Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Jul 24;74(Pt 8):1134–1137. doi: 10.1107/S2056989018010216

Crystal structure and Hirshfeld surface analysis of (E)-3-(2-chloro-4-fluoro­phen­yl)-1-(2,5-di­chloro­thio­phen-3-yl)prop-2-en-1-one

T N Sanjeeva Murthy a, S Naveen b,*, C S Chidan Kumar c, M K Veeraiah d, Ching Kheng Quah e, B P Siddaraju f, Ismail Warad g,*
PMCID: PMC6073002  PMID: 30116578

In the crystal, the mol­ecules are linked by weak C–H⋯F hydrogen bonds into the supra­molecular inversion dimers.

Keywords: Thio­phene chalcone, crystal structure, R_{2}^{2}(8) ring motif, hydrogen bonding, Hirshfeld surface analysis

Abstract

In the title chalcone–thio­phene derivative, C13H6Cl3FOS, the aromatic rings are inclined to one another by 12.9 (2)°, and the thio­phene ring is affected by π-conjugation. In the crystal, mol­ecules are linked by C—H⋯F hydrogen bonds, forming an R 2 2(8) ring motif. A Hirshfeld surface analysis was conducted to verify the contribution of the different inter­molecular inter­actions. The shape-index surface clearly shows that the two sides of the mol­ecules are involved in the same contacts with neighbouring mol­ecules and the curvedness plots show flat surface patches characteristic of planar stacking.

Chemical context  

Natural products are important sources in the search for new agents for cancer therapies with minimal side effects. Chalcones, considered to be the precursor of flavonoids and isoflavonoids, are abundant in edible plants. Compounds with the 1,3-di­phenyl­prop-2-en-1-one framework are described by its generic term ‘chalcone’. They consist of open-chain flavonoids in which the two aromatic rings are joined by a three-carbon α,β-unsaturated carbonyl system. These are coloured compounds because of the presence of the –CO—CH=CH– chromophore, which depends in the presence of other auxochromes. Accumulating evidence has shown that chalcones and their derivatives could inhibit tumor initiation and progression. In view of the above, and as a part of our ongoing research on chalcone derivatives (Naveen et al., 2017; Lokeshwari et al., 2017; Tejkiran et al., 2016), we report herein the synthesis, crystal structure and Hirshfeld surface analysis of the title compound.graphic file with name e-74-01134-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound, shown in Fig. 1, is comprised of two aromatic rings (chloro­fluoro­phenyl and di­chloro­thio­phene) linked by C=C—C(=O)—C enone bridge. The bond lengths and bond angles are normal and the mol­ecular conformation is characterized by a dihedral angle of 12.9 (2)° between the mean planes of the two aromatic rings. The olefinic double bond C6=C7 of 1.303 (6) Å is in an E configuration and is Csp 2 hybridized. The unsaturated keto group is in a syn-periplanar conformation with respect to the olefenic double bond, which is evident from the torsion angle value of −0.5 (8)° for the atoms O1—C5—C6—C7. The thio­phene ring is affected by π conjugation. This can be explained by the longer C=S values of 1.703 (6) and 1.714 (4) Å for S1=C2 and S1=C1, respectively. The bond-angle values O1—C5—C6 [121.9 (4)°], O1—C5—C4 [118.2 (4)°] and C5—C6—C7 = 125.14 (4)° about C5 indicate that the carbon atom is in a distorted trigonal–planar configuration, which is due to steric hindrance of the oxygen atom. The mol­ecular structure is stabilized by an intra­molecular C6—-H6A⋯Cl1 hydrogen bond (Table 1) that closes an S(6) motif, as shown in Fig. 1.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, indicating the atom-numbering scheme. The intra­molecular C—H⋯Cl hydrogen bond (dashed line) closes an S(6) motif. Displacement ellipsoids are drawn at the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯Cl1 0.93 2.47 3.207 (5) 136
C10—H10A⋯F1i 0.93 2.54 3.433 (6) 160

Symmetry code: (i) Inline graphic.

supra­molecular features  

In the crystal, the mol­ecules are linked by C—H⋯F hydrogen bonds, forming an Inline graphic(8) ring motif as shown in Fig. 2. The structure also features π–π inter­actions: Cg1⋯Cg1(x − 1, y, z) = 3.956 (3) Å [α = 0°, β = 24.0°, γ = 24.0°, perpendicular distance of Cg1 on itself = 3.6131 (19) Å] and Cg2⋯Cg2(x + 1, y, z) = 3.957 (3) Å [α = 0°, β = 27.3°, γ = 27.3°] where Cg1 and Cg2 are the centroids of the S1/C1–C4 and C8–C13 rings, respectively.

Figure 2.

Figure 2

The Inline graphic(8) ring motif.

Database survey  

A survey of the Cambridge Structural Database (CSD, Version 5.39, last update November 2016; Groom et al., 2016) using (E)-3-(phen­yl)-1-(2,5-di­chloro­thio­phen-3-yl)prop-2-en-1-one as the main skeleton revealed the presence of three structures containing a similar 2,5-di­chloro­thio­phene–chalcone moiety to the title compound but with different substituents on the terminal phenyl rings, viz. [(E)-1-(2,5-di­chloro-3-thien­yl)-3-(X)prop-2-en-1-one], where X = 4-(di­methyl­amino)­phenyl (Dutkiewicz et al., 2010), 3,4-di­meth­oxy­phenyl (Harrison et al., 2010a ) and 6-meth­oxy-2-naphthyl (Jasinski et al., 2010). In these three compounds, the dihedral angles between the central and terminal phen­yl/naphthyl ring are in the range 2.13–11.90°. The difference may arise from the inter­molecular hydrogen bonds between adjacent mol­ecules.

Hirshfeld surface analysis  

Hirshfeld surfaces and fingerprint plots were generated for the title compound based on the crystallographic information file (CIF) using CrystalExplorer (McKinnon et al., 2007). Hirshfeld surfaces enable the visualization of inter­molecular inter­actions with different colours and colour intensity representing short or long contacts and indicating the relative strength of the inter­actions. Figs. 3 and 4 show the Hirshfeld surfaces mapped over d norm (−0.139 to 1.120 a.u.) and shape-index (−1.0 to 1.0 a.u.), respectively. The calculated volume inside the Hirshfeld surface is 325.37 Å3 in the area of 310.17 Å3.

Figure 3.

Figure 3

View of the three-dimensional Hirshfeld surface of the title compound mapped over d norm.

Figure 4.

Figure 4

Hirshfeld surface of the title compound mapped over (a) shape-index and (b) curvedness.

In Fig. 4, the dark spots near atoms Cl1 and F1 result from the C6—H6A⋯Cl1 and C10—H10A⋯F1 inter­actions, which play a significant role in the mol­ecular packing of the title compound. The Hirshfeld surfaces illustrated in Fig. 4 also reflect the involvement of different atoms in the inter­molecular inter­actions through the appearance of blue and red regions around the participating atoms, which correspond to positive and negative electrostatic potential, respectively. The shape-index surface clearly shows that the two sides of the mol­ecules are involved in the same contacts with neighbouring mol­ecules while the curvedness plots show flat surface patches characteristic of planar stacking.

The overall two-dimensional fingerprint plot for the title compound and those delineated into Cl⋯H/H⋯Cl, C⋯C, Cl⋯Cl, Cl⋯S/S⋯Cl, H⋯H, F⋯H/H⋯F, C⋯H/H⋯C contacts are illustrated in Fig. 5; the percentage contributions from the different inter­atomic contacts to the Hirshfeld surfaces are as follows: Cl⋯H (13.8%), C⋯C (12.7%), Cl⋯Cl (12.4%), Cl⋯S (10.7%), F⋯H (10.2%), H⋯H (10.1%), C⋯H (8.3%). The percentage contributions for other inter­molecular contacts are less than 5% in the Hirshfeld surface mapping.

Figure 5.

Figure 5

Two-dimensional fingerprint plots showing the percentage contributions of the various inter­actions.

Synthesis and crystallization  

The title compound was synthesized as per the procedure reported earlier (Kumar et al., 2013a ,b ; Chidan Kumar et al., 2014). 1-(2,5-Di­chloro­thio­phen-3-yl)ethanone (0.01 mol) (Harrison et al., 2010b ) and 2,4-di­chloro­benzaldehyde (0.01 mol) were dissolved in 20 ml of methanol. A catalytic amount of NaOH was added to the solution dropwise with vigorous stirring. The reaction mixture was stirred for about 2 h at room temperature. The formed crude products were filtered off, washed successively with distilled water and recrystallized from methanol to give the title chalcone. The reaction scheme is shown in Fig. 6. The melting point (306–309 K) was determined using a Stuart Scientific (UK) apparatus.

Figure 6.

Figure 6

Synthesis of the title compound.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound H atoms were positioned geometrically (C—H = 0.95–0.99 Å) and refined using a riding model with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C13H6Cl3FOS
M r 335.60
Crystal system, space group Monoclinic, P21/c
Temperature (K) 294
a, b, c (Å) 3.9564 (8), 13.367 (2), 25.173 (5)
β (°) 93.363 (4)
V3) 1329.0 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.84
Crystal size (mm) 0.44 × 0.19 × 0.14
 
Data collection
Diffractometer Bruker APEXII DUO CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2012)
T min, T max 0.708, 0.894
No. of measured, independent and observed [I > 2σ(I)] reflections 3901, 3901, 2430
R int 0.000
(sin θ/λ)max−1) 0.707
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.076, 0.218, 1.04
No. of reflections 3901
No. of parameters 173
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.46, −0.48

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), Mercury (Macrae et al., 2006) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989018010216/xu5930sup1.cif

e-74-01134-sup1.cif (22KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018010216/xu5930Isup2.hkl

e-74-01134-Isup2.hkl (191.2KB, hkl)

CCDC reference: 1036795

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors extend their appreciation to Vidya Vikas Research & Development Center for the provision of facilities and support.

supplementary crystallographic information

Crystal data

C13H6Cl3FOS F(000) = 672
Mr = 335.60 Dx = 1.677 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2430 reflections
a = 3.9564 (8) Å θ = 1.6–30.2°
b = 13.367 (2) Å µ = 0.84 mm1
c = 25.173 (5) Å T = 294 K
β = 93.363 (4)° Rectangle, green
V = 1329.0 (4) Å3 0.44 × 0.19 × 0.14 mm
Z = 4

Data collection

Bruker APEXII DUO CCD area-detector diffractometer 3901 independent reflections
Radiation source: Rotating Anode 2430 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.0000
Detector resolution: 18.4 pixels mm-1 θmax = 30.2°, θmin = 1.6°
φ and ω scans h = −5→5
Absorption correction: multi-scan (SADABS; Bruker, 2012) k = −18→18
Tmin = 0.708, Tmax = 0.894 l = −2→35
3901 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.218 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0673P)2 + 2.8657P] where P = (Fo2 + 2Fc2)/3
3901 reflections (Δ/σ)max < 0.001
173 parameters Δρmax = 0.46 e Å3
0 restraints Δρmin = −0.48 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.3576 (4) 0.89705 (9) 0.29850 (5) 0.0644 (5)
Cl2 0.2067 (5) 1.14124 (14) 0.48102 (5) 0.0892 (6)
Cl3 1.1255 (5) 1.22982 (11) 0.10663 (6) 0.0863 (6)
S1 0.2273 (3) 0.97600 (10) 0.40296 (5) 0.0581 (4)
F1 1.3011 (10) 0.8888 (3) 0.03284 (14) 0.0890 (16)
O1 0.6247 (13) 1.2332 (3) 0.28547 (15) 0.0826 (16)
C1 0.3669 (11) 0.9974 (3) 0.34077 (16) 0.0452 (11)
C2 0.2951 (13) 1.0983 (4) 0.41922 (17) 0.0576 (15)
C3 0.4177 (12) 1.1522 (4) 0.37994 (16) 0.0518 (16)
C4 0.4643 (11) 1.0936 (3) 0.33320 (15) 0.0438 (11)
C5 0.6036 (13) 1.1423 (3) 0.28592 (16) 0.0503 (14)
C6 0.7148 (13) 1.0813 (3) 0.24247 (17) 0.0528 (14)
C7 0.8427 (14) 1.1157 (4) 0.19955 (16) 0.0553 (14)
C8 0.9626 (11) 1.0570 (3) 0.15588 (15) 0.0446 (11)
C9 1.0932 (12) 1.1014 (4) 0.11131 (17) 0.0505 (16)
C10 1.2095 (12) 1.0457 (4) 0.06983 (17) 0.0567 (16)
C11 1.1865 (13) 0.9448 (4) 0.0731 (2) 0.0621 (19)
C12 1.0579 (14) 0.8963 (4) 0.1151 (2) 0.0633 (17)
C13 0.9467 (13) 0.9528 (4) 0.15625 (18) 0.0535 (16)
H3A 0.46730 1.22000 0.38260 0.0620*
H6A 0.69310 1.01230 0.24550 0.0630*
H7A 0.85890 1.18480 0.19660 0.0660*
H10A 1.30020 1.07640 0.04070 0.0680*
H12A 1.04550 0.82680 0.11580 0.0760*
H13A 0.85860 0.92070 0.18510 0.0640*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0855 (10) 0.0491 (6) 0.0602 (7) −0.0030 (6) 0.0169 (6) −0.0015 (5)
Cl2 0.1049 (13) 0.1212 (13) 0.0442 (6) −0.0094 (11) 0.0269 (7) −0.0147 (7)
Cl3 0.1298 (15) 0.0642 (8) 0.0694 (8) −0.0049 (9) 0.0430 (9) 0.0128 (6)
S1 0.0607 (8) 0.0698 (8) 0.0448 (6) −0.0031 (6) 0.0114 (5) 0.0138 (5)
F1 0.098 (3) 0.096 (3) 0.076 (2) 0.013 (2) 0.030 (2) −0.0231 (18)
O1 0.141 (4) 0.0503 (19) 0.060 (2) −0.011 (2) 0.037 (2) −0.0004 (16)
C1 0.043 (2) 0.054 (2) 0.0392 (18) 0.0025 (19) 0.0072 (16) 0.0064 (16)
C2 0.059 (3) 0.078 (3) 0.0365 (19) −0.005 (3) 0.0095 (19) −0.004 (2)
C3 0.056 (3) 0.060 (3) 0.040 (2) −0.003 (2) 0.0078 (19) −0.0031 (18)
C4 0.045 (2) 0.051 (2) 0.0357 (18) −0.0023 (19) 0.0060 (16) 0.0001 (16)
C5 0.066 (3) 0.048 (2) 0.0378 (19) −0.004 (2) 0.0118 (19) 0.0039 (17)
C6 0.067 (3) 0.051 (2) 0.042 (2) 0.000 (2) 0.017 (2) 0.0039 (18)
C7 0.076 (3) 0.052 (2) 0.039 (2) 0.000 (2) 0.013 (2) 0.0023 (17)
C8 0.041 (2) 0.056 (2) 0.0367 (18) 0.0005 (19) 0.0016 (16) 0.0010 (16)
C9 0.050 (3) 0.061 (3) 0.041 (2) 0.000 (2) 0.0061 (18) 0.0071 (18)
C10 0.050 (3) 0.081 (3) 0.040 (2) 0.002 (3) 0.0093 (19) 0.001 (2)
C11 0.052 (3) 0.081 (4) 0.054 (3) 0.009 (3) 0.010 (2) −0.015 (2)
C12 0.061 (3) 0.059 (3) 0.071 (3) 0.010 (3) 0.013 (3) −0.006 (2)
C13 0.057 (3) 0.057 (3) 0.047 (2) 0.006 (2) 0.008 (2) 0.0071 (19)

Geometric parameters (Å, º)

Cl1—C1 1.711 (4) C7—C8 1.453 (6)
Cl2—C2 1.713 (5) C8—C9 1.395 (6)
Cl3—C9 1.726 (6) C8—C13 1.394 (7)
S1—C1 1.714 (4) C9—C10 1.383 (7)
S1—C2 1.703 (5) C10—C11 1.355 (8)
F1—C11 1.359 (6) C11—C12 1.364 (7)
O1—C5 1.218 (6) C12—C13 1.375 (7)
C1—C4 1.359 (6) C3—H3A 0.9300
C2—C3 1.337 (7) C6—H6A 0.9300
C3—C4 1.434 (6) C7—H7A 0.9300
C4—C5 1.490 (6) C10—H10A 0.9300
C5—C6 1.453 (6) C12—H12A 0.9300
C6—C7 1.303 (6) C13—H13A 0.9300
C1—S1—C2 90.3 (2) Cl3—C9—C10 117.0 (4)
Cl1—C1—S1 116.2 (2) C8—C9—C10 122.2 (5)
Cl1—C1—C4 130.6 (3) C9—C10—C11 117.6 (4)
S1—C1—C4 113.3 (3) F1—C11—C10 118.5 (4)
Cl2—C2—S1 120.2 (3) F1—C11—C12 118.2 (5)
Cl2—C2—C3 126.4 (4) C10—C11—C12 123.4 (5)
S1—C2—C3 113.5 (4) C11—C12—C13 118.3 (5)
C2—C3—C4 112.5 (5) C8—C13—C12 121.8 (4)
C1—C4—C3 110.5 (4) C2—C3—H3A 124.00
C1—C4—C5 130.3 (4) C4—C3—H3A 124.00
C3—C4—C5 119.2 (4) C5—C6—H6A 117.00
O1—C5—C4 118.2 (4) C7—C6—H6A 117.00
O1—C5—C6 121.9 (4) C6—C7—H7A 117.00
C4—C5—C6 119.9 (4) C8—C7—H7A 117.00
C5—C6—C7 125.1 (4) C9—C10—H10A 121.00
C6—C7—C8 126.6 (5) C11—C10—H10A 121.00
C7—C8—C9 122.1 (4) C11—C12—H12A 121.00
C7—C8—C13 121.2 (4) C13—C12—H12A 121.00
C9—C8—C13 116.7 (4) C8—C13—H13A 119.00
Cl3—C9—C8 120.7 (4) C12—C13—H13A 119.00
C2—S1—C1—Cl1 −178.6 (3) C4—C5—C6—C7 −179.4 (5)
C2—S1—C1—C4 0.7 (4) C5—C6—C7—C8 178.7 (5)
C1—S1—C2—Cl2 179.7 (3) C6—C7—C8—C9 179.5 (5)
C1—S1—C2—C3 −0.3 (4) C6—C7—C8—C13 0.6 (8)
Cl1—C1—C4—C3 178.2 (4) C7—C8—C9—Cl3 1.2 (6)
Cl1—C1—C4—C5 −1.8 (8) C7—C8—C9—C10 179.6 (5)
S1—C1—C4—C3 −0.9 (5) C13—C8—C9—Cl3 −179.9 (4)
S1—C1—C4—C5 179.0 (4) C13—C8—C9—C10 −1.5 (7)
Cl2—C2—C3—C4 179.8 (4) C7—C8—C13—C12 179.7 (5)
S1—C2—C3—C4 −0.2 (6) C9—C8—C13—C12 0.8 (7)
C2—C3—C4—C1 0.7 (6) Cl3—C9—C10—C11 179.8 (4)
C2—C3—C4—C5 −179.2 (4) C8—C9—C10—C11 1.4 (7)
C1—C4—C5—O1 169.0 (5) C9—C10—C11—F1 −179.7 (4)
C1—C4—C5—C6 −12.0 (8) C9—C10—C11—C12 −0.5 (8)
C3—C4—C5—O1 −11.1 (7) F1—C11—C12—C13 179.0 (5)
C3—C4—C5—C6 167.9 (4) C10—C11—C12—C13 −0.2 (8)
O1—C5—C6—C7 −0.5 (8) C11—C12—C13—C8 0.0 (8)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H6A···Cl1 0.93 2.47 3.207 (5) 136
C10—H10A···F1i 0.93 2.54 3.433 (6) 160

Symmetry code: (i) −x+3, −y+2, −z.

References

  1. Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chidan Kumar, C. S., Fun, H. K., Parlak, C., Rhyman, L., Ramasami, P., Tursun, M., Chandraju, S. & Quah, C. K. (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 132, 174–182. [DOI] [PubMed]
  3. Dutkiewicz, G., Chidan Kumar, C. S., Yathirajan, H. S., Narayana, B. & Kubicki, M. (2010). Acta Cryst. E66, o1139. [DOI] [PMC free article] [PubMed]
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Harrison, W. T. A., Chidan Kumar, C. S., Yathirajan, H. S., Mayekar, A. N. & Narayana, B. (2010a). Acta Cryst. E66, o2479. [DOI] [PMC free article] [PubMed]
  6. Harrison, W. T. A., Chidan Kumar, C. S., Yathirajan, H. S., Mayekar, A. N. & Narayana, B. (2010b). Acta Cryst. E66, o2480. [DOI] [PMC free article] [PubMed]
  7. Jasinski, J. P., Pek, A. E., Chidan Kumar, C. S., Yathirajan, H. S. & Mayekar, A. N. (2010). Acta Cryst. E66, o1717. [DOI] [PMC free article] [PubMed]
  8. Kumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013a). Molecules, 18, 11996–12011. [DOI] [PMC free article] [PubMed]
  9. Kumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013b). Molecules, 18, 12707–12724. [DOI] [PMC free article] [PubMed]
  10. Lokeshwari, D. M., Achutha, D. K., Srinivasan, B., Shivalingegowda, N., Krishnappagowda, L. N. & Kariyappa, A. K. (2017). Bioorg. Med. Chem. Lett. 27, 3806–3811. [DOI] [PubMed]
  11. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  12. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  13. Naveen, S., Liew, S. M., Jamalis, J., Ananda Kumar, C. S. & Lokanath, N. K. (2017). Chem. Data Coll. 7–8, 58–67.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  17. Tejkiran, P. J., Brahma Teja, M. S., Sai Siva Kumar, P., Pranitha, S., Philip, R., Naveen, S., Lokanath, N. K. & Nageswara Rao, G. (2016). J. Photo Chem. Photo Biol. A: Chem, 324, 33–39.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989018010216/xu5930sup1.cif

e-74-01134-sup1.cif (22KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018010216/xu5930Isup2.hkl

e-74-01134-Isup2.hkl (191.2KB, hkl)

CCDC reference: 1036795

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES