The asymmetric unit consists of a 2,4-diamino-6-phenyl-1,3,5-triazin-1-ium cation and a 4-methylbenzoate anion. The protonated nitrogen and amino group nitrogen atoms are involved in hydrogen bonding with the sulfonate oxygen atoms through a pair of intermolecular N—H⋯O hydrogen bonds. The inversion-related molecules are further linked by four N—H⋯O intermolecular interations to produce a complementary DDAA hydrogen-bonded array. Hirshfeld surface analysis was employed to further examine the intermolecular interactions.
Keywords: crystal structure, triazinium cation, 4-methylbenzenesulfonate anion, DDAA array, Hirshfeld surface analysis
Abstract
In the title molecular salt, C9H10N5 +·C7H7O3S−, the asymmetric unit consists of a 2,4-diamino-6-phenyl-1,3,5-triazin-1-ium cation and a 4-methylbenzenesulfonate anion. The cation is protonated at the N atom lying between the amine and phenyl substituents. The protonated N and amino-group N atoms are involved in hydrogen bonding with the sulfonate O atoms through a pair of intermolecular N—H⋯O hydrogen bonds, giving rise to a hydrogen-bonded cyclic motif with R 2 2(8) graph-set notation. The inversion-related molecules are further linked by four N—H⋯O intermolecular interactions to produce a complementary DDAA (D = donor, A = acceptor) hydrogen-bonded array, forming R 2 2(8), R 4 2(8) and R 2 2(8) ring motifs. The centrosymmetrically paired cations form R 2 2(8) ring motifs through base-pairing via N—H⋯N hydrogen bonds. In addition, another R 3 3(10) motif is formed between centrosymetrically paired cations and a sulfonate anion via N—H⋯O hydrogen bonds. The crystal structure also features weak S=O⋯π and π–π interactions. Hirshfeld surface and fingerprint plots were employed in order to further study the intermolecular interactions.
Chemical context
Triazine derivatives have been found to possess a wide variety of biological activities such as anticancer (El-Gendy et al., 2001 ▸; Abdel-Rahman et al., 1999 ▸), antitumour (Menicagli et al., 2004 ▸) and anti-inflammatory (El-Massry et al., 1999 ▸) activities. In addition, many s-triazine derivatives have been found to exhibit antibacterial (Jyoti et al., 2003 ▸) and herbicidal activity. The 1,3,5-triazine moieties are of particular interest because of their potentially large non-linear optical response (Marchewka et al., 2003 ▸). Triazine derivatives of melamine and benzoguanamine are used to manufacture resins (Ricciotti et al., 2013 ▸). They are used as preservatives in oil-field applications and as disinfectants, industrial deodorants and as a biocide in water treatments. Triazine derivatives have been used appreciably as a valuable constructing unit of subtle architectures consisting of organic and inorganic hybrid frameworks (Mathias et al., 1994 ▸; Zerkowski et al., 1994 ▸; MacDonald & Whitesides, 1994 ▸; Guru Row et al., 1999 ▸; Krische & Lehn, 2000 ▸; Sherrington & Taskinen, 2001 ▸). Herein the crystal structure of 2,4-diamino-6-phenyl-1,3,5-triazine-1-ium-4-methylbenzene sulfonate is described. Hirshfeld surface analysis and two-dimensional fingerprint plots were employed to quantify the percentage contributions of the intermolecular interactions present in the molecule.
Structural commentary
The molecular structure with its atomic numbering scheme is shown in Fig. 1 ▸. The asymmetric unit comprises a 2,4-diamino-6-phenyl-1,3,5-triazin-1-ium cation and a 4-methylbenzene sulfonate anion. The cation is protonated at atom N5, which lies between the amine and phenyl substituents: this protonation is reflected by an increase in the bond angle at N5 [C8—N5—C10 = 119.43 (15)°] compared to the unprotonated atom N3 [C8—N3—C9 = 115.88 (15)°] and the corresponding angle of 113.7 (4)° in neutral 2,4-diamino-6-phenyl-1,3,5-triazine (Díaz-Ortiz et al., 2004 ▸). Otherwise, bond lengths and angles are in normal ranges (Allen et al., 1987 ▸).
Figure 1.
The molecular structure of the title compound with displacement ellipsoids drawn at the 40% probability level. N—H⋯O hydrogen bonds (dashed lines) form an
(8) ring motif between the 2,4-diamino-6-phenyl-1,3,5-triazin-1-ium cation and 4-methylbenzenesulfonate anion.
Supramolecular features
In the crystal, the protonated nitrogen (N5) and amino group nitrogen (N4) atoms are involved in hydrogen bonding with the 4-methylbenzene sulfonate oxygen atoms O2 and O3 through a pair of intermolecular N—H⋯O hydrogen bonds, giving rise to a hydrogen-bonded
(8) cyclic graph-set motif (Fig. 1 ▸, Table 1 ▸). Here the sulfonate oxygen atoms mimic the role of carboxylate oxygen atoms. The inversion-related molecules are further linked by four N—H⋯O hydrogen bonds, forming an another
(8) ring motif to produce a DDAA array of quadruple hydrogen bonds. This type of conjoined hydrogen-bonded ring motifs can be represented as
(8),
(8) and
(8), repectively (Fig. 2 ▸). The inversion-related triazinium bases are paired by two N—H⋯N hydrogen bonds, generating an
(8) graph-set motif. In addition, another
(10) ring motif is formed between centrosymetrically paired cations and a sulfonate anion via N—H⋯O hydrogen bonds. One of the sulfonate oxygen atoms acts as an acceptor of bifurcated hydrogen bonds. Overall, these hydrogen bonds generate chains along (100).
Table 1. Hydrogen-bond geometry (Å, °).
Cg1 and Cg3 are the centroids of the N1/C9/N3/C8/N5/C10 and C2–C5/C6/C7 rings, respectively.
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N4—H2N4⋯O3i | 0.86 | 2.10 | 2.877 (2) | 150 |
| N4—H1N4⋯O3 | 0.86 | 2.13 | 2.950 (2) | 160 |
| N2—H2N2⋯N3ii | 0.86 | 2.25 | 3.089 (2) | 164 |
| N2—H1N2⋯O1iii | 0.86 | 2.05 | 2.895 (2) | 169 |
| N5—H1N5⋯O2 | 0.86 | 1.95 | 2.789 (2) | 165 |
| C16—H16⋯O2 | 0.93 | 2.40 | 3.210 (3) | 146 |
| S1—O1⋯Cg1iv | 2.93 (1) | 4.1695 (8) | 142 (1) | |
| Cg3—Cg3 | 3.9192 (13) |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
; (v)
.
Figure 2.
Crystal packing of the title compound viewed along the b axis. Dashed lines indicate N—H⋯O and N—H⋯N hydrogen bonds, which form a complementary DDAA hydrogen bonded-array with
(8),
(8),
(8) and
(10) graph-set motifs, generating a one-dimensional hydrogen-bonded supramolcular structure. (Red = oxygen, green = sulfur).
A weak intermolecular π–ring interaction between atom O1 of the anion and the π-system of the triazinium ring is observed in a slipped-parallel mode [S1—O1⋯Cg1; Y—X, π = 46.33°], (Fig. 3 ▸, Table 1 ▸). A similar interaction was observed in 1,3-dimethoxy-2-methylimidazolium bis(trifluoromethanesulfonyl)imide (Partl et al.,2016 ▸). π–π interactions are also observed between the anionic rings, with a centroid-to-centroid distance of 3.9192 (13) Å.
Figure 3.
A packing view along the c axis showing the weak intermolecular S1= O1⋯Cg1 (dashed line) and π–π interactions.
Hirshfeld surface analysis
Hirshfeld surface analysis (Spackman & Jayatilaka, 2009 ▸) and two-dimensional fingerprint plots are useful tools for describing the surface characteristics of the crystal structure and were generated using CrystalExplorer3.0 (Wolff et al., 2012 ▸). The normalized contact distance (d norm) is based on the distances from the nearest atom inside (d i) and outside (d e) the surface. The three-dimensional d norm surface of the title compound is shown in Fig. 4 ▸. The red points represent closer contacts and negative d norm values on the surface corresponding to N—H⋯O and N—H⋯N interactions. Two-dimensional fingerprint plots are shown in Fig. 5 ▸. The H⋯H interactions (43.5%) and C⋯H (18.7%) interactions make the highest contributions with the O⋯H (15.9%) N⋯H (10.9%), C⋯C (3.9%), C⋯O (2.3%), N⋯O (1.6%) and O⋯O (0.3%) contacts also making significant contributions to the Hirshfeld surface.
Figure 4.
A view of the three-dimensional Hirshfeld surface of the title compound.
Figure 5.
Two-dimensional fingerprint plots for the title compound.
Database survey
A search of the Cambridge Structural Database (Version 5.37, update February 2016 Groom et al., 2016 ▸) for 2,4-diamino-6-phenyl-1,3,5-triazine yielded five crystal structures of proton-transfer salts with carboxylic acids: HEVQAB (with oxalic acid; Aghabozorg et al., 2006 ▸), HEWFOG (with picric acid; Goel et al., 2013 ▸), TEZNAP (with phthalic acid; Delori et al., 2013 ▸), WEPBUP (with hydrogen chloride; Sheshmani et al., 2006 ▸), and YOCZOH (with 2,3,5,6-tetrafluoroterephthalic acid; Wang et al., 2014 ▸).
Synthesis and crystallization
The title compound was prepared by mixing a hot methanolic solution (20 ml) of 2,4-diamino-6-phenyl-1,3,5-triazine (0.187 g) and a hot methanolic solution (10 ml) of 4-methylbenzene sulfonic acid (0.172 g) in 1:1 molar ratio. The reaction mixture was warmed over a water bath for a few minutes. The resultant solution was then allowed to cool slowly at room temperature. After a few days, colourless block-shaped crystals were separated out.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. The C- and N- bound H atoms were placed in calculated positions and were included in the refinement in the riding-model approximation: C—H = 0.93 Å and N—H = 0.86 Å with U iso(H) set to 1.2–1.5U eq(C) or 1.3U eq(N).
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | C9H10N5 +·C7H7O3S− |
| M r | 359.41 |
| Crystal system, space group | Monoclinic, P21/c |
| Temperature (K) | 296 |
| a, b, c (Å) | 11.0060 (6), 20.7269 (11), 7.6213 (4) |
| β (°) | 97.468 (2) |
| V (Å3) | 1723.83 (16) |
| Z | 4 |
| Radiation type | Mo Kα |
| μ (mm−1) | 0.21 |
| Crystal size (mm) | 0.35 × 0.35 × 0.30 |
| Data collection | |
| Diffractometer | Bruker Kappa APEXII CCD |
| Absorption correction | Multi-scan (SADABS; Bruker, 2004 ▸) |
| T min, T max | 0.929, 0.939 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 20842, 4273, 3325 |
| R int | 0.033 |
| (sin θ/λ)max (Å−1) | 0.667 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.049, 0.151, 1.01 |
| No. of reflections | 4277 |
| No. of parameters | 227 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.49, −0.43 |
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989018010368/jj2200sup1.cif
Supporting information file. DOI: 10.1107/S2056989018010368/jj2200Isup2.cml
CCDC reference: 1820866
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors wish to thank the SAIF–STIC, Cochin, Kerala, for the data collection.
supplementary crystallographic information
Crystal data
| C9H10N5+·C7H7O3S− | F(000) = 752 |
| Mr = 359.41 | Dx = 1.385 Mg m−3Dm = 1.381 Mg m−3Dm measured by Not Measured |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 6410 reflections |
| a = 11.0060 (6) Å | θ = 5.7–56.4° |
| b = 20.7269 (11) Å | µ = 0.21 mm−1 |
| c = 7.6213 (4) Å | T = 296 K |
| β = 97.468 (2)° | Block, colourless |
| V = 1723.83 (16) Å3 | 0.35 × 0.35 × 0.30 mm |
| Z = 4 |
Data collection
| Bruker Kappa APEXII CCD diffractometer | 4273 independent reflections |
| Radiation source: fine-focus sealed tube | 3325 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.033 |
| Detector resolution: 18.4 pixels mm-1 | θmax = 28.3°, θmin = 2.7° |
| ω and φ scan | h = −14→14 |
| Absorption correction: multi-scan (SADABS; Bruker, 2004) | k = −27→24 |
| Tmin = 0.929, Tmax = 0.939 | l = −9→10 |
| 20842 measured reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.151 | H-atom parameters constrained |
| S = 1.01 | w = 1/[σ2(Fo2) + (0.0845P)2 + 0.7378P] where P = (Fo2 + 2Fc2)/3 |
| 4277 reflections | (Δ/σ)max = 0.004 |
| 227 parameters | Δρmax = 0.49 e Å−3 |
| 0 restraints | Δρmin = −0.43 e Å−3 |
Special details
| Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
| Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| S1 | 0.34811 (4) | 0.91624 (2) | 0.65382 (7) | 0.0341 (2) | |
| N1 | 0.90645 (14) | 0.92499 (8) | 0.5823 (2) | 0.0331 (5) | |
| N2 | 1.04787 (14) | 0.97433 (9) | 0.7826 (2) | 0.0413 (5) | |
| N3 | 0.85035 (14) | 0.97568 (8) | 0.8454 (2) | 0.0328 (5) | |
| N4 | 0.64605 (15) | 0.97966 (9) | 0.8776 (2) | 0.0449 (6) | |
| N5 | 0.70324 (13) | 0.92814 (7) | 0.6349 (2) | 0.0306 (4) | |
| O1 | 0.24577 (13) | 0.95410 (7) | 0.5729 (2) | 0.0463 (5) | |
| O2 | 0.45015 (13) | 0.91551 (8) | 0.5499 (2) | 0.0506 (5) | |
| O3 | 0.38962 (15) | 0.93469 (8) | 0.8365 (2) | 0.0519 (5) | |
| C8 | 0.73449 (16) | 0.96182 (9) | 0.7882 (2) | 0.0313 (5) | |
| C9 | 0.93250 (16) | 0.95848 (9) | 0.7378 (2) | 0.0307 (5) | |
| C10 | 0.79160 (16) | 0.91143 (8) | 0.5351 (2) | 0.0295 (5) | |
| C11 | 0.75537 (17) | 0.87572 (10) | 0.3686 (3) | 0.0347 (5) | |
| C12 | 0.8406 (2) | 0.83807 (18) | 0.3023 (4) | 0.0817 (13) | |
| C13 | 0.8094 (3) | 0.8038 (2) | 0.1478 (5) | 0.1184 (18) | |
| C14 | 0.6952 (3) | 0.80698 (17) | 0.0582 (4) | 0.0729 (10) | |
| C15 | 0.6098 (2) | 0.84433 (17) | 0.1229 (3) | 0.0669 (9) | |
| C16 | 0.6392 (2) | 0.87874 (14) | 0.2786 (3) | 0.0541 (8) | |
| C1 | 0.1803 (4) | 0.63794 (13) | 0.6294 (4) | 0.0804 (13) | |
| C2 | 0.2180 (3) | 0.70767 (11) | 0.6442 (3) | 0.0510 (8) | |
| C3 | 0.1408 (2) | 0.75664 (11) | 0.5771 (3) | 0.0518 (8) | |
| C4 | 0.17777 (18) | 0.82075 (10) | 0.5852 (3) | 0.0407 (6) | |
| C5 | 0.29530 (17) | 0.83591 (9) | 0.6579 (2) | 0.0318 (5) | |
| C6 | 0.3336 (3) | 0.72421 (12) | 0.7230 (3) | 0.0560 (8) | |
| C7 | 0.3737 (2) | 0.78743 (11) | 0.7282 (3) | 0.0478 (7) | |
| H2N4 | 0.66290 | 1.00070 | 0.97500 | 0.0540* | |
| H1N4 | 0.57120 | 0.97030 | 0.83880 | 0.0540* | |
| H2N2 | 1.06960 | 0.99530 | 0.87890 | 0.0500* | |
| H1N2 | 1.10170 | 0.96380 | 0.71550 | 0.0500* | |
| H1N5 | 0.62810 | 0.91760 | 0.60200 | 0.0370* | |
| H12 | 0.91980 | 0.83550 | 0.36160 | 0.0980* | |
| H13 | 0.86800 | 0.77810 | 0.10440 | 0.1420* | |
| H14 | 0.67540 | 0.78390 | −0.04630 | 0.0870* | |
| H15 | 0.53090 | 0.84680 | 0.06220 | 0.0800* | |
| H16 | 0.58000 | 0.90400 | 0.32220 | 0.0650* | |
| H1A | 0.21910 | 0.61750 | 0.53820 | 0.1200* | |
| H1B | 0.09300 | 0.63520 | 0.60040 | 0.1200* | |
| H1C | 0.20480 | 0.61660 | 0.74020 | 0.1200* | |
| H3 | 0.06200 | 0.74650 | 0.52500 | 0.0620* | |
| H4 | 0.12350 | 0.85320 | 0.54190 | 0.0490* | |
| H6 | 0.38570 | 0.69210 | 0.77390 | 0.0670* | |
| H7 | 0.45300 | 0.79740 | 0.77850 | 0.0570* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| S1 | 0.0234 (2) | 0.0389 (3) | 0.0409 (3) | −0.0040 (2) | 0.0079 (2) | −0.0090 (2) |
| N1 | 0.0236 (7) | 0.0420 (9) | 0.0334 (8) | 0.0026 (6) | 0.0021 (6) | −0.0055 (6) |
| N2 | 0.0245 (8) | 0.0586 (11) | 0.0406 (9) | −0.0045 (7) | 0.0039 (7) | −0.0133 (8) |
| N3 | 0.0253 (7) | 0.0397 (9) | 0.0335 (8) | −0.0046 (6) | 0.0041 (6) | −0.0066 (6) |
| N4 | 0.0271 (8) | 0.0616 (12) | 0.0476 (10) | −0.0097 (7) | 0.0107 (7) | −0.0249 (8) |
| N5 | 0.0222 (7) | 0.0370 (8) | 0.0325 (8) | −0.0047 (6) | 0.0035 (6) | −0.0067 (6) |
| O1 | 0.0344 (8) | 0.0381 (8) | 0.0674 (10) | 0.0022 (6) | 0.0108 (7) | 0.0063 (7) |
| O2 | 0.0286 (7) | 0.0702 (11) | 0.0558 (10) | −0.0100 (7) | 0.0157 (7) | −0.0144 (8) |
| O3 | 0.0491 (9) | 0.0605 (10) | 0.0462 (9) | −0.0117 (8) | 0.0070 (7) | −0.0225 (8) |
| C8 | 0.0267 (9) | 0.0337 (9) | 0.0341 (9) | −0.0044 (7) | 0.0062 (7) | −0.0047 (7) |
| C9 | 0.0248 (8) | 0.0346 (9) | 0.0321 (9) | 0.0003 (7) | 0.0013 (7) | −0.0009 (7) |
| C10 | 0.0254 (8) | 0.0310 (8) | 0.0316 (9) | 0.0018 (6) | 0.0018 (7) | −0.0023 (7) |
| C11 | 0.0289 (9) | 0.0420 (10) | 0.0331 (9) | 0.0006 (8) | 0.0032 (7) | −0.0071 (8) |
| C12 | 0.0373 (13) | 0.125 (3) | 0.078 (2) | 0.0236 (15) | −0.0105 (13) | −0.062 (2) |
| C13 | 0.0559 (18) | 0.187 (4) | 0.107 (3) | 0.037 (2) | −0.0091 (17) | −0.106 (3) |
| C14 | 0.0574 (16) | 0.104 (2) | 0.0551 (16) | 0.0007 (15) | −0.0010 (12) | −0.0444 (16) |
| C15 | 0.0394 (13) | 0.115 (2) | 0.0445 (13) | −0.0081 (14) | −0.0015 (10) | −0.0290 (15) |
| C16 | 0.0315 (11) | 0.0896 (19) | 0.0411 (12) | 0.0025 (11) | 0.0040 (9) | −0.0221 (12) |
| C1 | 0.127 (3) | 0.0380 (13) | 0.082 (2) | −0.0115 (15) | 0.036 (2) | −0.0056 (13) |
| C2 | 0.0741 (17) | 0.0371 (11) | 0.0458 (12) | −0.0021 (11) | 0.0234 (12) | −0.0037 (9) |
| C3 | 0.0452 (12) | 0.0456 (12) | 0.0647 (15) | −0.0135 (10) | 0.0078 (11) | −0.0042 (11) |
| C4 | 0.0290 (9) | 0.0396 (11) | 0.0525 (12) | −0.0024 (8) | 0.0014 (8) | 0.0017 (9) |
| C5 | 0.0291 (9) | 0.0363 (9) | 0.0302 (9) | 0.0009 (7) | 0.0046 (7) | −0.0066 (7) |
| C6 | 0.0739 (17) | 0.0424 (12) | 0.0526 (14) | 0.0203 (12) | 0.0120 (12) | 0.0052 (10) |
| C7 | 0.0408 (12) | 0.0542 (13) | 0.0454 (12) | 0.0129 (10) | −0.0057 (9) | −0.0053 (10) |
Geometric parameters (Å, º)
| S1—O1 | 1.4437 (15) | C14—C15 | 1.359 (4) |
| S1—O2 | 1.4560 (15) | C15—C16 | 1.386 (4) |
| S1—O3 | 1.4588 (16) | C12—H12 | 0.9300 |
| S1—C5 | 1.7651 (19) | C13—H13 | 0.9300 |
| N1—C10 | 1.299 (2) | C14—H14 | 0.9300 |
| N1—C9 | 1.371 (2) | C15—H15 | 0.9300 |
| N2—C9 | 1.313 (2) | C16—H16 | 0.9300 |
| N3—C8 | 1.324 (2) | C1—C2 | 1.504 (4) |
| N3—C9 | 1.345 (2) | C2—C3 | 1.379 (3) |
| N4—C8 | 1.312 (2) | C2—C6 | 1.378 (4) |
| N5—C10 | 1.355 (2) | C3—C4 | 1.389 (3) |
| N5—C8 | 1.366 (2) | C4—C5 | 1.376 (3) |
| N2—H2N2 | 0.8600 | C5—C7 | 1.386 (3) |
| N2—H1N2 | 0.8600 | C6—C7 | 1.382 (3) |
| N4—H2N4 | 0.8600 | C1—H1A | 0.9600 |
| N4—H1N4 | 0.8600 | C1—H1B | 0.9600 |
| N5—H1N5 | 0.8600 | C1—H1C | 0.9600 |
| C10—C11 | 1.478 (3) | C3—H3 | 0.9300 |
| C11—C12 | 1.367 (4) | C4—H4 | 0.9300 |
| C11—C16 | 1.372 (3) | C6—H6 | 0.9300 |
| C12—C13 | 1.380 (5) | C7—H7 | 0.9300 |
| C13—C14 | 1.352 (5) | ||
| O1—S1—O2 | 112.79 (9) | C11—C12—H12 | 120.00 |
| O1—S1—O3 | 113.29 (9) | C13—C12—H12 | 120.00 |
| O1—S1—C5 | 106.25 (9) | C12—C13—H13 | 119.00 |
| O2—S1—O3 | 110.72 (9) | C14—C13—H13 | 119.00 |
| O2—S1—C5 | 106.19 (9) | C15—C14—H14 | 120.00 |
| O3—S1—C5 | 107.07 (9) | C13—C14—H14 | 120.00 |
| C9—N1—C10 | 115.81 (15) | C14—C15—H15 | 120.00 |
| C8—N3—C9 | 115.88 (15) | C16—C15—H15 | 120.00 |
| C8—N5—C10 | 119.43 (15) | C15—C16—H16 | 120.00 |
| C9—N2—H1N2 | 120.00 | C11—C16—H16 | 120.00 |
| C9—N2—H2N2 | 120.00 | C1—C2—C3 | 121.9 (3) |
| H2N2—N2—H1N2 | 120.00 | C1—C2—C6 | 120.1 (3) |
| C8—N4—H1N4 | 120.00 | C3—C2—C6 | 117.9 (2) |
| H2N4—N4—H1N4 | 120.00 | C2—C3—C4 | 121.7 (2) |
| C8—N4—H2N4 | 120.00 | C3—C4—C5 | 119.42 (19) |
| C10—N5—H1N5 | 120.00 | S1—C5—C4 | 120.19 (15) |
| C8—N5—H1N5 | 120.00 | S1—C5—C7 | 120.05 (15) |
| N3—C8—N4 | 121.04 (16) | C4—C5—C7 | 119.71 (18) |
| N4—C8—N5 | 117.84 (16) | C2—C6—C7 | 121.5 (2) |
| N3—C8—N5 | 121.13 (16) | C5—C7—C6 | 119.7 (2) |
| N1—C9—N2 | 115.97 (16) | C2—C1—H1A | 110.00 |
| N1—C9—N3 | 125.41 (16) | C2—C1—H1B | 109.00 |
| N2—C9—N3 | 118.62 (15) | C2—C1—H1C | 109.00 |
| N1—C10—N5 | 122.18 (15) | H1A—C1—H1B | 109.00 |
| N5—C10—C11 | 118.46 (16) | H1A—C1—H1C | 109.00 |
| N1—C10—C11 | 119.35 (16) | H1B—C1—H1C | 109.00 |
| C12—C11—C16 | 118.8 (2) | C2—C3—H3 | 119.00 |
| C10—C11—C12 | 118.80 (19) | C4—C3—H3 | 119.00 |
| C10—C11—C16 | 122.43 (19) | C3—C4—H4 | 120.00 |
| C11—C12—C13 | 120.2 (2) | C5—C4—H4 | 120.00 |
| C12—C13—C14 | 121.2 (3) | C2—C6—H6 | 119.00 |
| C13—C14—C15 | 119.1 (3) | C7—C6—H6 | 119.00 |
| C14—C15—C16 | 120.6 (2) | C5—C7—H7 | 120.00 |
| C11—C16—C15 | 120.2 (2) | C6—C7—H7 | 120.00 |
| O1—S1—C5—C4 | 2.32 (18) | N1—C10—C11—C16 | −156.7 (2) |
| O2—S1—C5—C4 | −118.00 (16) | N5—C10—C11—C12 | −155.5 (2) |
| O3—S1—C5—C4 | 123.67 (16) | C16—C11—C12—C13 | −0.1 (4) |
| O1—S1—C5—C7 | 179.78 (16) | C10—C11—C16—C15 | 180.0 (2) |
| O2—S1—C5—C7 | 59.47 (17) | C10—C11—C12—C13 | 179.6 (3) |
| O3—S1—C5—C7 | −58.87 (18) | C12—C11—C16—C15 | −0.3 (4) |
| C10—N1—C9—N3 | 2.6 (3) | C11—C12—C13—C14 | 0.6 (6) |
| C10—N1—C9—N2 | −177.59 (17) | C12—C13—C14—C15 | −0.5 (6) |
| C9—N1—C10—N5 | −1.3 (2) | C13—C14—C15—C16 | 0.0 (5) |
| C9—N1—C10—C11 | 179.67 (16) | C14—C15—C16—C11 | 0.4 (4) |
| C8—N3—C9—N2 | 176.08 (17) | C1—C2—C6—C7 | 175.7 (2) |
| C8—N3—C9—N1 | −4.1 (3) | C1—C2—C3—C4 | −177.5 (2) |
| C9—N3—C8—N5 | 4.3 (3) | C6—C2—C3—C4 | 1.0 (4) |
| C9—N3—C8—N4 | −176.10 (17) | C3—C2—C6—C7 | −2.9 (4) |
| C10—N5—C8—N4 | 177.08 (16) | C2—C3—C4—C5 | 1.7 (3) |
| C8—N5—C10—C11 | −179.23 (16) | C3—C4—C5—C7 | −2.5 (3) |
| C10—N5—C8—N3 | −3.3 (3) | C3—C4—C5—S1 | 174.99 (16) |
| C8—N5—C10—N1 | 1.7 (3) | S1—C5—C7—C6 | −176.79 (17) |
| N5—C10—C11—C16 | 24.2 (3) | C4—C5—C7—C6 | 0.7 (3) |
| N1—C10—C11—C12 | 23.6 (3) | C2—C6—C7—C5 | 2.1 (4) |
Hydrogen-bond geometry (Å, º)
Cg1 and Cg3 are the centroids of the N1/C9/N3/C8/N5/C10 and C2–C5/C6/C7 rings, respectively.
| D—H···A | D—H | H···A | D···A | D—H···A |
| N4—H2N4···O3i | 0.86 | 2.10 | 2.877 (2) | 150 |
| N4—H1N4···O3 | 0.86 | 2.13 | 2.950 (2) | 160 |
| N2—H2N2···N3ii | 0.86 | 2.25 | 3.089 (2) | 164 |
| N2—H1N2···O1iii | 0.86 | 2.05 | 2.895 (2) | 169 |
| N5—H1N5···O2 | 0.86 | 1.95 | 2.789 (2) | 165 |
| C16—H16···O2 | 0.93 | 2.40 | 3.210 (3) | 146 |
| S1—O1···Cg1iv | 2.93 (1) | 4.1695 (8) | 142 (1) | |
| Cg3—Cg3 | 3.9192 (13) |
Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) −x+2, −y+2, −z+2; (iii) x+1, y, z; (iv) −x+1, −y+2, −z+1; (v) x, −y+3/2, z+1/2.
Funding Statement
This work was funded by Department of Science and Technology, Ministry of Science and Technology, Science and Engineering Research Board grants SB/ FT/CS-058/2013 and INSPIRE IF131050.
References
- Abdel-Rahman, R. M., Morsy, J. M., Hanafy, F. & Amene, H. A. (1999). Pharmazie, 54, 347–351. [PubMed]
- Aghabozorg, H., Ghadermazi, M. & Sadr-Khanlou, E. (2006). Anal. Sci. X, 22, x255–x256.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Delori, A., Suresh, E. & Pedireddi, V. R. (2013). CrystEngComm, 15, 4811–4815.
- Díaz-Ortiz, Á, Elguero, J., Foces-Foces, C., de la Hoz, A., Moreno, A., del Carmen Mateo, M., Sánchez-Migallón, A. & Valiente, G. (2004). New J. Chem. 28, 952–958.
- El-Gendy, Z., Morsy, J. M., Allimony, H. A., Ali, W. R. & Abdel-Rahman, R. M. (2001). Pharmazie, 56, 376–383. [PubMed]
- El-Massry, A. M. (1999). Heterocycl. Commun. 5, 555–564.
- Goel, N., Singh, U. P., Singh, G. & Srivastava, P. (2013). J. Mol. Struct. 1036, 427–438.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Guru Row, T. N. (1999). Coord. Chem. Rev. 183, 81–100.
- Jyoti, M., Shirodkar, V. & Mulwad, V. (2003). Indian J. Chem. Sect. B, 42, 621–626.
- Krische, M. J. & Lehn, J. M. (2000). Struct. Bond. 96, 3–29.
- MacDonald, J. C. & Whitesides, G. M. (1994). Chem. Rev. 94, 2383–2420.
- Marchewka, M. K., Janczak, J., Debrus, S., Baran, J. & Ratajczak, H. (2003). Solid State Sci. 5, 643–652.
- Mathias, J. P., Simanek, E. E., Zerkowski, J. A., Seto, C. T. & Whitesides, G. M. (1994). J. Am. Chem. Soc. 116, 4316–4325.
- Menicagli, R., Samaritani, S., Signore, G., Vaglini, F. & Dalla Via, L. (2004). J. Med. Chem. 47, 4649–4652. [DOI] [PubMed]
- Partl, G., Lampl, M., Laus, G., Wurst, K., Huppertz, H. & Schottenberger, H. (2016). IUCrData, 1, x160824.
- Ricciotti, L., Roviello, G., Tarallo, O., Borbone, F., Ferone, C., Colangelo, F., Catauro, M. & Cioffi, R. (2013). Int. J. Mol. Sci. 14, 18200–18214. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sherrington, D. C. & Taskinen, K. A. (2001). Chem. Soc. Rev. 30, 83–93.
- Sheshmani, S., Ghadermazi, M., Aghabozorg, H. & Nakhjavan, B. (2006). Acta Cryst. E62, o4681–o4682.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Wang, L., Hu, Y., Wang, W., Liu, F. & Huang, K. (2014). CrystEngComm, 16, 4142–4161.
- Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer3.0. University of Western Australia.
- Zerkowski, J. A. & Whitesides, G. M. (1994). J. Am. Chem. Soc. 116, 4298–4304.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989018010368/jj2200sup1.cif
Supporting information file. DOI: 10.1107/S2056989018010368/jj2200Isup2.cml
CCDC reference: 1820866
Additional supporting information: crystallographic information; 3D view; checkCIF report





