Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Jul 20;74(Pt 8):1117–1120. doi: 10.1107/S2056989018010034

Single-crystal X-ray diffraction study of a host–guest system comprising monofunctionalized-hydroxy pillar[5]arene and 1-octa­namine

Talal F Al-Azemi a,*, Mickey Vinodh a, Abdirahman A Mohamod a, Fatemeh H Alipour a
PMCID: PMC6072997  PMID: 30116574

The crystal structure and supra­molecular inter­actions between a hy­droxy-functionalized pillarene and 1-octa­namine guest mol­ecule, which forms an inter­esting host–guest system, are reported.

Keywords: Functionalized pillararene, host–guest inter­action, encapsulation, crystal structure

Abstract

Co-crystallization of a monofunctionalized hy­droxy pillar[5]arene with 1-octa­namine resulted in the formation of an inclusion complex where the alkyl chain is threaded in the macrocycle cavity, namely 1,2,3,4-(1,4-dimeth­oxy)-5-(1-hy­droxy-4-meth­oxy)-pillar[5]arene–1-octa­namine–water (1/1/1), C44H48O10·C8H19N·H2O. The guest compound is stabilized inside the cavity by hydrogen-bonding and C—H⋯π inter­actions. The water mol­ecule in the asymmetric unit mediates the formation of a supra­molecular dimer by hydrogen-bonding inter­actions. These functionalized-pillararene hosts expand the possibility of exploring more supra­molecular inter­actions with various guest species.

Chemical context  

Pillar[5]arenes are a relatively new class of three-dimensional macrocyclic compounds having a well-defined inner cavity for guest encapsulation. Unlike cone-shaped calixarene or resorcinarene-type structures, the pillararenes have a tabular cavity, which makes them inter­esting mol­ecular hosts. It is well known that pillar[5]arenes exhibit an outstanding ability to selectively bind different kinds of guest mol­ecules and thus are valuable chemical entities in the areas of host–guest systems and mol­ecular recognition (Ogoshi et al., 2008). The guest moieties that could be encapsulated by pillararenes include both neutral and charged guest species and the preference will be for those having long alkyl chains. Appropriate function­alization of the pillararene framework could enable efficient control over the binding properties of these macrocycles with a variety of guest species (Han et al., 2010, 2015; Pan & Xue, 2013; Hu et al., 2016).

Chemical modification of the pillararene system could be achieved in two ways, namely cyclization of appropriately functionalized monomers or functionalization of preformed pillararenes (Al-Azemi et al., 2017). In the former, co-cyclization of pre-functionalized monomers in an appropriate feed ratio could be employed to generate pillararenes having the desired functionalities in terms of numbers and positions.

The pillar[5]rene system having one hy­droxy group is inter­esting because this OH– function is susceptible for further chemical transformation (Al-Azemi et al., 2018). Furthermore, the OH– group in pillararenes could involve hydrogen bonding with guest mol­ecules and/or with neighboring pillararenes, which makes them valuable compounds in mol­ecular recognition and supra­molecular chemistry. We have recently reported details of the host–guest complexation between mono-hy­droxy-pillar[5]arenes with long-chain alkyl alcohol guests (Al-Azemi et al., 2018). It was observed that the encapsulation characteristics of the pillar[5]arene was affected by the presence of the hy­droxy group, resulting in the formation of a 1:2 complex with long-chain alkyl alcohols.graphic file with name e-74-01117-scheme1.jpg

In this work we report the crystal structure of the inclusion complex consisting of 1-(1-hy­droxy-4-meth­oxy)-2,3,4,5-(1,4-dimeth­oxy)-pillar[5]arene (Pil-OH) and 1-octa­namine (OctNH2). The structural features and supra­molecular host–guest inter­actions of this co-crystalline system (Pil-OH·OctNH2) has been addressed and discussed.

Structural commentary  

The crystal structure of the inclusion complex Pil-OH·OctNH2 is given in Fig. 1. The mono-hy­droxy-pillar[5]arene (Pil-OH) has a rigid three-dimensional macrocyclic architecture with a wide cavity having a penta­gonal shape. The 1-octa­namine mol­ecule is threaded inside the pillararene cavity and one water is included in asymmetric unit, displaying strong hydrogen-bonding inter­actions with the amino group of the guest mol­ecule inside the cavity and the hy­droxy group on the pillararene system via O11—H11A⋯N1 and O11—H11B⋯O1 bonds respectively (Table 1).

Figure 1.

Figure 1

Displacement ellipsoid representation (30% probability) of Pil-OH·OctNH2. Hydrogen atoms are omitted for clarity.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11A⋯N1 0.83 (2) 1.98 (5) 2.770 (10) 159 (7)
O11—H11B⋯O1 0.80 (10) 2.40 (10) 3.060 (10) 145 (10)
O1—H1⋯O11i 0.82 (5) 1.90 (5) 2.711 (7) 168 (9)

Symmetry code: (i) Inline graphic.

Supra­molecular features  

In the title inclusion complex, the water mol­ecule mediates the formation of supra­molecular dimers through O1i—H1i⋯O11[symmetry code: (i) −x + 2, −y + 1, −z + 1] and O11—H11⋯O1 hydrogen-bonding inter­actions (Table 1), as illustrated in Fig. 2. In addition, the encapsulated 1-octa­namine is stabilized inside the cavity by C—H⋯π inter­actions with the pillararene aromatic ring and C—H⋯O inter­actions at the meth­oxy groups on the rim of the macrocycle, which act as hydrogen-bond acceptors. These weak inter­actions are shown in Fig. 3 and the corresponding inter­action distances are given in Table 2. The threaded terminal methyl group of the alkyl chain of the 1-octa­namine guest is positioned outside the pillararene moiety where it engages in a weak inter­molecular C—H⋯O inter­action with the meth­oxy group of another pillararene mol­ecule [C52—H52C⋯O7ii; symmetry code: (ii) x − 1, y, z]. A weak C—H⋯O type pillararene–pillararene inter­action is also observed [C44—H44B⋯O3iii; symmetry code: (iii) x − 1, y − 1, z].

Figure 2.

Figure 2

Hydrogen-bonding inter­actions between Pil-OH·OctNH2 systems showing the formation of a water-mol­ecule-mediated supra­molecular dimer. [Symmetry code: (i) −x + 2, −y + 1, −z + 1.]

Figure 3.

Figure 3

Crystal structure of the inclusion complex Pil-OH·OctNH2 showing weak C—H⋯O and C—H⋯ π inter­actions where Cg1–4 are the centroids of the aromatic rings in the pillararene system. C—H⋯O inter­actions are represented as brown and C—H⋯ π as green dashed lines.

Table 2. Summary of weak inter­actions (C—H⋯π and C—H⋯O; Å, °) between the pillararene and 1-octa­namine mol­ecules.

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C1–C6, C29–C34, C15–C20 and C22–C27 rings, respectively.

D—H⋯A H⋯A DA D—H⋯A
C45—H45ACg1 3.02 3.815 (10) 139
C45—H45BCg2 2.89 3.867 (8) 175
C46—H46ACg3 3.10 3.790 (9) 128
C46—H46BCg4 3.18 4.106 (12) 157
C47—H47A⋯O2 3.10 4.070 (13) 166
C47—H47B⋯O10 3.26 4.158 (10) 151
C48—H48A⋯O4 3.17 4.094 (12) 156
C48—H48B⋯O6 3.24 3.974 (14) 132
C52—H52C⋯O7ii 2.43 3.39 (2) 168
C44—H44B⋯O3ii 2.65 3.611 (8) 167

Symmetry codes: (ii) x − 1, y, z; (iii) x − 1, y − 1, z.

Synthesis and crystallization  

The synthesis of 1-(1-hy­droxy-4-meth­oxy)-2,3,4,5-(1,4-di­meth­oxy)pillar[5]arene has been reported previously (Al-Azemi et al., 2018). The co-crystallization of pillararene with 1-octa­namine was undertaken by adding pillararene (20 mg) and 1-octa­namine (50 µL) to chloro­form (0.5 mL) in a small vial, followed by a very slow solvent evaporation. Within six days, crystals of a suitable size for diffraction analysis had formed.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The hydrogen atoms belonging to water, the OH fraction of the pillarene apex and the NH2 group of 1-octa­namine were found in the electron density map and freely refined. All other hydrogen atoms are placed at calculated positions and refined using a riding model: C—H = 0.95–0.99 Å with U iso(H) = 1.2U eq(C).

Table 3. Experimental details.

Crystal data
Chemical formula C44H48O10·C8H19N·H2O
M r 884.08
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 150
a, b, c (Å) 12.147 (12), 12.341 (12), 19.406 (19)
α, β, γ (°) 91.433 (11), 90.181 (11), 119.182 (9)
V3) 2539 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.12 × 0.11 × 0.02
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995)
T min, T max 0.000, 0.998
No. of measured, independent and observed [I > 2σ(I)] reflections 19245, 8604, 3452
R int 0.078
(sin θ/λ)max−1) 0.589
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.094, 0.349, 0.95
No. of reflections 8604
No. of parameters 606
No. of restraints 44
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.36, −0.27

Computer programs: CrystalClear-SM Expert (Rigaku, 2009); CrystalStructure (Rigaku, 2010), Il Milione (Burla et al., 2007), SHELXL2017 (Sheldrick, 2015); ShelXle (Hübschle et al., 2011) and Mercury (Macrae et al., 2006).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018010034/dx2005sup1.cif

e-74-01117-sup1.cif (601.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018010034/dx2005Isup4.hkl

e-74-01117-Isup4.hkl (683KB, hkl)

CCDC reference: 1855261

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C44H48O10·C8H19N·H2O Z = 2
Mr = 884.08 F(000) = 952
Triclinic, P1 Dx = 1.157 Mg m3
a = 12.147 (12) Å Mo Kα radiation, λ = 0.71075 Å
b = 12.341 (12) Å Cell parameters from 1156 reflections
c = 19.406 (19) Å θ = 3.2–24.5°
α = 91.433 (11)° µ = 0.08 mm1
β = 90.181 (11)° T = 150 K
γ = 119.182 (9)° Platelet, colorless
V = 2539 (4) Å3 0.12 × 0.11 × 0.02 mm

Data collection

Rigaku R-AXIS RAPID diffractometer 3452 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1 Rint = 0.078
ω scans θmax = 24.8°, θmin = 3.2°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −14→14
Tmin = 0.000, Tmax = 0.998 k = −14→14
19245 measured reflections l = −22→22
8604 independent reflections

Refinement

Refinement on F2 44 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.094 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.349 w = 1/[σ2(Fo2) + (0.2P)2] where P = (Fo2 + 2Fc2)/3
S = 0.95 (Δ/σ)max = 0.006
8604 reflections Δρmax = 0.36 e Å3
606 parameters Δρmin = −0.27 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.7998 (4) 0.4416 (4) 0.5308 (2) 0.0863 (12)
H1 0.873 (4) 0.497 (8) 0.537 (6) 0.26 (6)*
H1B 0.8643 (19) 0.2821 (17) 0.283 (3) 0.9 (3)*
H1A 0.926 (2) 0.402 (4) 0.266 (2) 1.075*
O2 0.5570 (4) 0.6085 (3) 0.35282 (19) 0.0828 (11)
O3 1.0480 (4) 0.7681 (4) 0.3574 (2) 0.0900 (12)
O4 0.7543 (4) 0.6894 (4) 0.1205 (2) 0.0960 (12)
O5 1.1318 (4) 0.5864 (4) 0.1524 (2) 0.1013 (13)
O6 0.6840 (4) 0.2542 (4) 0.0134 (2) 0.0930 (12)
O7 0.9401 (4) 0.1253 (4) 0.1904 (2) 0.1032 (14)
O8 0.4150 (4) −0.0913 (4) 0.1898 (2) 0.0999 (13)
O9 0.7136 (3) 0.0036 (3) 0.41713 (19) 0.0793 (10)
O10 0.3518 (4) 0.1570 (3) 0.3987 (2) 0.0856 (11)
O11 0.9620 (6) 0.3882 (5) 0.4297 (4) 0.1282 (17)
H11A 0.952 (8) 0.382 (8) 0.3873 (8) 0.14 (4)*
H11B 0.895 (6) 0.381 (14) 0.444 (4) 0.36 (10)*
N1 0.8665 (8) 0.3545 (9) 0.2964 (4) 0.187 (3)
C1 0.6093 (5) 0.4038 (4) 0.4726 (2) 0.0616 (13)
C2 0.7389 (5) 0.4832 (4) 0.4870 (3) 0.0646 (13)
C3 0.8014 (5) 0.5997 (4) 0.4566 (2) 0.0657 (13)
H3 0.888107 0.652169 0.467812 0.079*
C4 0.7446 (5) 0.6424 (4) 0.4117 (2) 0.0619 (13)
C5 0.6149 (5) 0.5637 (4) 0.3974 (2) 0.0648 (13)
C6 0.5476 (5) 0.4457 (5) 0.4282 (3) 0.0663 (13)
H6 0.460041 0.394896 0.418505 0.080*
C7 0.8171 (5) 0.7667 (4) 0.3762 (3) 0.0717 (14)
H7A 0.761602 0.803975 0.371036 0.086*
H7B 0.890363 0.824020 0.405532 0.086*
C8 0.8632 (5) 0.7517 (4) 0.3053 (3) 0.0653 (13)
C9 0.9770 (5) 0.7500 (4) 0.2978 (3) 0.0703 (14)
C10 1.0164 (5) 0.7319 (4) 0.2321 (3) 0.0711 (14)
H10 1.095015 0.733265 0.227972 0.085*
C11 0.9414 (5) 0.7118 (4) 0.1728 (3) 0.0671 (14)
C12 0.8273 (5) 0.7131 (4) 0.1804 (3) 0.0651 (13)
C13 0.7897 (5) 0.7325 (4) 0.2446 (3) 0.0723 (14)
H13 0.711909 0.732931 0.248182 0.087*
C14 0.9834 (5) 0.6858 (5) 0.1028 (3) 0.0783 (16)
H14A 0.944839 0.710599 0.065626 0.094*
H14B 1.076111 0.737002 0.099692 0.094*
C15 0.9459 (5) 0.5487 (5) 0.0917 (3) 0.0677 (13)
C16 1.0202 (5) 0.4986 (5) 0.1180 (3) 0.0708 (14)
C17 0.9803 (5) 0.3735 (5) 0.1099 (3) 0.0775 (16)
H17 1.030774 0.342342 0.129389 0.093*
C18 0.8681 (5) 0.2895 (5) 0.0741 (2) 0.0645 (13)
C19 0.7951 (5) 0.3381 (5) 0.0473 (3) 0.0673 (13)
C20 0.8359 (5) 0.4660 (5) 0.0550 (2) 0.0698 (14)
H20 0.786551 0.497525 0.034485 0.084*
C21 0.8264 (5) 0.1518 (5) 0.0693 (3) 0.0744 (15)
H21A 0.901999 0.141389 0.065517 0.089*
H21B 0.774835 0.115675 0.026728 0.089*
C22 0.7501 (5) 0.0799 (4) 0.1308 (3) 0.0659 (13)
C23 0.8092 (5) 0.0688 (5) 0.1907 (3) 0.0726 (14)
C24 0.7356 (5) 0.0045 (5) 0.2471 (3) 0.0703 (14)
H24 0.777006 −0.003112 0.286797 0.084*
C25 0.6053 (5) −0.0481 (4) 0.2471 (3) 0.0613 (12)
C26 0.5478 (5) −0.0366 (4) 0.1869 (3) 0.0703 (14)
C27 0.6189 (5) 0.0249 (4) 0.1303 (3) 0.0690 (14)
H27 0.576768 0.029565 0.090089 0.083*
C28 0.5313 (5) −0.1097 (4) 0.3107 (3) 0.0677 (14)
H28A 0.568733 −0.155795 0.332925 0.081*
H28B 0.443199 −0.169888 0.297094 0.081*
C29 0.5322 (5) −0.0127 (4) 0.3623 (3) 0.0620 (13)
C30 0.6251 (5) 0.0447 (4) 0.4141 (3) 0.0644 (13)
C31 0.6250 (5) 0.1358 (4) 0.4595 (3) 0.0625 (13)
H31 0.688553 0.172627 0.494462 0.075*
C32 0.5330 (5) 0.1733 (4) 0.4541 (3) 0.0623 (13)
C33 0.4413 (5) 0.1172 (4) 0.4021 (3) 0.0639 (13)
C34 0.4409 (5) 0.0264 (4) 0.3580 (3) 0.0667 (14)
H34 0.376598 −0.010753 0.323403 0.080*
C35 0.5383 (5) 0.2750 (4) 0.5031 (3) 0.0696 (14)
H35A 0.451230 0.256429 0.513752 0.084*
H35B 0.580257 0.274780 0.546904 0.084*
C36 0.4254 (6) 0.5339 (6) 0.3381 (3) 0.0957 (19)
H36A 0.408099 0.451973 0.320346 0.115*
H36B 0.399726 0.574028 0.303425 0.115*
H36C 0.377979 0.524540 0.380332 0.115*
C37 1.1307 (6) 0.7168 (6) 0.3582 (4) 0.112 (2)
H37A 1.081350 0.626170 0.353112 0.134*
H37B 1.178058 0.739408 0.402066 0.134*
H37C 1.189692 0.749539 0.320081 0.134*
C38 0.6446 (7) 0.7030 (7) 0.1244 (4) 0.123 (3)
H38A 0.612310 0.700893 0.077804 0.148*
H38B 0.666172 0.782534 0.147599 0.148*
H38C 0.579948 0.635015 0.150610 0.148*
C39 1.2011 (6) 0.5426 (7) 0.1908 (4) 0.123 (3)
H39A 1.272954 0.612981 0.214202 0.147*
H39B 1.231752 0.499850 0.159669 0.147*
H39C 1.146332 0.484752 0.225219 0.147*
C40 0.6167 (6) 0.2999 (6) −0.0255 (4) 0.108 (2)
H40A 0.673850 0.360864 −0.057917 0.130*
H40B 0.582687 0.339461 0.005726 0.130*
H40C 0.547291 0.230861 −0.051165 0.130*
C41 1.0011 (6) 0.1111 (8) 0.2487 (4) 0.148 (4)
H41A 1.092620 0.162445 0.244320 0.178*
H41B 0.979315 0.023797 0.251913 0.178*
H41C 0.973832 0.137279 0.290344 0.178*
C42 0.3518 (6) −0.0589 (6) 0.1393 (4) 0.111 (2)
H42A 0.261287 −0.100430 0.148697 0.133*
H42B 0.365018 −0.085150 0.093413 0.133*
H42C 0.385380 0.031267 0.140919 0.133*
C43 0.8110 (6) 0.0576 (6) 0.4702 (3) 0.0908 (17)
H43A 0.866291 0.145762 0.461515 0.109*
H43B 0.860600 0.014439 0.469794 0.109*
H43C 0.771997 0.049224 0.515331 0.109*
C44 0.2507 (6) 0.0996 (6) 0.3489 (4) 0.106 (2)
H44A 0.198668 0.140194 0.351356 0.128*
H44B 0.198738 0.011365 0.358742 0.128*
H44C 0.285413 0.107841 0.302639 0.128*
C45 0.7525 (8) 0.3574 (8) 0.2971 (4) 0.122 (2)
H45A 0.769361 0.436453 0.320385 0.146*
H45B 0.693821 0.289613 0.326564 0.146*
C46 0.6862 (9) 0.3467 (8) 0.2329 (4) 0.127 (3)
H46A 0.743711 0.418069 0.205191 0.152*
H46B 0.676467 0.271179 0.208279 0.152*
C47 0.5660 (9) 0.3407 (9) 0.2301 (5) 0.151 (3)
H47A 0.574930 0.416845 0.253525 0.181*
H47B 0.507509 0.269708 0.257773 0.181*
C48 0.5038 (11) 0.3280 (11) 0.1620 (5) 0.167 (3)
H48A 0.557335 0.404621 0.136891 0.201*
H48B 0.505917 0.258918 0.136166 0.201*
C49 0.3773 (12) 0.3068 (13) 0.1576 (6) 0.204 (4)
H49A 0.374764 0.375760 0.183428 0.244*
H49B 0.323332 0.229943 0.182388 0.244*
C50 0.3154 (13) 0.2945 (13) 0.0869 (6) 0.231 (4)
H50A 0.275598 0.347951 0.089220 0.278*
H50B 0.384862 0.332588 0.053709 0.278*
C51 0.2189 (15) 0.1723 (13) 0.0547 (8) 0.284 (6)
H51A 0.268135 0.146093 0.024831 0.341*
H51B 0.169054 0.193908 0.023020 0.341*
C52 0.1227 (15) 0.0544 (14) 0.0877 (9) 0.293 (7)
H52A 0.165112 0.028166 0.121064 0.439*
H52B 0.080349 −0.011013 0.052049 0.439*
H52C 0.060180 0.069646 0.111430 0.439*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.082 (3) 0.084 (2) 0.094 (3) 0.040 (2) −0.007 (2) 0.024 (2)
O2 0.090 (3) 0.090 (2) 0.084 (3) 0.056 (2) −0.009 (2) 0.008 (2)
O3 0.081 (3) 0.106 (3) 0.077 (3) 0.042 (2) −0.021 (2) −0.002 (2)
O4 0.101 (3) 0.128 (3) 0.082 (3) 0.074 (3) −0.016 (2) −0.003 (2)
O5 0.076 (3) 0.101 (3) 0.130 (4) 0.045 (2) −0.020 (3) 0.003 (3)
O6 0.099 (3) 0.097 (3) 0.090 (3) 0.053 (2) −0.031 (2) −0.006 (2)
O7 0.072 (3) 0.140 (3) 0.103 (3) 0.054 (3) 0.004 (2) 0.041 (3)
O8 0.074 (3) 0.113 (3) 0.093 (3) 0.031 (2) −0.015 (2) 0.008 (2)
O9 0.084 (3) 0.083 (2) 0.083 (3) 0.051 (2) −0.013 (2) −0.0055 (19)
O10 0.074 (3) 0.087 (2) 0.103 (3) 0.046 (2) −0.010 (2) −0.005 (2)
O11 0.101 (4) 0.122 (4) 0.140 (6) 0.038 (3) −0.012 (4) 0.000 (4)
N1 0.177 (8) 0.276 (11) 0.143 (7) 0.138 (8) −0.019 (6) −0.021 (7)
C1 0.071 (4) 0.062 (3) 0.060 (3) 0.038 (3) 0.005 (3) −0.001 (2)
C2 0.070 (4) 0.060 (3) 0.064 (3) 0.032 (3) −0.005 (3) 0.005 (2)
C3 0.068 (3) 0.064 (3) 0.063 (3) 0.031 (3) −0.001 (3) −0.001 (2)
C4 0.077 (4) 0.058 (3) 0.058 (3) 0.039 (3) −0.003 (3) −0.002 (2)
C5 0.090 (4) 0.068 (3) 0.055 (3) 0.053 (3) −0.002 (3) −0.002 (2)
C6 0.067 (3) 0.077 (3) 0.064 (3) 0.043 (3) 0.000 (3) −0.006 (3)
C7 0.087 (4) 0.058 (3) 0.073 (4) 0.038 (3) −0.005 (3) 0.002 (2)
C8 0.085 (4) 0.050 (3) 0.059 (3) 0.031 (3) −0.001 (3) 0.007 (2)
C9 0.065 (3) 0.062 (3) 0.073 (4) 0.023 (3) −0.011 (3) 0.008 (3)
C10 0.066 (3) 0.072 (3) 0.070 (4) 0.030 (3) 0.003 (3) 0.014 (3)
C11 0.080 (4) 0.061 (3) 0.059 (3) 0.033 (3) 0.001 (3) 0.010 (2)
C12 0.074 (4) 0.069 (3) 0.057 (3) 0.038 (3) −0.010 (3) 0.004 (2)
C13 0.079 (4) 0.073 (3) 0.073 (4) 0.044 (3) −0.003 (3) 0.010 (3)
C14 0.080 (4) 0.078 (3) 0.075 (4) 0.036 (3) 0.007 (3) 0.016 (3)
C15 0.061 (3) 0.077 (3) 0.061 (3) 0.030 (3) 0.010 (3) 0.014 (3)
C16 0.052 (3) 0.081 (4) 0.075 (4) 0.029 (3) −0.003 (3) 0.008 (3)
C17 0.075 (4) 0.098 (4) 0.077 (4) 0.055 (3) 0.011 (3) 0.017 (3)
C18 0.067 (3) 0.081 (3) 0.049 (3) 0.038 (3) 0.006 (3) 0.005 (2)
C19 0.071 (4) 0.076 (3) 0.053 (3) 0.035 (3) −0.006 (3) 0.002 (3)
C20 0.072 (4) 0.092 (4) 0.055 (3) 0.046 (3) 0.006 (3) 0.016 (3)
C21 0.086 (4) 0.086 (4) 0.067 (4) 0.054 (3) 0.006 (3) 0.003 (3)
C22 0.081 (4) 0.067 (3) 0.059 (3) 0.043 (3) 0.001 (3) −0.001 (2)
C23 0.071 (4) 0.079 (3) 0.077 (4) 0.044 (3) 0.002 (3) 0.006 (3)
C24 0.083 (4) 0.074 (3) 0.064 (3) 0.046 (3) −0.006 (3) 0.008 (3)
C25 0.064 (3) 0.055 (3) 0.065 (3) 0.028 (2) −0.008 (3) −0.006 (2)
C26 0.060 (3) 0.063 (3) 0.078 (4) 0.022 (3) −0.015 (3) −0.007 (3)
C27 0.084 (4) 0.070 (3) 0.051 (3) 0.037 (3) −0.012 (3) −0.008 (2)
C28 0.069 (3) 0.048 (2) 0.076 (4) 0.021 (2) −0.011 (3) −0.004 (2)
C29 0.060 (3) 0.053 (3) 0.064 (3) 0.021 (2) 0.005 (3) 0.012 (2)
C30 0.063 (3) 0.064 (3) 0.067 (3) 0.031 (3) 0.002 (3) 0.010 (3)
C31 0.061 (3) 0.058 (3) 0.058 (3) 0.022 (2) −0.003 (2) 0.007 (2)
C32 0.064 (3) 0.057 (3) 0.065 (3) 0.028 (2) 0.011 (3) 0.014 (2)
C33 0.055 (3) 0.060 (3) 0.072 (4) 0.025 (2) −0.002 (3) 0.004 (3)
C34 0.061 (3) 0.058 (3) 0.067 (3) 0.018 (2) −0.006 (2) 0.007 (3)
C35 0.071 (3) 0.069 (3) 0.065 (3) 0.031 (3) 0.010 (3) 0.004 (3)
C36 0.100 (5) 0.109 (4) 0.095 (5) 0.065 (4) −0.023 (4) −0.005 (4)
C37 0.101 (5) 0.111 (5) 0.120 (6) 0.048 (4) −0.038 (4) 0.008 (4)
C38 0.130 (6) 0.174 (7) 0.110 (6) 0.110 (6) −0.029 (5) −0.014 (5)
C39 0.086 (5) 0.139 (6) 0.143 (7) 0.055 (5) −0.029 (5) −0.002 (5)
C40 0.113 (5) 0.126 (5) 0.103 (5) 0.072 (4) −0.035 (4) −0.015 (4)
C41 0.077 (5) 0.207 (8) 0.151 (7) 0.058 (5) −0.008 (5) 0.080 (6)
C42 0.079 (4) 0.128 (5) 0.119 (6) 0.045 (4) −0.024 (4) 0.000 (4)
C43 0.087 (4) 0.098 (4) 0.101 (5) 0.056 (3) −0.014 (4) −0.006 (3)
C44 0.088 (5) 0.118 (5) 0.121 (6) 0.056 (4) −0.023 (4) −0.002 (4)
C45 0.114 (6) 0.152 (7) 0.094 (6) 0.060 (5) 0.000 (5) −0.008 (5)
C46 0.141 (7) 0.147 (6) 0.107 (6) 0.082 (6) 0.020 (6) 0.015 (5)
C47 0.137 (8) 0.208 (10) 0.106 (7) 0.084 (7) 0.018 (6) 0.000 (6)
C48 0.197 (9) 0.218 (8) 0.118 (6) 0.125 (8) −0.005 (6) 0.009 (6)
C49 0.212 (8) 0.273 (8) 0.146 (6) 0.134 (8) −0.011 (6) 0.003 (6)
C50 0.248 (10) 0.291 (9) 0.162 (8) 0.137 (8) −0.038 (6) 0.002 (7)
C51 0.294 (12) 0.301 (11) 0.205 (10) 0.105 (9) −0.034 (8) 0.016 (8)
C52 0.302 (16) 0.275 (12) 0.300 (16) 0.141 (10) 0.016 (12) −0.015 (11)

Geometric parameters (Å, º)

O1—C2 1.387 (6) C25—C28 1.516 (7)
O1—H1 0.822 (11) C26—C27 1.391 (7)
O2—C5 1.396 (5) C27—H27 0.9500
O2—C36 1.426 (7) C28—C29 1.538 (7)
O3—C9 1.387 (6) C28—H28A 0.9900
O3—C37 1.426 (7) C28—H28B 0.9900
O4—C12 1.395 (6) C29—C30 1.401 (7)
O4—C38 1.423 (7) C29—C34 1.411 (7)
O5—C16 1.408 (6) C30—C31 1.411 (7)
O5—C39 1.421 (7) C31—C32 1.407 (7)
O6—C19 1.387 (6) C31—H31 0.9500
O6—C40 1.422 (6) C32—C33 1.394 (7)
O7—C23 1.390 (6) C32—C35 1.531 (7)
O7—C41 1.411 (7) C33—C34 1.392 (7)
O8—C26 1.414 (6) C34—H34 0.9500
O8—C42 1.423 (7) C35—H35A 0.9900
O9—C30 1.396 (6) C35—H35B 0.9900
O9—C43 1.447 (7) C36—H36A 0.9800
O10—C33 1.396 (6) C36—H36B 0.9800
O10—C44 1.434 (7) C36—H36C 0.9800
O11—H11A 0.827 (10) C37—H37A 0.9800
O11—H11B 0.823 (10) C37—H37B 0.9800
N1—C45 1.403 (9) C37—H37C 0.9800
N1—H1B 0.9100 (13) C38—H38A 0.9800
N1—H1A 0.9102 (12) C38—H38B 0.9800
C1—C6 1.403 (6) C38—H38C 0.9800
C1—C2 1.413 (7) C39—H39A 0.9800
C1—C35 1.528 (6) C39—H39B 0.9800
C2—C3 1.404 (6) C39—H39C 0.9800
C3—C4 1.374 (6) C40—H40A 0.9800
C3—H3 0.9500 C40—H40B 0.9800
C4—C5 1.412 (7) C40—H40C 0.9800
C4—C7 1.530 (6) C41—H41A 0.9800
C5—C6 1.425 (7) C41—H41B 0.9800
C6—H6 0.9500 C41—H41C 0.9800
C7—C8 1.528 (7) C42—H42A 0.9800
C7—H7A 0.9900 C42—H42B 0.9800
C7—H7B 0.9900 C42—H42C 0.9800
C8—C9 1.401 (7) C43—H43A 0.9800
C8—C13 1.419 (7) C43—H43B 0.9800
C9—C10 1.414 (7) C43—H43C 0.9800
C10—C11 1.405 (7) C44—H44A 0.9800
C10—H10 0.9500 C44—H44B 0.9800
C11—C12 1.402 (7) C44—H44C 0.9800
C11—C14 1.534 (7) C45—C46 1.448 (10)
C12—C13 1.383 (7) C45—H45A 0.9900
C13—H13 0.9500 C45—H45B 0.9900
C14—C15 1.532 (7) C46—C47 1.428 (10)
C14—H14A 0.9900 C46—H46A 0.9900
C14—H14B 0.9900 C46—H46B 0.9900
C15—C20 1.400 (7) C47—C48 1.486 (12)
C15—C16 1.420 (7) C47—H47A 0.9900
C16—C17 1.378 (7) C47—H47B 0.9900
C17—C18 1.412 (7) C48—C49 1.429 (13)
C17—H17 0.9500 C48—H48A 0.9900
C18—C19 1.397 (7) C48—H48B 0.9900
C18—C21 1.519 (7) C49—C50 1.529 (8)
C19—C20 1.409 (7) C49—H49A 0.9900
C20—H20 0.9500 C49—H49B 0.9900
C21—C22 1.526 (7) C50—C51 1.505 (9)
C21—H21A 0.9900 C50—H50A 0.9900
C21—H21B 0.9900 C50—H50B 0.9900
C22—C27 1.394 (7) C51—C52 1.512 (9)
C22—C23 1.408 (7) C51—H51A 0.9900
C23—C24 1.409 (7) C51—H51B 0.9900
C24—C25 1.387 (7) C52—H52A 0.9800
C24—H24 0.9500 C52—H52B 0.9800
C25—C26 1.405 (7) C52—H52C 0.9800
C2—O1—H1 109 (8) C30—C31—H31 119.2
C5—O2—C36 118.7 (4) C33—C32—C31 117.6 (5)
C9—O3—C37 117.5 (5) C33—C32—C35 122.4 (5)
C12—O4—C38 117.8 (5) C31—C32—C35 119.9 (5)
C16—O5—C39 118.3 (5) C34—C33—C32 120.7 (5)
C19—O6—C40 119.1 (4) C34—C33—O10 123.6 (5)
C23—O7—C41 117.6 (4) C32—C33—O10 115.7 (5)
C26—O8—C42 118.3 (4) C33—C34—C29 122.8 (5)
C30—O9—C43 117.9 (4) C33—C34—H34 118.6
C33—O10—C44 119.2 (5) C29—C34—H34 118.6
H11A—O11—H11B 103.8 (17) C1—C35—C32 112.3 (4)
C45—N1—H1B 118.2 (13) C1—C35—H35A 109.1
C45—N1—H1A 118.1 (13) C32—C35—H35A 109.1
H1B—N1—H1A 95.8 (10) C1—C35—H35B 109.1
C6—C1—C2 118.0 (4) C32—C35—H35B 109.1
C6—C1—C35 120.7 (5) H35A—C35—H35B 107.9
C2—C1—C35 121.4 (4) O2—C36—H36A 109.5
O1—C2—C3 122.5 (5) O2—C36—H36B 109.5
O1—C2—C1 117.9 (4) H36A—C36—H36B 109.5
C3—C2—C1 119.6 (4) O2—C36—H36C 109.5
C4—C3—C2 123.9 (5) H36A—C36—H36C 109.5
C4—C3—H3 118.0 H36B—C36—H36C 109.5
C2—C3—H3 118.0 O3—C37—H37A 109.5
C3—C4—C5 116.7 (4) O3—C37—H37B 109.5
C3—C4—C7 122.6 (5) H37A—C37—H37B 109.5
C5—C4—C7 120.6 (4) O3—C37—H37C 109.5
O2—C5—C4 116.5 (4) H37A—C37—H37C 109.5
O2—C5—C6 122.4 (5) H37B—C37—H37C 109.5
C4—C5—C6 121.1 (4) O4—C38—H38A 109.5
C1—C6—C5 120.7 (5) O4—C38—H38B 109.5
C1—C6—H6 119.6 H38A—C38—H38B 109.5
C5—C6—H6 119.6 O4—C38—H38C 109.5
C8—C7—C4 111.9 (4) H38A—C38—H38C 109.5
C8—C7—H7A 109.2 H38B—C38—H38C 109.5
C4—C7—H7A 109.2 O5—C39—H39A 109.5
C8—C7—H7B 109.2 O5—C39—H39B 109.5
C4—C7—H7B 109.2 H39A—C39—H39B 109.5
H7A—C7—H7B 107.9 O5—C39—H39C 109.5
C9—C8—C13 117.1 (5) H39A—C39—H39C 109.5
C9—C8—C7 121.3 (5) H39B—C39—H39C 109.5
C13—C8—C7 121.5 (5) O6—C40—H40A 109.5
O3—C9—C8 116.8 (5) O6—C40—H40B 109.5
O3—C9—C10 122.5 (5) H40A—C40—H40B 109.5
C8—C9—C10 120.7 (5) O6—C40—H40C 109.5
C11—C10—C9 121.2 (5) H40A—C40—H40C 109.5
C11—C10—H10 119.4 H40B—C40—H40C 109.5
C9—C10—H10 119.4 O7—C41—H41A 109.5
C12—C11—C10 118.1 (5) O7—C41—H41B 109.5
C12—C11—C14 121.9 (5) H41A—C41—H41B 109.5
C10—C11—C14 120.0 (5) O7—C41—H41C 109.5
C13—C12—O4 123.2 (5) H41A—C41—H41C 109.5
C13—C12—C11 120.7 (5) H41B—C41—H41C 109.5
O4—C12—C11 116.1 (5) O8—C42—H42A 109.5
C12—C13—C8 122.3 (5) O8—C42—H42B 109.5
C12—C13—H13 118.8 H42A—C42—H42B 109.5
C8—C13—H13 118.8 O8—C42—H42C 109.5
C15—C14—C11 112.3 (4) H42A—C42—H42C 109.5
C15—C14—H14A 109.1 H42B—C42—H42C 109.5
C11—C14—H14A 109.1 O9—C43—H43A 109.5
C15—C14—H14B 109.1 O9—C43—H43B 109.5
C11—C14—H14B 109.1 H43A—C43—H43B 109.5
H14A—C14—H14B 107.9 O9—C43—H43C 109.5
C20—C15—C16 116.5 (5) H43A—C43—H43C 109.5
C20—C15—C14 121.5 (5) H43B—C43—H43C 109.5
C16—C15—C14 122.0 (5) O10—C44—H44A 109.5
C17—C16—O5 125.5 (5) O10—C44—H44B 109.5
C17—C16—C15 120.4 (5) H44A—C44—H44B 109.5
O5—C16—C15 114.2 (5) O10—C44—H44C 109.5
C16—C17—C18 123.2 (5) H44A—C44—H44C 109.5
C16—C17—H17 118.4 H44B—C44—H44C 109.5
C18—C17—H17 118.4 N1—C45—C46 119.9 (7)
C19—C18—C17 116.9 (5) N1—C45—H45A 107.3
C19—C18—C21 122.2 (5) C46—C45—H45A 107.3
C17—C18—C21 120.8 (4) N1—C45—H45B 107.3
O6—C19—C18 116.3 (5) C46—C45—H45B 107.3
O6—C19—C20 123.6 (4) H45A—C45—H45B 106.9
C18—C19—C20 120.1 (5) C47—C46—C45 122.9 (8)
C15—C20—C19 122.9 (5) C47—C46—H46A 106.6
C15—C20—H20 118.6 C45—C46—H46A 106.6
C19—C20—H20 118.6 C47—C46—H46B 106.6
C18—C21—C22 113.7 (4) C45—C46—H46B 106.6
C18—C21—H21A 108.8 H46A—C46—H46B 106.6
C22—C21—H21A 108.8 C46—C47—C48 119.4 (8)
C18—C21—H21B 108.8 C46—C47—H47A 107.5
C22—C21—H21B 108.8 C48—C47—H47A 107.5
H21A—C21—H21B 107.7 C46—C47—H47B 107.5
C27—C22—C23 117.5 (5) C48—C47—H47B 107.5
C27—C22—C21 121.0 (4) H47A—C47—H47B 107.0
C23—C22—C21 121.4 (5) C49—C48—C47 120.8 (9)
O7—C23—C22 116.6 (5) C49—C48—H48A 107.1
O7—C23—C24 123.6 (5) C47—C48—H48A 107.1
C22—C23—C24 119.7 (5) C49—C48—H48B 107.1
C25—C24—C23 122.8 (5) C47—C48—H48B 107.1
C25—C24—H24 118.6 H48A—C48—H48B 106.8
C23—C24—H24 118.6 C48—C49—C50 119.8 (11)
C24—C25—C26 116.8 (5) C48—C49—H49A 107.4
C24—C25—C28 120.6 (4) C50—C49—H49A 107.4
C26—C25—C28 122.5 (5) C48—C49—H49B 107.4
C27—C26—C25 121.2 (5) C50—C49—H49B 107.4
C27—C26—O8 124.3 (5) H49A—C49—H49B 106.9
C25—C26—O8 114.4 (5) C51—C50—C49 123.4 (13)
C26—C27—C22 122.0 (5) C51—C50—H50A 106.5
C26—C27—H27 119.0 C49—C50—H50A 106.5
C22—C27—H27 119.0 C51—C50—H50B 106.5
C25—C28—C29 110.9 (4) C49—C50—H50B 106.5
C25—C28—H28A 109.5 H50A—C50—H50B 106.5
C29—C28—H28A 109.5 C50—C51—C52 130.4 (16)
C25—C28—H28B 109.5 C50—C51—H51A 104.7
C29—C28—H28B 109.5 C52—C51—H51A 104.7
H28A—C28—H28B 108.0 C50—C51—H51B 104.7
C30—C29—C34 116.6 (5) C52—C51—H51B 104.7
C30—C29—C28 122.4 (5) H51A—C51—H51B 105.7
C34—C29—C28 121.1 (5) C51—C52—H52A 109.5
O9—C30—C29 115.1 (5) C51—C52—H52B 109.5
O9—C30—C31 124.0 (5) H52A—C52—H52B 109.5
C29—C30—C31 120.9 (5) C51—C52—H52C 109.5
C32—C31—C30 121.5 (5) H52A—C52—H52C 109.5
C32—C31—H31 119.2 H52B—C52—H52C 109.5
C6—C1—C2—O1 −179.9 (4) C16—C15—C20—C19 3.5 (7)
C35—C1—C2—O1 −1.1 (7) C14—C15—C20—C19 −176.3 (4)
C6—C1—C2—C3 −0.3 (7) O6—C19—C20—C15 177.5 (5)
C35—C1—C2—C3 178.5 (5) C18—C19—C20—C15 −2.9 (8)
O1—C2—C3—C4 178.3 (5) C19—C18—C21—C22 −90.5 (6)
C1—C2—C3—C4 −1.3 (8) C17—C18—C21—C22 85.6 (6)
C2—C3—C4—C5 1.6 (7) C18—C21—C22—C27 91.1 (6)
C2—C3—C4—C7 −176.4 (5) C18—C21—C22—C23 −87.4 (6)
C36—O2—C5—C4 −178.5 (5) C41—O7—C23—C22 −177.5 (6)
C36—O2—C5—C6 0.6 (7) C41—O7—C23—C24 3.5 (9)
C3—C4—C5—O2 178.7 (4) C27—C22—C23—O7 −179.4 (4)
C7—C4—C5—O2 −3.3 (7) C21—C22—C23—O7 −0.8 (7)
C3—C4—C5—C6 −0.4 (7) C27—C22—C23—C24 −0.3 (7)
C7—C4—C5—C6 177.6 (4) C21—C22—C23—C24 178.3 (4)
C2—C1—C6—C5 1.4 (7) O7—C23—C24—C25 178.1 (5)
C35—C1—C6—C5 −177.4 (4) C22—C23—C24—C25 −0.9 (8)
O2—C5—C6—C1 179.8 (4) C23—C24—C25—C26 1.1 (7)
C4—C5—C6—C1 −1.1 (7) C23—C24—C25—C28 −176.3 (4)
C3—C4—C7—C8 93.5 (6) C24—C25—C26—C27 −0.1 (7)
C5—C4—C7—C8 −84.4 (6) C28—C25—C26—C27 177.3 (4)
C4—C7—C8—C9 −85.0 (6) C24—C25—C26—O8 −179.7 (4)
C4—C7—C8—C13 91.6 (5) C28—C25—C26—O8 −2.3 (7)
C37—O3—C9—C8 153.9 (5) C42—O8—C26—C27 −14.8 (8)
C37—O3—C9—C10 −26.7 (7) C42—O8—C26—C25 164.8 (5)
C13—C8—C9—O3 −179.6 (4) C25—C26—C27—C22 −1.2 (8)
C7—C8—C9—O3 −2.8 (6) O8—C26—C27—C22 178.3 (5)
C13—C8—C9—C10 1.0 (7) C23—C22—C27—C26 1.4 (7)
C7—C8—C9—C10 177.8 (4) C21—C22—C27—C26 −177.2 (4)
O3—C9—C10—C11 179.0 (4) C24—C25—C28—C29 82.2 (6)
C8—C9—C10—C11 −1.7 (7) C26—C25—C28—C29 −95.1 (5)
C9—C10—C11—C12 1.4 (7) C25—C28—C29—C30 −90.2 (5)
C9—C10—C11—C14 −176.9 (4) C25—C28—C29—C34 87.3 (5)
C38—O4—C12—C13 9.0 (8) C43—O9—C30—C29 −179.0 (4)
C38—O4—C12—C11 −173.3 (5) C43—O9—C30—C31 0.2 (7)
C10—C11—C12—C13 −0.6 (7) C34—C29—C30—O9 179.8 (4)
C14—C11—C12—C13 177.7 (4) C28—C29—C30—O9 −2.5 (6)
C10—C11—C12—O4 −178.3 (4) C34—C29—C30—C31 0.7 (6)
C14—C11—C12—O4 0.0 (7) C28—C29—C30—C31 178.3 (4)
O4—C12—C13—C8 177.5 (4) O9—C30—C31—C32 −179.8 (4)
C11—C12—C13—C8 0.0 (7) C29—C30—C31—C32 −0.7 (7)
C9—C8—C13—C12 −0.2 (7) C30—C31—C32—C33 0.0 (6)
C7—C8—C13—C12 −177.0 (4) C30—C31—C32—C35 −178.3 (4)
C12—C11—C14—C15 −94.5 (5) C31—C32—C33—C34 0.7 (7)
C10—C11—C14—C15 83.8 (6) C35—C32—C33—C34 179.0 (4)
C11—C14—C15—C20 96.3 (6) C31—C32—C33—O10 179.9 (4)
C11—C14—C15—C16 −83.4 (6) C35—C32—C33—O10 −1.8 (6)
C39—O5—C16—C17 −9.9 (8) C44—O10—C33—C34 2.3 (7)
C39—O5—C16—C15 169.1 (5) C44—O10—C33—C32 −176.9 (5)
C20—C15—C16—C17 −2.9 (7) C32—C33—C34—C29 −0.8 (7)
C14—C15—C16—C17 176.8 (5) O10—C33—C34—C29 −179.9 (4)
C20—C15—C16—O5 178.0 (4) C30—C29—C34—C33 0.0 (7)
C14—C15—C16—O5 −2.3 (7) C28—C29—C34—C33 −177.6 (4)
O5—C16—C17—C18 −179.1 (5) C6—C1—C35—C32 84.2 (6)
C15—C16—C17—C18 1.9 (8) C2—C1—C35—C32 −94.6 (6)
C16—C17—C18—C19 −1.2 (8) C33—C32—C35—C1 −84.7 (6)
C16—C17—C18—C21 −177.5 (5) C31—C32—C35—C1 93.5 (5)
C40—O6—C19—C18 −168.9 (5) N1—C45—C46—C47 175.8 (8)
C40—O6—C19—C20 10.7 (8) C45—C46—C47—C48 −179.2 (9)
C17—C18—C19—O6 −178.8 (4) C46—C47—C48—C49 172.4 (10)
C21—C18—C19—O6 −2.5 (7) C47—C48—C49—C50 179.8 (10)
C17—C18—C19—C20 1.6 (7) C48—C49—C50—C51 103.8 (18)
C21—C18—C19—C20 177.9 (4) C49—C50—C51—C52 30 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O11—H11A···N1 0.83 (2) 1.98 (5) 2.770 (10) 159 (7)
O11—H11B···O1 0.80 (10) 2.40 (10) 3.060 (10) 145 (10)
O1—H1···O11i 0.82 (5) 1.90 (5) 2.711 (7) 168 (9)

Symmetry code: (i) −x+2, −y+1, −z+1.

Funding Statement

This work was funded by Kuwait University grants SC 03/16, GS 03/08, and GS 01/03.

References

  1. Al-Azemi, T. F., Mohamod, A. A., Vinodh, M. & Alipour, F. H. (2018). Org. Chem. Front. 5, 10–18.
  2. Al-Azemi, T. F., Vinodh, M., Alipour, F. H. & Mohamod, A. A. (2017). J. Org. Chem. 82, 10945–10952. [DOI] [PubMed]
  3. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
  4. Han, J., Hou, X., Ke, C., Zhang, H., Strutt, N. L., Stern, C. L. & Stoddart, J. F. (2015). Org. Lett. 17, 3260–3263. [DOI] [PubMed]
  5. Han, C., Ma, F., Zhang, Z., Xia, B., Yu, Y. & Huang, F. (2010). Org. Lett. 12, 4360–4363. [DOI] [PubMed]
  6. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  7. Hu, W. B., Hu, W. J., Zhao, X. L., Liu, Y. A., Li, J. S., Jiang, B. & Wen, K. (2016). J. Org. Chem. 81, 3877–3881. [DOI] [PubMed]
  8. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  9. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  10. Ogoshi, T., Kanai, S., Fujinami, S., Yamagishi, T. A. & Nakamoto, Y. (2008). J. Am. Chem. Soc. 130, 5022–5023. [DOI] [PubMed]
  11. Pan, M. & Xue, M. (2013). Eur. J. Org. Chem. pp. 4787–4793.
  12. Rigaku (2009). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.
  13. Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
  14. Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018010034/dx2005sup1.cif

e-74-01117-sup1.cif (601.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018010034/dx2005Isup4.hkl

e-74-01117-Isup4.hkl (683KB, hkl)

CCDC reference: 1855261

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES