Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Jul 31;74(Pt 8):1178–1181. doi: 10.1107/S2056989018010654

Crystal structure analysis of [5-(4-meth­oxy­phen­yl)-2-methyl-2H-1,2,3-triazol-4-yl](thio­phen-2-yl)methanone

Subhrajyoti Bhandary a, Yarabhally R Girish b, Katharigatta N Venugopala c, Deepak Chopra a,*
PMCID: PMC6073004  PMID: 30116588

The mol­ecular conformation is stabilized via intra­molecular C—H⋯O and C—H⋯N contacts. The supra­molecular structure is mainly governed by C—H⋯N hydrogen-bonded centrosymmetric dimers, C—H⋯O and C—H⋯S hydrogen bonds and S⋯π stacking inter­actions, which together lead to the formation of a layered crystal packing.

Keywords: crystal structure; 1,2,3-triazole; hydrogen bonding; mol­ecular electrostatic potential; MESP; fingerprint plot

Abstract

The title compound, C15H13N3O2S, crystallizes in the monoclinic space group P21/n and its mol­ecular conformation is stabilized via intra­molecular C—H⋯O and C—H⋯N contacts. The supra­molecular structure is mainly governed by C—H⋯N hydrogen-bonded centrosymmetric dimers, C—H⋯O and C—H⋯S hydrogen bonds and S⋯π and π–π stacking inter­actions which, together, lead to the formation of a layered crystal packing. The inter­molecular inter­actions were further evaluated through the mol­ecular electrostatic potential map and Hirshfeld fingerprint analysis.

Chemical context  

Compounds containing the 1,2,3-triazole scaffold are considered to be an important class of five-membered N-heterocycles (having two carbon and three nitro­gen atoms) because of their unique structural and chemical properties (Kolb & Sharpless, 2003; Freitas et al., 2014). In the last few decades, significant attention has been paid to this kind of structural units owing to their versatile applications in the fields of materials science and medicinal chemistry (Zhou & Wang, 2012; Venugopala et al., 2016). In addition, 1,2,3-triazoles have also been found to be quite relevant in objective-oriented synthesis (Billing & Nilsson, 2005), bioconjugation (Speers et al., 2003) and combinatorial chemistry (Löber et al., 2003). The geometrical shapes and inter­action functions of natural heterocycles and amides can be very similar to those of 1,2,3-triazoles (Thibault et al., 2006).

In general, the 1,2,3-triazole nucleus is the most fundamental heterocyclic component found in various pharmacologically active agents (Agalave et al., 2011). In particular, potential pharmaceuticals based on the 1,2,3-triazole ring include anti-HIV (Giffin et al., 2008), anti­cancer (Singh et al., 2012), anti-tubercular (Patpi et al., 2012), anti­microbial (Demaray et al., 2008) and anti­fungal (Lass-Floerl et al., 2011) agents. This is due to the fact that the 1,2,3-triazole structural unit is stable against metabolic degradation as well as oxidation and reduction in acidic and basic conditions (Ferreira et al., 2010). Importantly, this special class of structural unit is capable of forming hydrogen-bonding inter­actions (the N atom acts as an acceptor) as well as π–π stacking and other inter­molecular inter­actions with biological targets to improve their solubility (Lauria et al., 2014). Hence, it is of extreme importance to explore and understand the supra­molecular structure of compounds in which the structural motif is based on 1,2,3-triazole. Keeping in mind the above-mentioned features, we report here the crystal structure and packing analysis of the title compound [5-(4-meth­oxy­phen­yl)-2-methyl-2H-1,2,3-tria­zol-4-yl](thio­phen-2-yl)methanone (1).graphic file with name e-74-01178-scheme1.jpg

Structural commentary  

The single-crystal X-ray diffraction study shows that compound 1 crystallizes in the monoclinic space group P21/n with one mol­ecule (Z′ = 1) in the asymmetric unit (Fig. 1). In the mol­ecular structure, the N-methyl­ated triazol ring is substituted at the two carbon atoms C7 and C8 by a para-meth­oxy phenyl and a methanone-thienyl ring, respectively, resulting in four conformationally flexible parts in the mol­ecule around the C8—C9, C9—C10, C1—C7 and C4—O1 single bonds (see Fig. 1). The conformation of the mol­ecule in the crystal is stabilized via intra­molecular C2—H2⋯O2 [C2⋯O2 = 2.961 (2) Å] and C11—H11⋯N1 [C11⋯N1 = 2.950 (2) Å] contacts (Fig. 1; Table 1). For this reason, the thienyl and triazole rings are nearly coplanar, with an angle of 13.63 (10)° between their mean planes, while the phenyl ring is tilted out from the mean planes of the thienyl and triazole rings by 38.84 (9) and 34.04 (10)°, respectively. It is also important to mention here that the meth­oxy group attached to C4 is in the same plane as the phenyl ring.

Figure 1.

Figure 1

The asymmetric unit of compound 1 highlighting the intra­molecular C—H⋯O and C—H⋯N contacts. Displacement ellipsoids are drawn at the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯N1 0.95 2.41 2.950 (2) 116
C2—H2⋯O2 0.95 2.42 2.961 (2) 113
C3—H3⋯S1i 0.95 2.96 3.810 (2) 149
C15—H15A⋯O2ii 0.98 2.98 3.828 (3) 146
C15—H15C⋯N3iii 0.98 2.73 3.490 (3) 135
C12—H12⋯N1iv 0.95 2.95 3.768 (2) 145
C13—H13⋯O2v 0.95 2.38 3.191 (2) 143
C14—H14C⋯O1vi 0.98 2.67 3.230 (2) 117

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Supra­molecular features  

In the crystal, the mol­ecules form two types of centrosymmetric, weak to very weak C—H⋯N hydrogen-bonding dimeric motifs (Table 1) involving the methyl hydrogen H15C (sp 3) of the meth­oxy group with the triazol nitro­gen N3 [C15⋯N3 = 3.490 (3) Å] and the thio­phene hydrogen H12 (sp 2) with the triazol nitro­gen N1 [C12⋯N1 = 3.768 (2) Å]. These are extended in an alternate fashion, forming ribbons along the [101] direction (see green and yellow shades in Fig. 2). Two such adjacent hydrogen-bonded ribbons are connected to each other via Csp 2/sp 3—H⋯O and S⋯C(π) [3.492 (2) Å] inter­actions along the [010] direction, forming a corrugated sheet perpendicular to the (101) plane (Fig. 2 and Table 1). These sheets are further stacked to each other by displaced π–π stacking inter­actions distances ranging from 3.375 (3) to 3.384 (4) Å through inversion and translational symmetries, and weak C3—H3⋯S1 [C3⋯S1 = 3.810 (2) Å] inter­actions (Table 1), leading to the formation of a layered packing arrangement of mol­ecules (Fig. 3).

Figure 2.

Figure 2

Crystal packing of 1 showing the formation of mol­ecular sheets via two types of centrosymmetric C—H⋯N dimers (shaded in light yellow and green), forming ribbons connected through C—H⋯O and S⋯C(π) inter­actions.

Figure 3.

Figure 3

Stacking of hydrogen-bonded mol­ecular sheets via π–π inter­actions (dotted lines) in compound 1. Hydrogen atoms are omitted for clarity.

Analysis of mol­ecular electrostatic potential and Hirshfeld fingerprint plots  

A deeper insight into inter­molecular inter­actions can be obtained from mol­ecular electrostatic potential (MESP), and two-dimensional fingerprint plots (McKinnon et al., 2007) mapped on the Hirshfeld surface (Spackman & Jayatilaka, 2009). All the plots were computed using the programme CrystalExplorer 17.5 (Turner et al., 2017). The MESP plot of compound 1 (Fig. 4) shows that the centres of both the triazole and thio­phene five-membered rings have nearly neutral ESP values (0.000 and −0.002 a.u., respectively), while the benzene ring is highly electronegative (−0.028 a.u.) compared to the two heterocyclic rings. This electrostatic complementarity among the rings leads to favourable stacking inter­actions in the crystal packing as a result of a layered supra­molecular architecture. Inter­molecular hydrogen-bond donors and acceptors appear as blue (positive ESP) and red (negative ESP) regions, respectively, on the surface (Fig. 4). The two-dimensional fingerprint plots and the contributions of individual inter­atomic contacts toward the overall crystal packing are shown in Fig. 5. It is observed that several directional hydrogen-bonding contacts such as N⋯H (7.7%), O⋯H (11.0%), S⋯H (6.3%) along with C⋯H (18.5%), H⋯H (41.6%) and other inter­atomic contacts stabilize the crystal packing of compound 1.

Figure 4.

Figure 4

MESP of compound 1 mapped over the Hirshfeld surface with a scale of −0.03 a.u. (red) through 0.00 (white) to +0.03 a.u. (blue). The ESP values (in a.u.) for the centre of each ring are given.

Figure 5.

Figure 5

Two-dimensional full fingerprint plots and decomposed fingerprint plots over the Hirshfeld surface for various inter­molecular atom–atom contacts in compound 1. The numbers in red indicate the percentage contributions of each contact.

Database survey  

A Cambridge Structural Database (Version 5.39, update May 2018; Groom et al., 2016) search for the (2-methyl-2H-1,2,3-triazol-4-yl)(thio­phen-2-yl)methanone subunit resulted in one hit (SONFIM; Girish et al., 2014). Like compound 1, the mol­ecular conformation of SONFIM is also stabilized by intra­molecular C—H⋯O and C—H⋯N hydrogen bonds. The supra­molecular structure of SONFIM is primarily determined by inter­molecular C—H⋯O and C—H⋯π hydrogen bonds, while C—H⋯N hydrogen bonding plays a secondary role in the overall stabilization of the crystal packing.

Synthesis and crystallization  

The title compound was synthesized according to the procedure described elsewhere (Girish et al., 2014). Single crystals of the pure compound were grown by slow evaporation of a toluene solution at room temperature (297–301 K).

Refinement  

Crystal data, data collection and structure refinement details are given in Table 2. Hydrogen atoms were positioned geometrically and refined as riding: C—H = 0.98 Å with Ui so(H) =1.5U eq(C) for the methyl group and C—H = 0.95Å with U iso(H) = 1.2U eq(C) for the aromatic C atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C15H13N3O2S
M r 299.34
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 8.5851 (10), 16.8986 (19), 9.3455 (11)
β (°) 92.465 (4)
V3) 1354.6 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.25
Crystal size (mm) 0.30 × 0.10 × 0.06
 
Data collection
Diffractometer Bruker APEXII D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2012)
T min, T max 0.619, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 17149, 3962, 2914
R int 0.065
(sin θ/λ)max−1) 0.705
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.053, 0.114, 1.03
No. of reflections 3962
No. of parameters 192
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.46, −0.53

Computer programs: APEX2 and SAINT (Bruker, 2012), SIR2014 (Burla et al., 2015), SHELXL2018 (Sheldrick, 2015), Mercury (Macrae et al., 2006), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018010654/xi2009sup1.cif

e-74-01178-sup1.cif (518.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018010654/xi2009Isup2.hkl

e-74-01178-Isup2.hkl (315.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018010654/xi2009Isup3.cml

CCDC reference: 1850683

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C15H13N3O2S F(000) = 624
Mr = 299.34 Dx = 1.468 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 8.5851 (10) Å Cell parameters from 6642 reflections
b = 16.8986 (19) Å θ = 2.4–30.0°
c = 9.3455 (11) Å µ = 0.25 mm1
β = 92.465 (4)° T = 100 K
V = 1354.6 (3) Å3 Plate, yellow
Z = 4 0.30 × 0.10 × 0.06 mm

Data collection

Bruker APEXII D8 Venture CMOS diffractometer 2914 reflections with I > 2σ(I)
φ and ω scans Rint = 0.065
Absorption correction: multi-scan (SADABS; Bruker, 2012) θmax = 30.1°, θmin = 2.4°
Tmin = 0.619, Tmax = 0.746 h = −12→11
17149 measured reflections k = −23→23
3962 independent reflections l = −10→13

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053 H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.037P)2 + 1.3716P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
3962 reflections Δρmax = 0.46 e Å3
192 parameters Δρmin = −0.53 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.22992 (6) 0.20914 (3) 0.39316 (5) 0.01627 (13)
O1 1.18053 (15) 0.18243 (8) 0.81322 (14) 0.0166 (3)
O2 0.48083 (16) 0.18611 (8) 0.60466 (16) 0.0200 (3)
N1 0.35646 (18) −0.00987 (9) 0.68224 (18) 0.0160 (3)
N3 0.57606 (18) −0.03357 (10) 0.81538 (18) 0.0158 (3)
N2 0.43569 (18) −0.05846 (9) 0.76814 (18) 0.0162 (3)
C1 0.7388 (2) 0.08137 (10) 0.7775 (2) 0.0130 (4)
C11 0.1653 (2) 0.06385 (11) 0.4486 (2) 0.0137 (4)
H11 0.167530 0.012226 0.488904 0.016*
C4 1.0365 (2) 0.14778 (10) 0.8101 (2) 0.0130 (4)
C3 0.9476 (2) 0.15862 (11) 0.6832 (2) 0.0132 (4)
H3 0.988464 0.188552 0.607394 0.016*
C7 0.5901 (2) 0.03848 (11) 0.7557 (2) 0.0132 (4)
C5 0.9775 (2) 0.10385 (11) 0.9210 (2) 0.0150 (4)
H5 1.037167 0.096550 1.007982 0.018*
C10 0.2700 (2) 0.12300 (11) 0.4876 (2) 0.0128 (4)
C6 0.8294 (2) 0.07061 (11) 0.9028 (2) 0.0147 (4)
H6 0.789370 0.039832 0.977967 0.018*
C2 0.8005 (2) 0.12602 (11) 0.6675 (2) 0.0131 (4)
H2 0.740456 0.134022 0.580881 0.016*
C8 0.4519 (2) 0.05345 (11) 0.6724 (2) 0.0138 (4)
C9 0.4044 (2) 0.12489 (11) 0.5897 (2) 0.0141 (4)
C15 1.2758 (2) 0.17414 (14) 0.9413 (2) 0.0245 (5)
H15A 1.224395 0.199444 1.020945 0.037*
H15B 1.376982 0.199448 0.928427 0.037*
H15C 1.291563 0.117828 0.962413 0.037*
C12 0.0541 (2) 0.08913 (12) 0.3416 (2) 0.0160 (4)
H12 −0.026154 0.056184 0.301494 0.019*
C13 0.0753 (2) 0.16613 (12) 0.3025 (2) 0.0173 (4)
H13 0.011053 0.192791 0.232674 0.021*
C14 0.3821 (2) −0.13873 (11) 0.7969 (2) 0.0213 (4)
H14A 0.273221 −0.144368 0.762375 0.032*
H14B 0.390158 −0.148830 0.900188 0.032*
H14C 0.446872 −0.176823 0.747341 0.032*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0164 (2) 0.0123 (2) 0.0201 (3) −0.00008 (18) 0.00098 (18) 0.00335 (19)
O1 0.0124 (6) 0.0188 (7) 0.0183 (7) −0.0030 (5) −0.0029 (5) 0.0017 (6)
O2 0.0164 (7) 0.0107 (6) 0.0325 (8) −0.0021 (5) −0.0028 (6) 0.0009 (6)
N1 0.0151 (8) 0.0118 (7) 0.0209 (9) 0.0003 (6) −0.0009 (7) 0.0019 (7)
N3 0.0124 (8) 0.0154 (8) 0.0195 (8) −0.0002 (6) −0.0003 (6) 0.0005 (7)
N2 0.0135 (8) 0.0125 (8) 0.0223 (9) −0.0006 (6) −0.0013 (7) 0.0036 (7)
C1 0.0136 (9) 0.0092 (8) 0.0162 (10) 0.0008 (7) 0.0014 (7) −0.0018 (7)
C11 0.0150 (9) 0.0120 (8) 0.0143 (9) 0.0017 (7) 0.0010 (7) −0.0010 (7)
C4 0.0123 (8) 0.0094 (8) 0.0173 (9) 0.0006 (7) 0.0001 (7) −0.0019 (7)
C3 0.0143 (9) 0.0117 (8) 0.0136 (9) 0.0019 (7) 0.0019 (7) −0.0002 (7)
C7 0.0139 (9) 0.0110 (8) 0.0148 (9) 0.0012 (7) 0.0020 (7) −0.0002 (7)
C5 0.0143 (9) 0.0150 (9) 0.0154 (9) 0.0009 (7) −0.0012 (7) 0.0002 (7)
C10 0.0121 (9) 0.0105 (8) 0.0160 (9) 0.0017 (7) 0.0028 (7) 0.0008 (7)
C6 0.0173 (9) 0.0123 (9) 0.0145 (9) −0.0005 (7) 0.0022 (7) 0.0008 (7)
C2 0.0132 (9) 0.0124 (8) 0.0136 (9) 0.0032 (7) −0.0004 (7) −0.0010 (7)
C8 0.0138 (9) 0.0099 (8) 0.0178 (10) −0.0005 (7) 0.0009 (7) −0.0010 (7)
C9 0.0115 (9) 0.0116 (8) 0.0193 (10) 0.0012 (7) 0.0028 (7) −0.0015 (7)
C15 0.0189 (10) 0.0338 (12) 0.0203 (11) −0.0080 (9) −0.0066 (8) 0.0034 (9)
C12 0.0144 (9) 0.0170 (9) 0.0164 (10) −0.0014 (7) −0.0015 (7) −0.0028 (8)
C13 0.0160 (9) 0.0204 (10) 0.0156 (10) 0.0025 (7) 0.0000 (7) −0.0005 (8)
C14 0.0199 (10) 0.0116 (9) 0.0322 (12) −0.0030 (8) −0.0010 (9) 0.0070 (8)

Geometric parameters (Å, º)

S1—C13 1.706 (2) C3—C2 1.380 (3)
S1—C10 1.7292 (19) C3—H3 0.9500
O1—C4 1.368 (2) C7—C8 1.413 (3)
O1—C15 1.427 (2) C5—C6 1.394 (3)
O2—C9 1.230 (2) C5—H5 0.9500
N1—N2 1.317 (2) C10—C9 1.466 (3)
N1—C8 1.353 (2) C6—H6 0.9500
N3—N2 1.334 (2) C2—H2 0.9500
N3—C7 1.347 (2) C8—C9 1.481 (3)
N2—C14 1.461 (2) C15—H15A 0.9800
C1—C6 1.390 (3) C15—H15B 0.9800
C1—C2 1.398 (3) C15—H15C 0.9800
C1—C7 1.475 (3) C12—C13 1.365 (3)
C11—C10 1.383 (3) C12—H12 0.9500
C11—C12 1.419 (3) C13—H13 0.9500
C11—H11 0.9500 C14—H14A 0.9800
C4—C5 1.388 (3) C14—H14B 0.9800
C4—C3 1.394 (3) C14—H14C 0.9800
C13—S1—C10 91.62 (9) C1—C6—H6 119.2
C4—O1—C15 117.45 (15) C5—C6—H6 119.2
N2—N1—C8 103.66 (15) C3—C2—C1 120.72 (17)
N2—N3—C7 104.09 (15) C3—C2—H2 119.6
N1—N2—N3 116.16 (15) C1—C2—H2 119.6
N1—N2—C14 122.16 (16) N1—C8—C7 108.49 (16)
N3—N2—C14 121.29 (16) N1—C8—C9 121.73 (16)
C6—C1—C2 118.34 (17) C7—C8—C9 129.73 (17)
C6—C1—C7 120.11 (17) O2—C9—C10 119.57 (17)
C2—C1—C7 121.13 (17) O2—C9—C8 119.53 (17)
C10—C11—C12 112.23 (17) C10—C9—C8 120.88 (16)
C10—C11—H11 123.9 O1—C15—H15A 109.5
C12—C11—H11 123.9 O1—C15—H15B 109.5
O1—C4—C5 124.87 (17) H15A—C15—H15B 109.5
O1—C4—C3 115.02 (17) O1—C15—H15C 109.5
C5—C4—C3 120.10 (17) H15A—C15—H15C 109.5
C2—C3—C4 120.21 (18) H15B—C15—H15C 109.5
C2—C3—H3 119.9 C13—C12—C11 112.45 (17)
C4—C3—H3 119.9 C13—C12—H12 123.8
N3—C7—C8 107.60 (16) C11—C12—H12 123.8
N3—C7—C1 118.64 (16) C12—C13—S1 112.53 (15)
C8—C7—C1 133.56 (17) C12—C13—H13 123.7
C4—C5—C6 118.99 (17) S1—C13—H13 123.7
C4—C5—H5 120.5 N2—C14—H14A 109.5
C6—C5—H5 120.5 N2—C14—H14B 109.5
C11—C10—C9 132.22 (17) H14A—C14—H14B 109.5
C11—C10—S1 111.18 (14) N2—C14—H14C 109.5
C9—C10—S1 116.60 (13) H14A—C14—H14C 109.5
C1—C6—C5 121.63 (18) H14B—C14—H14C 109.5
C8—N1—N2—N3 −0.6 (2) C4—C5—C6—C1 −1.0 (3)
C8—N1—N2—C14 −173.55 (18) C4—C3—C2—C1 −0.4 (3)
C7—N3—N2—N1 0.5 (2) C6—C1—C2—C3 −0.1 (3)
C7—N3—N2—C14 173.46 (18) C7—C1—C2—C3 −172.69 (17)
C15—O1—C4—C5 −1.4 (3) N2—N1—C8—C7 0.5 (2)
C15—O1—C4—C3 179.19 (17) N2—N1—C8—C9 −177.17 (17)
O1—C4—C3—C2 179.69 (16) N3—C7—C8—N1 −0.3 (2)
C5—C4—C3—C2 0.2 (3) C1—C7—C8—N1 174.3 (2)
N2—N3—C7—C8 −0.1 (2) N3—C7—C8—C9 177.16 (19)
N2—N3—C7—C1 −175.62 (16) C1—C7—C8—C9 −8.3 (4)
C6—C1—C7—N3 −30.9 (3) C11—C10—C9—O2 179.7 (2)
C2—C1—C7—N3 141.55 (18) S1—C10—C9—O2 0.5 (2)
C6—C1—C7—C8 155.0 (2) C11—C10—C9—C8 1.3 (3)
C2—C1—C7—C8 −32.5 (3) S1—C10—C9—C8 −177.88 (14)
O1—C4—C5—C6 −178.95 (17) N1—C8—C9—O2 166.57 (18)
C3—C4—C5—C6 0.4 (3) C7—C8—C9—O2 −10.5 (3)
C12—C11—C10—C9 −178.84 (19) N1—C8—C9—C10 −15.0 (3)
C12—C11—C10—S1 0.4 (2) C7—C8—C9—C10 167.85 (19)
C13—S1—C10—C11 −0.13 (15) C10—C11—C12—C13 −0.5 (2)
C13—S1—C10—C9 179.21 (15) C11—C12—C13—S1 0.4 (2)
C2—C1—C6—C5 0.8 (3) C10—S1—C13—C12 −0.14 (16)
C7—C1—C6—C5 173.47 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C11—H11···N1 0.95 2.41 2.950 (2) 116
C2—H2···O2 0.95 2.42 2.961 (2) 113
C3—H3···S1i 0.95 2.96 3.810 (2) 149
C15—H15A···O2ii 0.98 2.98 3.828 (3) 146
C15—H15C···N3iii 0.98 2.73 3.490 (3) 135
C12—H12···N1iv 0.95 2.95 3.768 (2) 145
C13—H13···O2v 0.95 2.38 3.191 (2) 143
C14—H14C···O1vi 0.98 2.67 3.230 (2) 117

Symmetry codes: (i) x+1, y, z; (ii) x+1/2, −y+1/2, z+1/2; (iii) −x+2, −y, −z+2; (iv) −x, −y, −z+1; (v) x−1/2, −y+1/2, z−1/2; (vi) −x+3/2, y−1/2, −z+3/2.

Funding Statement

This work was funded by Indian Institute of Science Education and Research Bhopal grant to S. Bhandary. National Research Foundation grants 96807 and 98884. Durban University of Technology grant to K. N. Venugopalac.

References

  1. Agalave, S. G., Maujan, S. R. & Pore, V. S. (2011). Chem. Asian J. 6, 2696–2718. [DOI] [PubMed]
  2. Billing, J. F. & Nilsson, U. J. (2005). J. Org. Chem. 70, 4847–4850. [DOI] [PubMed]
  3. Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.
  5. Demaray, J. A., Thuener, J. E., Dawson, M. N. & Sucheck, S. J. (2008). Bioorg. Med. Chem. Lett. 18, 4868–4871. [DOI] [PubMed]
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Ferreira, S. B., Sodero, A. C. R., Cardoso, M. F. C., Lima, E. S., Kaiser, C. R., Silva, F. P. & Ferreira, V. F. (2010). J. Med. Chem. 53, 2364–2375. [DOI] [PubMed]
  8. Freitas, L. B. de O., Borgati, T. F., de Freitas, R. P., Ruiz, A. L. T. G., Marchetti, G. M., de Carvalho, J. E., da Cunha, E. F. F., Ramalho, T. C. & Alves, R. B. (2014). Eur. J. Med. Chem. 84, 595–604. [DOI] [PubMed]
  9. Giffin, M. J., Heaslet, H., Brik, A., Lin, Y.-C., Cauvi, G., Wong, C.-H., McRee, D. E., Elder, J. H., Stout, C. D. & Torbett, B. E. (2008). J. Med. Chem. 51, 6263–6270. [DOI] [PMC free article] [PubMed]
  10. Girish, Y. R., Sharath Kumar, K. S., Muddegowda, U., Lokanath, N. K., Rangappa, K. S. & Shashikanth, S. (2014). RSC Adv. 4, 55800–55806.
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. Kolb, H. C. & Sharpless, K. B. (2003). Drug Discovery Today, 8, 1128–1137. [DOI] [PubMed]
  13. Lass-Floerl, C. (2011). Drugs, 71, 2405–2419. [DOI] [PubMed]
  14. Lauria, A., Delisi, R., Mingoia, F., Terenzi, A., Martorana, A., Barone, G. & Almerico, A. M. (2014). Eur. J. Org. Chem. 2014, 3289–3306.
  15. Löber, S., Rodriguez-Loaiza, P. & Gmeiner, P. (2003). Org. Lett. 5, 1753–1755. [DOI] [PubMed]
  16. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  17. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. [DOI] [PubMed]
  18. Patpi, S. R., Pulipati, L., Yogeeswari, P., Sriram, D., Jain, N., Sridhar, B., Murthy, R., Anjana Devi, T., Kalivendi, S. V. & Kantevari, S. (2012). J. Med. Chem. 55, 3911–3922. [DOI] [PubMed]
  19. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  20. Singh, P., Raj, R., Kumar, V., Mahajan, M. P., Bedi, P. M. S., Kaur, T. & Saxena, A. K. (2012). Eur. J. Med. Chem. 47, 594–600. [DOI] [PubMed]
  21. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  22. Speers, A. E., Adam, G. C. & Cravatt, B. F. (2003). J. Am. Chem. Soc. 125, 4686–4687. [DOI] [PubMed]
  23. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  24. Thibault, R. J., Takizawa, K., Lowenheilm, P., Helms, B., Mynar, J. L., Fréchet, J. M. J. & Hawker, C. J. (2006). J. Am. Chem. Soc. 128, 12084–12085. [DOI] [PubMed]
  25. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17.5. University of Western Australia.
  26. Venugopala, K. N., Rao, D., Bhandary, S., Pillay, M., Chopra, D., Aldhubiab, B. E., Attimarad, M., Alwassil, O. I., Harsha, S. & Mlisana, K. (2016). Drug. Des. Dev. Ther. 10, 2681–2690. [DOI] [PMC free article] [PubMed]
  27. Zhou, C.-H. & Wang, Y. (2012). Curr. Med. Chem. 19, 239–280. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018010654/xi2009sup1.cif

e-74-01178-sup1.cif (518.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018010654/xi2009Isup2.hkl

e-74-01178-Isup2.hkl (315.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018010654/xi2009Isup3.cml

CCDC reference: 1850683

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES