.0201 (12) 0.0271 (14) 0.0263 (13) 0.0027 (11) 0.0049 (10) 0.0000 (11)
O14 0.0171 (12) 0.0301 (14) 0.0267 (13) 0.0022 (10) 0.0014 (10) 0.0026 (11)
C31 0.032 (2) 0.032 (2) 0.037 (2) 0.0057 (17) 0.0126 (17) 0.0044 (17)
F37 0.073 (2) 0.0308 (14) 0.0606 (18) −0.0165 (14) 0.0039 (15) 0.0036 (13)
F38 0.0538 (17) 0.0460 (16) 0.0515 (17) 0.0079 (14) −0.0031 (13) 0.0202 (13)
F39 0.088 (2) 0.0551 (19) 0.072 (2) 0.0272 (17) 0.0549 (19) 0.0304 (16)
C32 0.0234 (18) 0.0268 (19) 0.0244 (18) −0.0001 (15) 0.0019 (14) 0.0023 (15)
C33 0.0253 (19) 0.029 (2) 0.031 (2) 0.0011 (16) 0.0083 (15) 0.0017 (16)
C34 0.0163 (16) 0.0255 (18) 0.0297 (19) −0.0008 (14) −0.0008 (14) −0.0018 (15)
C35 0.0214 (19) 0.029 (2) 0.045 (2) 0.0055 (16) 0.0050 (17) 0.0053 (18)
F40 0.0387 (15) 0.0586 (18) 0.0557 (17) 0.0214 (13) −0.0067 (13) 0.0100 (14)
F41 0.0525 (18) 0.0535 (18) 0.088 (2) 0.0253 (15) 0.0425 (17) 0.0226 (17)
F42 0.0473 (17) 0.0362 (15) 0.095 (2) 0.0051 (13) −0.0006 (16) −0.0217 (16)
O15 0.0162 (12) 0.0344 (15) 0.0227 (12) 0.0007 (10) −0.0005 (10) −0.0025 (11)
O16 0.0210 (12) 0.0320 (14) 0.0223 (13) 0.0014 (11) −0.0022 (10) −0.0019 (11)
C36 0.026 (2) 0.034 (2) 0.035 (2) 0.0081 (17) −0.0081 (16) −0.0049 (17)
F43 0.0200 (12) 0.0560 (18) 0.091 (2) 0.0033 (12) −0.0011 (13) 0.0019 (16)
F44 0.0544 (17) 0.0492 (16) 0.0402 (15) 0.0228 (14) −0.0073 (12) 0.0013 (12)
F45 0.0479 (16) 0.0421 (15) 0.0472 (15) 0.0167 (13) −0.0056 (12) −0.0134 (12)
C37 0.0177 (17) 0.0291 (19) 0.0261 (18) −0.0006 (14) −0.0039 (14) 0.0001 (15)
C38 0.0203 (17) 0.035 (2) 0.0239 (18) 0.0001 (15) −0.0025 (14) 0.0000 (15)
C39 0.0190 (17) 0.0292 (19) 0.0268 (18) −0.0045 (15) 0.0024 (14) −0.0021 (15)
C40 0.029 (2) 0.041 (2) 0.0262 (19) 0.0044 (18) −0.0003 (15) −0.0060 (17)
F46 0.104 (3) 0.0360 (16) 0.0479 (17) −0.0099 (17) 0.0146 (17) −0.0098 (13)
F47 0.0433 (16) 0.121 (3) 0.0426 (16) 0.0370 (18) −0.0044 (13) −0.0322 (18)
F48 0.0481 (15) 0.0465 (15) 0.0239 (12) 0.0037 (12) 0.0024 (10) −0.0037 (10)

Geometric parameters (Å, º)

Hf1—O1 2.169 (2) C20—F24 1.269 (7)
Hf1—O2 2.143 (2) C20—F22A 1.292 (7)
Hf1—O3 2.156 (2) C20—F23A 1.390 (7)
Hf1—O4 2.179 (3) C20—F24A 1.336 (8)
Hf1—O5 2.140 (2) Hf2—O9 2.166 (3)
Hf1—O6 2.202 (3) Hf2—O10 2.134 (2)
Hf1—O7 2.180 (2) Hf2—O11 2.154 (3)
Hf1—O8 2.153 (2) Hf2—O12 2.188 (3)
O1—C2 1.259 (4) Hf2—O13 2.135 (3)
O2—C4 1.267 (5) Hf2—O14 2.210 (2)
C1—F1 1.325 (5) Hf2—O15 2.193 (2)
C1—F2 1.327 (5) Hf2—O16 2.149 (3)
C1—F3 1.331 (5) O9—C22 1.260 (4)
C1—C2 1.526 (6) O10—C24 1.275 (5)
C2—C3 1.394 (5) C21—F25 1.321 (5)
C3—H3 0.9500 C21—F26 1.325 (5)
C3—C4 1.385 (5) C21—F27 1.331 (5)
C4—C5 1.530 (5) C21—C22 1.523 (6)
C5—F4 1.326 (5) C22—C23 1.402 (5)
C5—F5 1.320 (5) C23—H23 0.9500
C5—F6 1.321 (5) C23—C24 1.373 (6)
O3—C7 1.258 (4) C24—C25 1.524 (5)
O4—C9 1.255 (4) C25—F28 1.317 (5)
C6—F7 1.327 (5) C25—F29 1.332 (5)
C6—F8 1.327 (5) C25—F30 1.334 (5)
C6—F9 1.325 (5) O11—C27 1.267 (5)
C6—C7 1.530 (5) O12—C29 1.259 (4)
C7—C8 1.374 (6) C26—F31 1.322 (5)
C8—H8 0.9500 C26—F32 1.326 (5)
C8—C9 1.393 (5) C26—F33 1.325 (5)
C9—C10 1.531 (5) C26—C27 1.535 (5)
C10—F10 1.254 (9) C27—C28 1.372 (6)
C10—F11 1.351 (7) C28—H28 0.9500
C10—F12 1.314 (7) C28—C29 1.399 (5)
C10—F10A 1.284 (8) C29—C30 1.522 (6)
C10—F11A 1.355 (8) C30—F34 1.309 (5)
C10—F12A 1.367 (8) C30—F35 1.319 (5)
O5—C12 1.273 (4) C30—F36 1.328 (5)
O6—C14 1.247 (5) O13—C32 1.273 (4)
C11—F13 1.323 (5) O14—C34 1.247 (4)
C11—F14 1.316 (5) C31—F37 1.320 (5)
C11—F15 1.328 (5) C31—F38 1.315 (5)
C11—C12 1.535 (6) C31—F39 1.319 (5)
C12—C13 1.377 (6) C31—C32 1.536 (5)
C13—H13 0.9500 C32—C33 1.375 (5)
C13—C14 1.391 (6) C33—H33 0.9500
C14—C15 1.533 (6) C33—C34 1.394 (5)
C15—F16 1.252 (10) C34—C35 1.528 (5)
C15—F17 1.386 (8) C35—F40 1.309 (5)
C15—F18 1.301 (9) C35—F41 1.323 (5)
C15—F16A 1.288 (7) C35—F42 1.316 (5)
C15—F17A 1.354 (7) O15—C37 1.253 (4)
C15—F18A 1.338 (7) O16—C39 1.256 (4)
O7—C17 1.253 (4) C36—F43 1.330 (5)
O8—C19 1.256 (4) C36—F44 1.326 (5)
C16—F19 1.335 (5) C36—F45 1.319 (5)
C16—F20 1.327 (5) C36—C37 1.527 (5)
C16—F21 1.312 (5) C37—C38 1.393 (5)
C16—C17 1.536 (5) C38—H38 0.9500
C17—C18 1.390 (5) C38—C39 1.381 (5)
C18—H18 0.9500 C39—C40 1.539 (5)
C18—C19 1.382 (5) C40—F46 1.321 (5)
C19—C20 1.517 (5) C40—F47 1.312 (5)
C20—F22 1.301 (9) C40—F48 1.332 (5)
C20—F23 1.396 (8)
O1—Hf1—O4 141.51 (9) F24—C20—C19 115.7 (4)
O1—Hf1—O6 74.26 (9) F24—C20—F22 112.2 (7)
O1—Hf1—O7 115.03 (9) F24—C20—F23 104.3 (6)
O2—Hf1—O1 79.10 (9) F22A—C20—C19 115.2 (6)
O2—Hf1—O3 80.29 (10) F22A—C20—F23A 106.0 (6)
O2—Hf1—O4 73.14 (10) F22A—C20—F24A 110.0 (7)
O2—Hf1—O6 72.25 (10) F23A—C20—C19 104.9 (5)
O2—Hf1—O7 142.70 (9) F24A—C20—C19 116.0 (9)
O2—Hf1—O8 141.22 (10) F24A—C20—F23A 103.3 (7)
O3—Hf1—O1 71.72 (9) O9—Hf2—O12 139.70 (10)
O3—Hf1—O4 77.68 (9) O9—Hf2—O14 73.87 (10)
O3—Hf1—O6 139.51 (10) O9—Hf2—O15 117.38 (10)
O3—Hf1—O7 72.90 (10) O10—Hf2—O9 79.18 (10)
O4—Hf1—O6 119.96 (10) O10—Hf2—O11 83.08 (10)
O4—Hf1—O7 76.13 (9) O10—Hf2—O12 73.06 (10)
O5—Hf1—O1 143.59 (9) O10—Hf2—O13 107.70 (10)
O5—Hf1—O2 109.99 (10) O10—Hf2—O14 72.91 (10)
O5—Hf1—O3 143.43 (10) O10—Hf2—O15 142.29 (10)
O5—Hf1—O4 72.53 (9) O10—Hf2—O16 142.40 (10)
O5—Hf1—O6 75.39 (10) O11—Hf2—O9 70.66 (10)
O5—Hf1—O7 79.69 (9) O11—Hf2—O12 77.41 (10)
O5—Hf1—O8 80.44 (10) O11—Hf2—O14 140.16 (10)
O7—Hf1—O6 143.35 (9) O11—Hf2—O15 72.67 (10)
O8—Hf1—O1 72.62 (10) O12—Hf2—O14 122.75 (9)
O8—Hf1—O3 114.06 (10) O12—Hf2—O15 73.74 (9)
O8—Hf1—O4 143.20 (10) O13—Hf2—O9 144.60 (10)
O8—Hf1—O6 74.88 (10) O13—Hf2—O11 143.61 (10)
O8—Hf1—O7 74.82 (9) O13—Hf2—O12 73.12 (9)
C2—O1—Hf1 132.6 (2) O13—Hf2—O14 75.27 (9)
C4—O2—Hf1 132.7 (2) O13—Hf2—O15 78.88 (9)
F1—C1—F2 107.3 (4) O13—Hf2—O16 81.55 (10)
F1—C1—F3 109.1 (4) O15—Hf2—O14 142.20 (9)
F1—C1—C2 110.2 (3) O16—Hf2—O9 73.96 (10)
F2—C1—F3 106.3 (4) O16—Hf2—O11 111.38 (10)
F2—C1—C2 113.5 (4) O16—Hf2—O12 142.55 (10)
F3—C1—C2 110.3 (4) O16—Hf2—O14 74.66 (9)
O1—C2—C1 112.8 (3) O16—Hf2—O15 74.65 (10)
O1—C2—C3 127.6 (4) C22—O9—Hf2 132.8 (2)
C3—C2—C1 119.6 (3) C24—O10—Hf2 132.9 (2)
C2—C3—H3 120.1 F25—C21—F26 108.1 (4)
C4—C3—C2 119.8 (4) F25—C21—F27 107.7 (3)
C4—C3—H3 120.1 F25—C21—C22 111.2 (3)
O2—C4—C3 128.1 (3) F26—C21—F27 107.4 (3)
O2—C4—C5 112.4 (3) F26—C21—C22 109.5 (3)
C3—C4—C5 119.4 (3) F27—C21—C22 112.7 (3)
F4—C5—C4 113.2 (3) O9—C22—C21 114.1 (3)
F5—C5—C4 110.5 (3) O9—C22—C23 126.4 (4)
F5—C5—F4 108.4 (3) C23—C22—C21 119.5 (3)
F5—C5—F6 106.7 (4) C22—C23—H23 119.6
F6—C5—C4 110.8 (3) C24—C23—C22 120.9 (4)
F6—C5—F4 106.9 (3) C24—C23—H23 119.6
C7—O3—Hf1 134.4 (2) O10—C24—C23 127.3 (3)
C9—O4—Hf1 133.2 (2) O10—C24—C25 112.4 (3)
F7—C6—F8 108.1 (4) C23—C24—C25 120.2 (3)
F7—C6—C7 110.7 (3) F28—C25—C24 111.2 (3)
F8—C6—C7 109.5 (3) F28—C25—F29 107.9 (4)
F9—C6—F7 107.7 (3) F28—C25—F30 107.7 (3)
F9—C6—F8 107.5 (3) F29—C25—C24 110.1 (3)
F9—C6—C7 113.1 (3) F29—C25—F30 106.9 (3)
O3—C7—C6 113.3 (3) F30—C25—C24 112.8 (3)
O3—C7—C8 127.0 (3) C27—O11—Hf2 133.7 (2)
C8—C7—C6 119.7 (3) C29—O12—Hf2 132.8 (2)
C7—C8—H8 119.9 F31—C26—F32 107.4 (4)
C7—C8—C9 120.3 (4) F31—C26—F33 108.9 (3)
C9—C8—H8 119.9 F31—C26—C27 111.9 (3)
O4—C9—C8 127.3 (4) F32—C26—C27 108.7 (3)
O4—C9—C10 115.5 (3) F33—C26—F32 107.2 (3)
C8—C9—C10 117.2 (3) F33—C26—C27 112.5 (3)
F10—C10—C9 112.7 (6) O11—C27—C26 112.8 (3)
F10—C10—F11 107.8 (7) O11—C27—C28 127.2 (3)
F10—C10—F12 113.1 (6) C28—C27—C26 120.0 (3)
F11—C10—C9 108.5 (4) C27—C28—H28 119.9
F12—C10—C9 112.0 (4) C27—C28—C29 120.1 (4)
F12—C10—F11 102.0 (5) C29—C28—H28 119.9
F10A—C10—C9 115.0 (8) O12—C29—C28 127.0 (4)
F10A—C10—F11A 110.2 (7) O12—C29—C30 113.9 (3)
F10A—C10—F12A 107.8 (8) C28—C29—C30 119.1 (3)
F11A—C10—C9 111.0 (6) F34—C30—C29 110.9 (3)
F11A—C10—F12A 101.1 (6) F34—C30—F35 108.7 (4)
F12A—C10—C9 110.8 (7) F34—C30—F36 107.8 (4)
C12—O5—Hf1 134.6 (3) F35—C30—C29 110.9 (3)
C14—O6—Hf1 133.7 (3) F35—C30—F36 105.8 (3)
F13—C11—F15 107.8 (4) F36—C30—C29 112.6 (3)
F13—C11—C12 110.4 (3) C32—O13—Hf2 134.6 (2)
F14—C11—F13 107.6 (4) C34—O14—Hf2 133.4 (2)
F14—C11—F15 107.9 (4) F37—C31—C32 110.8 (3)
F14—C11—C12 111.2 (3) F38—C31—F37 107.1 (4)
F15—C11—C12 111.8 (3) F38—C31—F39 108.2 (4)
O5—C12—C11 112.7 (3) F38—C31—C32 110.8 (3)
O5—C12—C13 126.9 (4) F39—C31—F37 107.5 (4)
C13—C12—C11 120.3 (3) F39—C31—C32 112.1 (3)
C12—C13—H13 120.6 O13—C32—C31 112.8 (3)
C12—C13—C14 118.9 (4) O13—C32—C33 127.2 (4)
C14—C13—H13 120.6 C33—C32—C31 120.0 (3)
O6—C14—C13 126.3 (4) C32—C33—H33 120.6
O6—C14—C15 114.3 (4) C32—C33—C34 118.7 (3)
C13—C14—C15 119.4 (4) C34—C33—H33 120.6
F16—C15—C14 116.5 (6) O14—C34—C33 126.3 (3)
F16—C15—F17 105.5 (7) O14—C34—C35 113.7 (3)
F16—C15—F18 112.7 (8) C33—C34—C35 120.1 (3)
F17—C15—C14 108.2 (4) F40—C35—C34 111.5 (4)
F18—C15—C14 110.1 (5) F40—C35—F41 108.2 (3)
F18—C15—F17 102.7 (6) F40—C35—F42 107.6 (4)
F16A—C15—C14 114.5 (6) F41—C35—C34 112.5 (3)
F16A—C15—F17A 109.4 (7) F42—C35—C34 110.2 (3)
F16A—C15—F18A 111.0 (7) F42—C35—F41 106.6 (4)
F17A—C15—C14 108.3 (5) C37—O15—Hf2 133.5 (2)
F18A—C15—C14 109.6 (6) C39—O16—Hf2 133.8 (3)
F18A—C15—F17A 103.4 (6) F43—C36—C37 108.9 (3)
C17—O7—Hf1 134.0 (2) F44—C36—F43 107.7 (3)
C19—O8—Hf1 134.9 (2) F44—C36—C37 112.4 (3)
F19—C16—C17 109.3 (3) F45—C36—F43 107.5 (4)
F20—C16—F19 107.5 (3) F45—C36—F44 108.3 (4)
F20—C16—C17 112.0 (3) F45—C36—C37 111.9 (3)
F21—C16—F19 107.3 (3) O15—C37—C36 114.8 (3)
F21—C16—F20 108.5 (3) O15—C37—C38 126.4 (3)
F21—C16—C17 112.0 (3) C38—C37—C36 118.8 (3)
O7—C17—C16 114.4 (3) C37—C38—H38 121.0
O7—C17—C18 126.9 (3) C39—C38—C37 118.0 (3)
C18—C17—C16 118.6 (3) C39—C38—H38 121.0
C17—C18—H18 121.0 O16—C39—C38 126.9 (4)
C19—C18—C17 118.1 (3) O16—C39—C40 113.7 (3)
C19—C18—H18 121.0 C38—C39—C40 119.3 (3)
O8—C19—C18 126.4 (3) F46—C40—C39 111.4 (3)
O8—C19—C20 113.8 (3) F46—C40—F48 106.7 (3)
C18—C19—C20 119.7 (3) F47—C40—C39 110.8 (3)
F22—C20—C19 112.0 (7) F47—C40—F46 108.2 (4)
F22—C20—F23 104.1 (6) F47—C40—F48 108.1 (4)
F23—C20—C19 107.6 (4) F48—C40—C39 111.4 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3···F23Ai 0.95 2.57 3.374 (10) 143
C8—H8···F5ii 0.95 2.50 3.427 (5) 166
C33—H33···F11Aiii 0.95 2.49 3.292 (9) 142
C13—H13···F35iii 0.95 2.65 3.528 (5) 154
C3—H3···F24i 0.95 2.68 3.375 (8) 130

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, −y+1, −z+2; (iii) −x+1, −y+1, −z+1.

Funding Statement

This work was funded by NSF grant CHE-1665191.

References

  1. Balog, M., Schieber, M., Michman, M. & Patai, S. (1977). Thin Solid Films, 47, 109–120.
  2. Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
  3. Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconson, USA.
  4. Calderazzo, F., Englertb, U., Maichle-Mössmer, C., Marchetti, F., Pampaloni, G., Petroni, D., Pinzino, C., Strähle, J. & Tripepi, G. (1998). Inorg. Chim. Acta, 270, 177–188.
  5. Chattoraj, S. C., Lynch, C. T. & Mazdiyasni, K. S. (1968). Inorg. Chem. 7, 2501–2505.
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Harada, Y. & Girolami, G. S. (2007). Polyhedron, 26, 1758–1762.
  9. Hoard, J. L. & Silverton, J. V. (1963). Inorg. Chem. 2, 235–242.
  10. Jones, A. C., Aspinall, H. C. & Chalker, P. R. (2009). Chemical Vapor Deposition: Precursors, Processes and Applications, edited by A. C. Jones & M. L. Hitchman, pp. 357–412. Cambridge, UK: The Royal Society of Chemistry.
  11. Kepert, D. L. (1982). Inorganic Steriochemistry. Berlin: Springer-Verlag.
  12. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  13. Marchi, L. E., Fernelius, W. C. & McReynolds, J. P. (1943). J. Am. Chem. Soc. 65, 329–333.
  14. Morozova, N. B., Zherikova, K. V., Baidina, I. A., Sysoev, S. V., Semyannikov, P. P., Yakovkina, L. V., Smirnova, T. P., Gelfond, N. V., Igumenov, I. K., Carta, G. & Rossetto, G. (2008). J. Phys. Chem. Solids, 69, 673–679.
  15. Muetterties, E. L. & Wright, C. M. (1967). Q. Rev. Chem. Soc. 21, 109–194.
  16. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  17. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  18. Wang, W. B., Chang, N. N., Codding, T. A., Girolami, G. S. & Abelson, J. R. (2014). J. Vac. Sci. Technol. A, 32, 051512.
  19. Wilk, G. D., Wallace, R. M. & Anthony, J. M. (2001). J. Appl. Phys. 89, 5243–5275.
  20. Zherikova, K. V. & Morozova, N. B. (2012). J. Struct. Chem. 53, 761–767.
  21. Zherikova, K. V., Morozova, N. B., Zelenina, L. N., Sysoev, S. V., Chusova, T. P. & Igumenov, I. K. (2008). J. Therm. Anal. Calorim. 92, 729–734.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018010514/sj5560sup1.cif

e-74-01182-sup1.cif (6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018010514/sj5560Isup2.hkl

e-74-01182-Isup2.hkl (1.1MB, hkl)

CCDC reference: 1857253

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES