Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Jul 27;74(Pt 8):1159–1162. doi: 10.1107/S2056989018010368

Crystal structure and Hirshfeld surface analysis of 2,4-di­amino-6-phenyl-1,3,5-triazin-1-ium 4-methyl­benzene­sulfonate

Ramalingam Sangeetha a, Kasthuri Balasubramani a,*, Kaliyaperumal Thanigaimani b, Savaridasson Jose Kavitha c
PMCID: PMC6072993  PMID: 30116584

The asymmetric unit consists of a 2,4-di­amino-6-phenyl-1,3,5-triazin-1-ium cation and a 4-methyl­benzoate anion. The protonated nitro­gen and amino group nitro­gen atoms are involved in hydrogen bonding with the sulfonate oxygen atoms through a pair of inter­molecular N—H⋯O hydrogen bonds. The inversion-related mol­ecules are further linked by four N—H⋯O inter­molecular inter­ations to produce a complementary DDAA hydrogen-bonded array. Hirshfeld surface analysis was employed to further examine the inter­molecular inter­actions.

Keywords: crystal structure, triazinium cation, 4-methyl­benzene­sulfonate anion, DDAA array, Hirshfeld surface analysis

Abstract

In the title mol­ecular salt, C9H10N5 +·C7H7O3S, the asymmetric unit consists of a 2,4-di­amino-6-phenyl-1,3,5-triazin-1-ium cation and a 4-methyl­benzene­sulfonate anion. The cation is protonated at the N atom lying between the amine and phenyl substituents. The protonated N and amino-group N atoms are involved in hydrogen bonding with the sulfonate O atoms through a pair of inter­molecular N—H⋯O hydrogen bonds, giving rise to a hydrogen-bonded cyclic motif with R 2 2(8) graph-set notation. The inversion-related mol­ecules are further linked by four N—H⋯O inter­molecular inter­actions to produce a complementary DDAA (D = donor, A = acceptor) hydrogen-bonded array, forming R 2 2(8), R 4 2(8) and R 2 2(8) ring motifs. The centrosymmetrically paired cations form R 2 2(8) ring motifs through base-pairing via N—H⋯N hydrogen bonds. In addition, another R 3 3(10) motif is formed between centrosymetrically paired cations and a sulfonate anion via N—H⋯O hydrogen bonds. The crystal structure also features weak S=O⋯π and π–π inter­actions. Hirshfeld surface and fingerprint plots were employed in order to further study the inter­molecular inter­actions.

Chemical context  

Triazine derivatives have been found to possess a wide variety of biological activities such as anti­cancer (El-Gendy et al., 2001; Abdel-Rahman et al., 1999), anti­tumour (Menicagli et al., 2004) and anti-inflammatory (El-Massry et al., 1999) activities. In addition, many s-triazine derivatives have been found to exhibit anti­bacterial (Jyoti et al., 2003) and herbicidal activity. The 1,3,5-triazine moieties are of particular inter­est because of their potentially large non-linear optical response (Marchewka et al., 2003). Triazine derivatives of melamine and benzoguanamine are used to manufacture resins (Ricciotti et al., 2013). They are used as preservatives in oil-field applications and as disinfectants, industrial deodorants and as a biocide in water treatments. Triazine derivatives have been used appreciably as a valuable constructing unit of subtle architectures consisting of organic and inorganic hybrid frameworks (Ma­thias et al., 1994; Zerkowski et al., 1994; MacDonald & Whitesides, 1994; Guru Row et al., 1999; Krische & Lehn, 2000; Sherrington & Taskinen, 2001). Herein the crystal structure of 2,4-di­amino-6-phenyl-1,3,5-triazine-1-ium-4-methyl­benzene sulfonate is described. Hirshfeld surface analysis and two-dimensional fingerprint plots were employed to qu­antify the percentage contributions of the inter­molecular inter­actions present in the mol­ecule.graphic file with name e-74-01159-scheme1.jpg

Structural commentary  

The mol­ecular structure with its atomic numbering scheme is shown in Fig. 1. The asymmetric unit comprises a 2,4-di­amino-6-phenyl-1,3,5-triazin-1-ium cation and a 4-methyl­benzene sulfonate anion. The cation is protonated at atom N5, which lies between the amine and phenyl substituents: this proton­ation is reflected by an increase in the bond angle at N5 [C8—N5—C10 = 119.43 (15)°] compared to the unprotonated atom N3 [C8—N3—C9 = 115.88 (15)°] and the corresponding angle of 113.7 (4)° in neutral 2,4-di­amino-6-phenyl-1,3,5-triazine (Díaz-Ortiz et al., 2004). Otherwise, bond lengths and angles are in normal ranges (Allen et al., 1987).

Figure 1.

Figure 1

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 40% probability level. N—H⋯O hydrogen bonds (dashed lines) form an Inline graphic(8) ring motif between the 2,4-di­amino-6-phenyl-1,3,5-triazin-1-ium cation and 4-methyl­benzene­sulfonate anion.

Supra­molecular features  

In the crystal, the protonated nitro­gen (N5) and amino group nitro­gen (N4) atoms are involved in hydrogen bonding with the 4-methyl­benzene sulfonate oxygen atoms O2 and O3 through a pair of inter­molecular N—H⋯O hydrogen bonds, giving rise to a hydrogen-bonded Inline graphic(8) cyclic graph-set motif (Fig. 1, Table 1). Here the sulfonate oxygen atoms mimic the role of carboxyl­ate oxygen atoms. The inversion-related mol­ecules are further linked by four N—H⋯O hydrogen bonds, forming an another Inline graphic(8) ring motif to produce a DDAA array of quadruple hydrogen bonds. This type of conjoined hydrogen-bonded ring motifs can be represented as Inline graphic(8), Inline graphic(8) and Inline graphic(8), repectively (Fig. 2). The inversion-related triazinium bases are paired by two N—H⋯N hydrogen bonds, generating an Inline graphic(8) graph-set motif. In addition, another Inline graphic(10) ring motif is formed between centrosymetrically paired cations and a sulfonate anion via N—H⋯O hydrogen bonds. One of the sulfonate oxygen atoms acts as an acceptor of bifurcated hydrogen bonds. Overall, these hydrogen bonds generate chains along (100).

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg3 are the centroids of the N1/C9/N3/C8/N5/C10 and C2–C5/C6/C7 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H2N4⋯O3i 0.86 2.10 2.877 (2) 150
N4—H1N4⋯O3 0.86 2.13 2.950 (2) 160
N2—H2N2⋯N3ii 0.86 2.25 3.089 (2) 164
N2—H1N2⋯O1iii 0.86 2.05 2.895 (2) 169
N5—H1N5⋯O2 0.86 1.95 2.789 (2) 165
C16—H16⋯O2 0.93 2.40 3.210 (3) 146
S1—O1⋯Cg1iv   2.93 (1) 4.1695 (8) 142 (1)
Cg3—Cg3     3.9192 (13)  

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 2.

Figure 2

Crystal packing of the title compound viewed along the b axis. Dashed lines indicate N—H⋯O and N—H⋯N hydrogen bonds, which form a complementary DDAA hydrogen bonded-array with Inline graphic(8), Inline graphic(8), Inline graphic(8) and Inline graphic(10) graph-set motifs, generating a one-dimensional hydrogen-bonded supra­molcular structure. (Red = oxygen, green = sulfur).

A weak inter­molecular π–ring inter­action between atom O1 of the anion and the π-system of the triazinium ring is observed in a slipped-parallel mode [S1—O1⋯Cg1; YX, π = 46.33°], (Fig. 3, Table 1). A similar inter­action was observed in 1,3-dimeth­oxy-2-methyl­imidazolium bis­(tri­fluoro­methane­sulfon­yl)imide (Partl et al.,2016). π–π inter­actions are also observed between the anionic rings, with a centroid-to-centroid distance of 3.9192 (13) Å.

Figure 3.

Figure 3

A packing view along the c axis showing the weak inter­molecular S1= O1⋯Cg1 (dashed line) and π–π inter­actions.

Hirshfeld surface analysis  

Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and two-dimensional fingerprint plots are useful tools for describing the surface characteristics of the crystal structure and were generated using CrystalExplorer3.0 (Wolff et al., 2012). The normalized contact distance (d norm) is based on the distances from the nearest atom inside (d i) and outside (d e) the surface. The three-dimensional d norm surface of the title compound is shown in Fig. 4. The red points represent closer contacts and negative d norm values on the surface corres­ponding to N—H⋯O and N—H⋯N inter­actions. Two-dimensional fingerprint plots are shown in Fig. 5. The H⋯H inter­actions (43.5%) and C⋯H (18.7%) inter­actions make the highest contributions with the O⋯H (15.9%) N⋯H (10.9%), C⋯C (3.9%), C⋯O (2.3%), N⋯O (1.6%) and O⋯O (0.3%) contacts also making significant contributions to the Hirshfeld surface.

Figure 4.

Figure 4

A view of the three-dimensional Hirshfeld surface of the title compound.

Figure 5.

Figure 5

Two-dimensional fingerprint plots for the title compound.

Database survey  

A search of the Cambridge Structural Database (Version 5.37, update February 2016 Groom et al., 2016) for 2,4-di­amino-6-phenyl-1,3,5-triazine yielded five crystal structures of proton-transfer salts with carb­oxy­lic acids: HEVQAB (with oxalic acid; Aghabozorg et al., 2006), HEWFOG (with picric acid; Goel et al., 2013), TEZNAP (with phthalic acid; Delori et al., 2013), WEPBUP (with hydrogen chloride; Sheshmani et al., 2006), and YOCZOH (with 2,3,5,6-tetra­fluoro­terephthalic acid; Wang et al., 2014).

Synthesis and crystallization  

The title compound was prepared by mixing a hot methano­lic solution (20 ml) of 2,4-di­amino-6-phenyl-1,3,5-triazine (0.187 g) and a hot methano­lic solution (10 ml) of 4-methyl­benzene sulfonic acid (0.172 g) in 1:1 molar ratio. The reaction mixture was warmed over a water bath for a few minutes. The resultant solution was then allowed to cool slowly at room temperature. After a few days, colourless block-shaped crystals were separated out.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The C- and N- bound H atoms were placed in calculated positions and were included in the refinement in the riding-model approximation: C—H = 0.93 Å and N—H = 0.86 Å with U iso(H) set to 1.2–1.5U eq(C) or 1.3U eq(N).

Table 2. Experimental details.

Crystal data
Chemical formula C9H10N5 +·C7H7O3S
M r 359.41
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 11.0060 (6), 20.7269 (11), 7.6213 (4)
β (°) 97.468 (2)
V3) 1723.83 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.35 × 0.35 × 0.30
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004)
T min, T max 0.929, 0.939
No. of measured, independent and observed [I > 2σ(I)] reflections 20842, 4273, 3325
R int 0.033
(sin θ/λ)max−1) 0.667
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.049, 0.151, 1.01
No. of reflections 4277
No. of parameters 227
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −0.43

Computer programs: APEX2, SAINT and XPREP (Bruker, 2004), SHELXS97 and SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989018010368/jj2200sup1.cif

e-74-01159-sup1.cif (26.7KB, cif)

Supporting information file. DOI: 10.1107/S2056989018010368/jj2200Isup2.cml

CCDC reference: 1820866

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors wish to thank the SAIF–STIC, Cochin, Kerala, for the data collection.

supplementary crystallographic information

Crystal data

C9H10N5+·C7H7O3S F(000) = 752
Mr = 359.41 Dx = 1.385 Mg m3Dm = 1.381 Mg m3Dm measured by Not Measured
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6410 reflections
a = 11.0060 (6) Å θ = 5.7–56.4°
b = 20.7269 (11) Å µ = 0.21 mm1
c = 7.6213 (4) Å T = 296 K
β = 97.468 (2)° Block, colourless
V = 1723.83 (16) Å3 0.35 × 0.35 × 0.30 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 4273 independent reflections
Radiation source: fine-focus sealed tube 3325 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.033
Detector resolution: 18.4 pixels mm-1 θmax = 28.3°, θmin = 2.7°
ω and φ scan h = −14→14
Absorption correction: multi-scan (SADABS; Bruker, 2004) k = −27→24
Tmin = 0.929, Tmax = 0.939 l = −9→10
20842 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0845P)2 + 0.7378P] where P = (Fo2 + 2Fc2)/3
4277 reflections (Δ/σ)max = 0.004
227 parameters Δρmax = 0.49 e Å3
0 restraints Δρmin = −0.43 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.34811 (4) 0.91624 (2) 0.65382 (7) 0.0341 (2)
N1 0.90645 (14) 0.92499 (8) 0.5823 (2) 0.0331 (5)
N2 1.04787 (14) 0.97433 (9) 0.7826 (2) 0.0413 (5)
N3 0.85035 (14) 0.97568 (8) 0.8454 (2) 0.0328 (5)
N4 0.64605 (15) 0.97966 (9) 0.8776 (2) 0.0449 (6)
N5 0.70324 (13) 0.92814 (7) 0.6349 (2) 0.0306 (4)
O1 0.24577 (13) 0.95410 (7) 0.5729 (2) 0.0463 (5)
O2 0.45015 (13) 0.91551 (8) 0.5499 (2) 0.0506 (5)
O3 0.38962 (15) 0.93469 (8) 0.8365 (2) 0.0519 (5)
C8 0.73449 (16) 0.96182 (9) 0.7882 (2) 0.0313 (5)
C9 0.93250 (16) 0.95848 (9) 0.7378 (2) 0.0307 (5)
C10 0.79160 (16) 0.91143 (8) 0.5351 (2) 0.0295 (5)
C11 0.75537 (17) 0.87572 (10) 0.3686 (3) 0.0347 (5)
C12 0.8406 (2) 0.83807 (18) 0.3023 (4) 0.0817 (13)
C13 0.8094 (3) 0.8038 (2) 0.1478 (5) 0.1184 (18)
C14 0.6952 (3) 0.80698 (17) 0.0582 (4) 0.0729 (10)
C15 0.6098 (2) 0.84433 (17) 0.1229 (3) 0.0669 (9)
C16 0.6392 (2) 0.87874 (14) 0.2786 (3) 0.0541 (8)
C1 0.1803 (4) 0.63794 (13) 0.6294 (4) 0.0804 (13)
C2 0.2180 (3) 0.70767 (11) 0.6442 (3) 0.0510 (8)
C3 0.1408 (2) 0.75664 (11) 0.5771 (3) 0.0518 (8)
C4 0.17777 (18) 0.82075 (10) 0.5852 (3) 0.0407 (6)
C5 0.29530 (17) 0.83591 (9) 0.6579 (2) 0.0318 (5)
C6 0.3336 (3) 0.72421 (12) 0.7230 (3) 0.0560 (8)
C7 0.3737 (2) 0.78743 (11) 0.7282 (3) 0.0478 (7)
H2N4 0.66290 1.00070 0.97500 0.0540*
H1N4 0.57120 0.97030 0.83880 0.0540*
H2N2 1.06960 0.99530 0.87890 0.0500*
H1N2 1.10170 0.96380 0.71550 0.0500*
H1N5 0.62810 0.91760 0.60200 0.0370*
H12 0.91980 0.83550 0.36160 0.0980*
H13 0.86800 0.77810 0.10440 0.1420*
H14 0.67540 0.78390 −0.04630 0.0870*
H15 0.53090 0.84680 0.06220 0.0800*
H16 0.58000 0.90400 0.32220 0.0650*
H1A 0.21910 0.61750 0.53820 0.1200*
H1B 0.09300 0.63520 0.60040 0.1200*
H1C 0.20480 0.61660 0.74020 0.1200*
H3 0.06200 0.74650 0.52500 0.0620*
H4 0.12350 0.85320 0.54190 0.0490*
H6 0.38570 0.69210 0.77390 0.0670*
H7 0.45300 0.79740 0.77850 0.0570*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0234 (2) 0.0389 (3) 0.0409 (3) −0.0040 (2) 0.0079 (2) −0.0090 (2)
N1 0.0236 (7) 0.0420 (9) 0.0334 (8) 0.0026 (6) 0.0021 (6) −0.0055 (6)
N2 0.0245 (8) 0.0586 (11) 0.0406 (9) −0.0045 (7) 0.0039 (7) −0.0133 (8)
N3 0.0253 (7) 0.0397 (9) 0.0335 (8) −0.0046 (6) 0.0041 (6) −0.0066 (6)
N4 0.0271 (8) 0.0616 (12) 0.0476 (10) −0.0097 (7) 0.0107 (7) −0.0249 (8)
N5 0.0222 (7) 0.0370 (8) 0.0325 (8) −0.0047 (6) 0.0035 (6) −0.0067 (6)
O1 0.0344 (8) 0.0381 (8) 0.0674 (10) 0.0022 (6) 0.0108 (7) 0.0063 (7)
O2 0.0286 (7) 0.0702 (11) 0.0558 (10) −0.0100 (7) 0.0157 (7) −0.0144 (8)
O3 0.0491 (9) 0.0605 (10) 0.0462 (9) −0.0117 (8) 0.0070 (7) −0.0225 (8)
C8 0.0267 (9) 0.0337 (9) 0.0341 (9) −0.0044 (7) 0.0062 (7) −0.0047 (7)
C9 0.0248 (8) 0.0346 (9) 0.0321 (9) 0.0003 (7) 0.0013 (7) −0.0009 (7)
C10 0.0254 (8) 0.0310 (8) 0.0316 (9) 0.0018 (6) 0.0018 (7) −0.0023 (7)
C11 0.0289 (9) 0.0420 (10) 0.0331 (9) 0.0006 (8) 0.0032 (7) −0.0071 (8)
C12 0.0373 (13) 0.125 (3) 0.078 (2) 0.0236 (15) −0.0105 (13) −0.062 (2)
C13 0.0559 (18) 0.187 (4) 0.107 (3) 0.037 (2) −0.0091 (17) −0.106 (3)
C14 0.0574 (16) 0.104 (2) 0.0551 (16) 0.0007 (15) −0.0010 (12) −0.0444 (16)
C15 0.0394 (13) 0.115 (2) 0.0445 (13) −0.0081 (14) −0.0015 (10) −0.0290 (15)
C16 0.0315 (11) 0.0896 (19) 0.0411 (12) 0.0025 (11) 0.0040 (9) −0.0221 (12)
C1 0.127 (3) 0.0380 (13) 0.082 (2) −0.0115 (15) 0.036 (2) −0.0056 (13)
C2 0.0741 (17) 0.0371 (11) 0.0458 (12) −0.0021 (11) 0.0234 (12) −0.0037 (9)
C3 0.0452 (12) 0.0456 (12) 0.0647 (15) −0.0135 (10) 0.0078 (11) −0.0042 (11)
C4 0.0290 (9) 0.0396 (11) 0.0525 (12) −0.0024 (8) 0.0014 (8) 0.0017 (9)
C5 0.0291 (9) 0.0363 (9) 0.0302 (9) 0.0009 (7) 0.0046 (7) −0.0066 (7)
C6 0.0739 (17) 0.0424 (12) 0.0526 (14) 0.0203 (12) 0.0120 (12) 0.0052 (10)
C7 0.0408 (12) 0.0542 (13) 0.0454 (12) 0.0129 (10) −0.0057 (9) −0.0053 (10)

Geometric parameters (Å, º)

S1—O1 1.4437 (15) C14—C15 1.359 (4)
S1—O2 1.4560 (15) C15—C16 1.386 (4)
S1—O3 1.4588 (16) C12—H12 0.9300
S1—C5 1.7651 (19) C13—H13 0.9300
N1—C10 1.299 (2) C14—H14 0.9300
N1—C9 1.371 (2) C15—H15 0.9300
N2—C9 1.313 (2) C16—H16 0.9300
N3—C8 1.324 (2) C1—C2 1.504 (4)
N3—C9 1.345 (2) C2—C3 1.379 (3)
N4—C8 1.312 (2) C2—C6 1.378 (4)
N5—C10 1.355 (2) C3—C4 1.389 (3)
N5—C8 1.366 (2) C4—C5 1.376 (3)
N2—H2N2 0.8600 C5—C7 1.386 (3)
N2—H1N2 0.8600 C6—C7 1.382 (3)
N4—H2N4 0.8600 C1—H1A 0.9600
N4—H1N4 0.8600 C1—H1B 0.9600
N5—H1N5 0.8600 C1—H1C 0.9600
C10—C11 1.478 (3) C3—H3 0.9300
C11—C12 1.367 (4) C4—H4 0.9300
C11—C16 1.372 (3) C6—H6 0.9300
C12—C13 1.380 (5) C7—H7 0.9300
C13—C14 1.352 (5)
O1—S1—O2 112.79 (9) C11—C12—H12 120.00
O1—S1—O3 113.29 (9) C13—C12—H12 120.00
O1—S1—C5 106.25 (9) C12—C13—H13 119.00
O2—S1—O3 110.72 (9) C14—C13—H13 119.00
O2—S1—C5 106.19 (9) C15—C14—H14 120.00
O3—S1—C5 107.07 (9) C13—C14—H14 120.00
C9—N1—C10 115.81 (15) C14—C15—H15 120.00
C8—N3—C9 115.88 (15) C16—C15—H15 120.00
C8—N5—C10 119.43 (15) C15—C16—H16 120.00
C9—N2—H1N2 120.00 C11—C16—H16 120.00
C9—N2—H2N2 120.00 C1—C2—C3 121.9 (3)
H2N2—N2—H1N2 120.00 C1—C2—C6 120.1 (3)
C8—N4—H1N4 120.00 C3—C2—C6 117.9 (2)
H2N4—N4—H1N4 120.00 C2—C3—C4 121.7 (2)
C8—N4—H2N4 120.00 C3—C4—C5 119.42 (19)
C10—N5—H1N5 120.00 S1—C5—C4 120.19 (15)
C8—N5—H1N5 120.00 S1—C5—C7 120.05 (15)
N3—C8—N4 121.04 (16) C4—C5—C7 119.71 (18)
N4—C8—N5 117.84 (16) C2—C6—C7 121.5 (2)
N3—C8—N5 121.13 (16) C5—C7—C6 119.7 (2)
N1—C9—N2 115.97 (16) C2—C1—H1A 110.00
N1—C9—N3 125.41 (16) C2—C1—H1B 109.00
N2—C9—N3 118.62 (15) C2—C1—H1C 109.00
N1—C10—N5 122.18 (15) H1A—C1—H1B 109.00
N5—C10—C11 118.46 (16) H1A—C1—H1C 109.00
N1—C10—C11 119.35 (16) H1B—C1—H1C 109.00
C12—C11—C16 118.8 (2) C2—C3—H3 119.00
C10—C11—C12 118.80 (19) C4—C3—H3 119.00
C10—C11—C16 122.43 (19) C3—C4—H4 120.00
C11—C12—C13 120.2 (2) C5—C4—H4 120.00
C12—C13—C14 121.2 (3) C2—C6—H6 119.00
C13—C14—C15 119.1 (3) C7—C6—H6 119.00
C14—C15—C16 120.6 (2) C5—C7—H7 120.00
C11—C16—C15 120.2 (2) C6—C7—H7 120.00
O1—S1—C5—C4 2.32 (18) N1—C10—C11—C16 −156.7 (2)
O2—S1—C5—C4 −118.00 (16) N5—C10—C11—C12 −155.5 (2)
O3—S1—C5—C4 123.67 (16) C16—C11—C12—C13 −0.1 (4)
O1—S1—C5—C7 179.78 (16) C10—C11—C16—C15 180.0 (2)
O2—S1—C5—C7 59.47 (17) C10—C11—C12—C13 179.6 (3)
O3—S1—C5—C7 −58.87 (18) C12—C11—C16—C15 −0.3 (4)
C10—N1—C9—N3 2.6 (3) C11—C12—C13—C14 0.6 (6)
C10—N1—C9—N2 −177.59 (17) C12—C13—C14—C15 −0.5 (6)
C9—N1—C10—N5 −1.3 (2) C13—C14—C15—C16 0.0 (5)
C9—N1—C10—C11 179.67 (16) C14—C15—C16—C11 0.4 (4)
C8—N3—C9—N2 176.08 (17) C1—C2—C6—C7 175.7 (2)
C8—N3—C9—N1 −4.1 (3) C1—C2—C3—C4 −177.5 (2)
C9—N3—C8—N5 4.3 (3) C6—C2—C3—C4 1.0 (4)
C9—N3—C8—N4 −176.10 (17) C3—C2—C6—C7 −2.9 (4)
C10—N5—C8—N4 177.08 (16) C2—C3—C4—C5 1.7 (3)
C8—N5—C10—C11 −179.23 (16) C3—C4—C5—C7 −2.5 (3)
C10—N5—C8—N3 −3.3 (3) C3—C4—C5—S1 174.99 (16)
C8—N5—C10—N1 1.7 (3) S1—C5—C7—C6 −176.79 (17)
N5—C10—C11—C16 24.2 (3) C4—C5—C7—C6 0.7 (3)
N1—C10—C11—C12 23.6 (3) C2—C6—C7—C5 2.1 (4)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg3 are the centroids of the N1/C9/N3/C8/N5/C10 and C2–C5/C6/C7 rings, respectively.

D—H···A D—H H···A D···A D—H···A
N4—H2N4···O3i 0.86 2.10 2.877 (2) 150
N4—H1N4···O3 0.86 2.13 2.950 (2) 160
N2—H2N2···N3ii 0.86 2.25 3.089 (2) 164
N2—H1N2···O1iii 0.86 2.05 2.895 (2) 169
N5—H1N5···O2 0.86 1.95 2.789 (2) 165
C16—H16···O2 0.93 2.40 3.210 (3) 146
S1—O1···Cg1iv 2.93 (1) 4.1695 (8) 142 (1)
Cg3—Cg3 3.9192 (13)

Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) −x+2, −y+2, −z+2; (iii) x+1, y, z; (iv) −x+1, −y+2, −z+1; (v) x, −y+3/2, z+1/2.

Funding Statement

This work was funded by Department of Science and Technology, Ministry of Science and Technology, Science and Engineering Research Board grants SB/ FT/CS-058/2013 and INSPIRE IF131050.

References

  1. Abdel-Rahman, R. M., Morsy, J. M., Hanafy, F. & Amene, H. A. (1999). Pharmazie, 54, 347–351. [PubMed]
  2. Aghabozorg, H., Ghadermazi, M. & Sadr-Khanlou, E. (2006). Anal. Sci. X, 22, x255–x256.
  3. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  4. Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Delori, A., Suresh, E. & Pedireddi, V. R. (2013). CrystEngComm, 15, 4811–4815.
  6. Díaz-Ortiz, Á, Elguero, J., Foces-Foces, C., de la Hoz, A., Moreno, A., del Carmen Mateo, M., Sánchez-Migallón, A. & Valiente, G. (2004). New J. Chem. 28, 952–958.
  7. El-Gendy, Z., Morsy, J. M., Allimony, H. A., Ali, W. R. & Abdel-Rahman, R. M. (2001). Pharmazie, 56, 376–383. [PubMed]
  8. El-Massry, A. M. (1999). Heterocycl. Commun. 5, 555–564.
  9. Goel, N., Singh, U. P., Singh, G. & Srivastava, P. (2013). J. Mol. Struct. 1036, 427–438.
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. Guru Row, T. N. (1999). Coord. Chem. Rev. 183, 81–100.
  12. Jyoti, M., Shirodkar, V. & Mulwad, V. (2003). Indian J. Chem. Sect. B, 42, 621–626.
  13. Krische, M. J. & Lehn, J. M. (2000). Struct. Bond. 96, 3–29.
  14. MacDonald, J. C. & Whitesides, G. M. (1994). Chem. Rev. 94, 2383–2420.
  15. Marchewka, M. K., Janczak, J., Debrus, S., Baran, J. & Ratajczak, H. (2003). Solid State Sci. 5, 643–652.
  16. Mathias, J. P., Simanek, E. E., Zerkowski, J. A., Seto, C. T. & Whitesides, G. M. (1994). J. Am. Chem. Soc. 116, 4316–4325.
  17. Menicagli, R., Samaritani, S., Signore, G., Vaglini, F. & Dalla Via, L. (2004). J. Med. Chem. 47, 4649–4652. [DOI] [PubMed]
  18. Partl, G., Lampl, M., Laus, G., Wurst, K., Huppertz, H. & Schottenberger, H. (2016). IUCrData, 1, x160824.
  19. Ricciotti, L., Roviello, G., Tarallo, O., Borbone, F., Ferone, C., Colangelo, F., Catauro, M. & Cioffi, R. (2013). Int. J. Mol. Sci. 14, 18200–18214. [DOI] [PMC free article] [PubMed]
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Sherrington, D. C. & Taskinen, K. A. (2001). Chem. Soc. Rev. 30, 83–93.
  22. Sheshmani, S., Ghadermazi, M., Aghabozorg, H. & Nakhjavan, B. (2006). Acta Cryst. E62, o4681–o4682.
  23. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  24. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  25. Wang, L., Hu, Y., Wang, W., Liu, F. & Huang, K. (2014). CrystEngComm, 16, 4142–4161.
  26. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer3.0. University of Western Australia.
  27. Zerkowski, J. A. & Whitesides, G. M. (1994). J. Am. Chem. Soc. 116, 4298–4304.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989018010368/jj2200sup1.cif

e-74-01159-sup1.cif (26.7KB, cif)

Supporting information file. DOI: 10.1107/S2056989018010368/jj2200Isup2.cml

CCDC reference: 1820866

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES