Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Jul 10;74(Pt 8):1075–1078. doi: 10.1107/S2056989018009611

Crystal structure of a seven-coordinate manganese(II) complex with tris­(pyridin-2-ylmeth­yl)amine (TMPA)

Steven T Frey a,*, Hillary A Ramirez a, Manpreet Kaur b, Jerry P Jasinski b
PMCID: PMC6073006  PMID: 30116565

The crystal structure of [Mn(TMPA)(Ac)(CH3OH)]BPh4 (TMPA = tris­(pyridin-2-yl­meth­yl)amine, Ac = acetate, BPh4 = tetra­phenyl­borate) has been determined. The structure reveals a seven-coordinate MnII center with distorted, penta­gonal bipyramidal geometry.

Keywords: crystal structure, manganese(II), tripodal ligand, seven-coordinate

Abstract

Structural analysis of (acetato-κ2 O,O′)(methanol-κO)[tris­(pyridin-2-ylmeth­yl)amine-κ4 N,N′,N′′,N′′′]manganese(II) tetraphenyl­borate, [Mn(C2H3O2)(C18H18N4)(CH3OH)](C24H20B) or [Mn(TMPA)(Ac)(CH3OH)]BPh4 [TMPA = tris­(pyridin-2-ylmeth­yl)amine, Ac = acetate, BPh4 = tetra­phenyl­borate] by single-crystal X-ray diffraction reveals a complex cation with tetra­dentate coordination of the tripodal TMPA ligand, bidentate coordination of the Ac ligand and monodentate coordination of the methanol ligand to a single MnII center, balanced in charge by the presence of a tetra­phenyl­borate anion. The MnII complex has a distorted penta­gonal–bipyramidal geometry, in which the central amine nitro­gen and two pyridyl N atoms of the TMPA ligand, and two oxygen atoms of the acetate ligand occupy positions in the penta­gonal plane, while the third pyridyl nitro­gen of TMPA and the oxygen from the methanol ligand occupy the axial positions. Within the complex, the acetate O atoms participate in weak C—H⋯O hydrogen-bonding inter­actions with neighboring pyridyl moieties. In the crystal, complexes form dimers by pairs of O—H⋯O hydrogen bonds between the coordinated methanol of one complex and an acetate oxygen of the other, and weak π-stacking inter­actions between pyridine rings. Separate dimers then undergo additional π-stacking inter­actions between the pyridine rings of one moiety and either the pyridine or phenyl rings of another moiety that further stabilize the crystal.

Chemical context  

A variety of manganese(II/III) complexes have been studied as structural and functional mimics of superoxide dismutase (SOD) enzymes (Batinić-Haberle et al., 2010, 2014; Iranzo, 2011; Bani & Bencini, 2012; Miriyala et al., 2012; Policar, 2016). The efficacy of these mimics is reliant on their stability in aqueous solution, retention of open or substitutional coordination sites on the manganese ion, and MnIII/MnII redox potential lying in the narrow range of 0.2–0.4 V versus a normal hydrogen electrode (Iranzo, 2011; Policar, 2016). These factors are directly related to the nature of the ligands employed, their coordinating atoms, and the geometry of the coordination sphere (Policar, 2016).

One family of manganese(II) complexes that has been studied incorporates N-centered, tripodal, tetra­dentate ligands (Policar et al., 2001; Durot et al., 2005; Ribeiro et al., 2015). These ligands can be readily synthesized to provide a variety of N and O donors that give rise to the structural diversity of their metal complexes (Policar et al., 2001). With that in mind, we have begun to examine manganese(II) complexes with tripodal ligands containing either pyridine or quinoline groups. Herein, we report the synthesis and structural characterization of [Mn(TMPA)(Ac)(CH3OH)]BPh4 [TMPA = tris­(pyridin-2-yl­meth­yl)amine, Ac = acetate, BPh4 = tetra­phenyl­borate]. This compound is prepared by a two-step process (see reaction scheme) in which manganese(II) acetate is reacted with TMPA in a methanol solution, followed by anion exchange with sodium tetra­phenyl­borate. The resulting monomeric complex exhibits notable characteristics including a high coordination number of seven, a distorted penta­gonal–bipyramidyl geometry, asymmetric bidentate coordination of the acetate ligand, and coordination by a methanol ligand.graphic file with name e-74-01075-scheme1.jpg

Structural commentary  

The title compound (Fig. 1), which consists of the [Mn(TMPA)(Ac)(CH3OH)]+ monocation and tetra­phenyl­borate counter-anion, crystallizes in the triclinic space group P Inline graphic. The manganese(II) ion is hepta­coordinate with a geometry that is best described as a distorted penta­gonal bipyramid. While this is a high coordination number for a first row transition metal ion, seven-coordinate manganese(II) complexes with N-donor ligands have been described previously (Deroche et al.., 1996; Policar et al., 2001; Lessa et al., 2007; Dees et al., 2007; Wu et al., 2010; Lieb et al., 2013). The TMPA ligand is tetra­dentate, with its central N2 and two pyridyl nitro­gen atoms (N1 and N3) in the penta­gonal plane, and the third pyridyl nitro­gen (N4) occupying an axial position. The remaining two positions in the penta­gonal plane are completed by the bidentate coordination of the acetate ligand (O2 and O3), while the final axial position is occupied by O1 of the methanol ligand. Distortion of the penta­gonal–bipyramidal geometry of the coordination sphere is produced by the bite angles of the TMPA and acetate chelate rings. For example, the N2—Mn1—N4 bond angle [75.20 (4)°] of the five-membered metallacycle spanning an equatorial and axial position, is significantly reduced from 90° (Table 1). This results in a trans O1—Mn1—N4 angle of 166.95 (5)°. Likewise, the O2—Mn1—O3 bond angle [54.74 (4)°] that results from bidentate coordination of the acetate ligand is significantly reduced from the ideal 72° bond angle within the penta­gonal plane. The O2—Mn1—O3 plane is also twisted outside of the the penta­gonal plane by approximately 10° as a result of weak intra­molecular C—H⋯O hydrogen-bonding inter­actions with neighboring pyridyl rings (Table 2). What is perhaps most remarkable about the bidentate coordination of the acetate ligand is how asymmetric it is. The Mn1—O2 and Mn1—O3 bond lengths differ from each other by 0.3005 Å. This does not appear to result from steric hindrance, but may be due to an inter­molecular hydrogen-bonding inter­action between the O2 acetate oxygen of one complex and the hydroxyl hydrogen of the coordinated methanol of another, having the effect of lengthening the Mn1—O2 bond. The bond between the manganese(II) ion and the central TMPA nitro­gen, Mn1—N2 is also considerably long at 2.4092 (13) Å. This elongation has been observed in other manganese(II) complexes with tripodal, tetra­dentate ligands (Deroche et al., 1996; Wu et al., 2010). The other Mn—O and Mn—N bonds fall into the range 2.2–2.3 Å, which is typical of manganese(II) complexes (Deroche et al., 1996; Policar et al., 2001; Lessa et al., 2007; Dees et al., 2007; Wu et al., 2010; Lieb et al., 2012).

Figure 1.

Figure 1

Mol­ecular structure of [Mn(TMPA)(Ac)(CH3OH)]BPh4 [TMPA = tris(pyridin-2-yl­meth­yl)amine, Ac = acetate, BPh4 = tetra­phenyl­borate] with atom labels. Displacement ellipsoids are drawn at the 30% probability level.

Table 1. Selected geometric parameters (Å, °).

Mn1—O1 2.1941 (12) Mn1—N2 2.4092 (13)
Mn1—O2 2.5009 (12) Mn1—N3 2.3022 (13)
Mn1—O3 2.2004 (13) Mn1—N4 2.2496 (13)
Mn1—N1 2.2769 (15)    
       
O1—Mn1—O2 81.52 (4) O2—Mn1—O3 54.74 (4)
O1—Mn1—N4 166.95 (5) N2—Mn1—N4 75.20 (4)

Table 2. Hydrogen-bond geometry and π–π stacking interactions (Å, °).

Cg1, Cg2, Cg3, Cg4, Cg6, and Cg7 are the centroids of the N1/C4–C8, N3/C1/C9/C10–C12, N4/C14–C18, C22–C27, C34–C39, and C40–C45 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.86 (1) 1.79 (1) 2.6480 (17) 176 (2)
C8—H8⋯O2 0.95 2.45 3.056 (2) 121
C12—H12⋯O3 0.95 2.35 2.987 (2) 124
C2—H2BCg6ii 0.99 2.70 3.6260 (18) 156
C38—H38⋯Cg4iii 0.95 2.81 3.7135 (19) 158
C42—H42⋯Cg3iv 0.95 2.96 3.659 (2) 131
Cg1⋯Cg7iv     4.2073 (11)  
Cg2⋯Cg3     4.6125 (10)  
Cg3⋯Cg4v     4.2267 (12)  
Cg4⋯Cg6iii     5.0645 (11)  

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Supra­molecular features  

Within the crystal, dimerization of complexes occurs by the formation of a pair of inter­moleclular O—H⋯O hydrogen bonds (Table 2) between the coordinated methanol of one complex and an acetate oxygen of another (Fig. 2) forming an Inline graphic(12) ring-motif inter­action. Within a dimer, weak π-stacking inter­actions between pyridine rings (Cg2⋯Cg3) can be detected. Separate dimers then undergo additional π-stacking between the pyridine rings of one moiety and the phenyl rings of a second (Cg1⋯Cg7 and Cg3⋯Cg4) as well as between the pyridine rings of separate moieties (Cg4⋯Cg6) [where Cg1, Cg2, Cg3, Cg4, Cg6, and Cg7 are the centroids of the N1/C4–C8, N3/C1/C9/C10–C12, N4/C14–C18, C22–C27, C34–C39, and C40–C45 rings, respectively] that further stabilize the crystal packing. In addition, weak slipped parallel C—H⋯π [C2—H2BCg6, X—H, π = 62°; C38—H38⋯Cg4, X—H, π = 61°; C42—H42⋯Cg3, X—H, π = 38°] (Table 2) inter­molecular inter­actions are also present and contibute additionally to the crystal packing.

Figure 2.

Figure 2

A view along the b axis of the crystal packing of the title compound. The intra­molecular O—H⋯O and inter­molecular C—H⋯O hydrogen bonds (Table 2) are shown as dashed lines.

Database survey  

A search of the Cambridge Structural Database (Version 5.39; last update May 2018; Groom et al. 2016) for manganese(II) complexes containing TMPA revealed 17 structures related to the title compound. Twelve of these are dimeric in nature and contain a variety of bridging ligands (Oshio et al., 1993; Xiang et al., 1998; Shin et al., 2010; Barros et al., 2013; Khullar & Mandal, 2013), including one with bridging acetate ligands (Oshio et al., 1993). The remaining five structures are monomeric and include monodentate ligands in addition to TMPA (Oshio et al., 1993; Hitomi et al., 2005; Duboc et al., 2008; Shin et al., 2010; Ogo et al., 2014). Of the 17 structures, 16 are six-coordinate with respect to the manganese(II) centers, while the remaining structure has a five-coordinate manganese(II) center. None of these structures reveal coordination numbers greater than six. However, a separate literature search identified an eight-coordinate complex in which one mangan­ese(II) ion is coordinated to two tetra­dentate TMPA ligands (Gultneh et al., 1993).

Synthesis and crystallization  

All chemicals were obtained from commercial sources and used without further preparation. The water used was deionized. The 1H NMR spectrum was recorded with a JEOL ECX-300 NMR spectrometer and referenced against the 1H peak of the chloro­form solvent. IR spectra were recorded with a Perkin Elmer Spectrum 100 FT–IR.

Tris(pyridin-2-yl­meth­yl)amine (TMPA). In a 250 mL round-bottom flask, 10 g (61 mmol) picolyl chloride hydro­chloride was dissolved in 20 mL H2O and cooled to 273 K in an ice bath. A solution of 5.0 g (120 mmol) NaOH in 20 mL H2O was added dropwise under stirring. Following this, a solution of 2-methyl­amino­pyridine (3.3 g, 31 mmol) in CH2Cl2 (40 mL) was added. The reaction mixture was then removed from the ice bath, capped, and allowed to stir vigorously for five days. The CH2Cl2 layer was then separated, washed twice with brine, and dried over anhydrous sodium sulfate. The solution was filtered and concentrated on a rotary evaporator producing 6.5 g of a red–brown oil that solidified upon cooling. The crude product was chromatographed on alumina (chromatographic grade, 80–200 mesh) eluting with 20:1 ethyl acetate/methanol, producing 4.9 g (55%) of a pure, golden oil that solidified upon standing. 1H NMR (CDCl3, 300 MHz) δ 3.88 (s, 6H), 7.15 (t, 3H), 7.57–7.69 (m, 6H), 8.53 (d, 3H).

[Mn(TMPA)(Ac)(CH3OH)]BPh4. In a 100 mL round-bottom flask, 0.41 g (1.4 mmol) TMPA was dissolved in 10 mL of methanol. To this solution, 0.35 g (1.4 mmol) of mangan­ese(II) acetate tetra­hydrate was added, and the solution was brought to reflux for 20 minutes. A solution of 0.48 g (1.4 mmol) of sodium tetra­phenyl­borate in 10 mL of methanol was then added dropwise to the warm reaction mixture. A precipitate formed during this addition. The reaction mixture was cooled to room temperature and filtered to produce tan microcrystals that were washed twice with cold methanol and air dried to give 0.75 g (74%) of product. The filtrate was then capped and placed in the refrigerator to promote further crystallization. After several days, crystals suitable for X-ray diffraction formed, which gave an IR spectrum identical to the original product. IR (ATR, cm−1) 3000–3053 (aromatic C—H, w), 1589 (C—O, s), 1425 (C—O, s), 731 (BPh4 , s), 701 (BPh4 , s).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The hy­droxy H atom was located in a difference-Fourier map and refined with the distance restraint O1—H1 = 0.85 ± 0.01 and with U iso(H) = 1.2U eq(O). C-bound H atoms were positioned geometrically and refined as riding: C—H = 0.95–0.99 Å with U iso(H) = 1.2U eq(C) or 1.5U eq(C-meth­yl).

Table 3. Experimental details.

Crystal data
Chemical formula [Mn(C2H3O2)(C18H18N4)(CH4O)](C24H20B)
M r 755.60
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 173
a, b, c (Å) 11.3885 (8), 11.7598 (7), 15.6703 (10)
α, β, γ (°) 82.041 (5), 70.671 (6), 85.870 (5)
V3) 1960.5 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.38
Crystal size (mm) 0.44 × 0.38 × 0.26
 
Data collection
Diffractometer Rigaku Oxford Diffraction
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014)
T min, T max 0.836, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 24707, 12901, 9324
R int 0.029
(sin θ/λ)max−1) 0.763
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.047, 0.122, 1.03
No. of reflections 12901
No. of parameters 492
No. of restraints 3
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.30

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018009611/tx2006sup1.cif

e-74-01075-sup1.cif (745.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018009611/tx2006Isup2.hkl

e-74-01075-Isup2.hkl (1,022.9KB, hkl)

CCDC reference: 1853486

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Mn(C2H3O2)(C18H18N4)(CH4O)](C24H20B) Z = 2
Mr = 755.60 F(000) = 794
Triclinic, P1 Dx = 1.280 Mg m3
a = 11.3885 (8) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.7598 (7) Å Cell parameters from 6236 reflections
c = 15.6703 (10) Å θ = 3.5–32.2°
α = 82.041 (5)° µ = 0.38 mm1
β = 70.671 (6)° T = 173 K
γ = 85.870 (5)° Prism, orange
V = 1960.5 (2) Å3 0.44 × 0.38 × 0.26 mm

Data collection

Rigaku Oxford Diffraction diffractometer 12901 independent reflections
Radiation source: Enhance (Mo) X-ray Source 9324 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
Detector resolution: 16.0416 pixels mm-1 θmax = 32.8°, θmin = 3.1°
ω scans h = −16→16
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) k = −17→17
Tmin = 0.836, Tmax = 1.000 l = −23→23
24707 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.5222P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.004
12901 reflections Δρmax = 0.36 e Å3
492 parameters Δρmin = −0.30 e Å3
3 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn1 0.56866 (2) 0.16825 (2) 0.32745 (2) 0.02659 (7)
O1 0.63017 (13) −0.01175 (10) 0.34698 (8) 0.0391 (3)
H1 0.613 (2) −0.0420 (12) 0.4030 (7) 0.059*
O2 0.41990 (12) 0.11321 (10) 0.48365 (8) 0.0385 (3)
O3 0.36694 (11) 0.14978 (11) 0.36100 (8) 0.0388 (3)
N1 0.68813 (14) 0.21241 (12) 0.40889 (10) 0.0360 (3)
N2 0.77041 (12) 0.22294 (11) 0.22297 (9) 0.0287 (3)
N3 0.57535 (12) 0.13981 (10) 0.18346 (8) 0.0267 (3)
N4 0.54497 (12) 0.35519 (11) 0.27955 (8) 0.0263 (3)
C1 0.68402 (14) 0.15094 (12) 0.11539 (10) 0.0270 (3)
C2 0.79743 (15) 0.16420 (15) 0.14101 (11) 0.0344 (3)
H2A 0.8349 0.0873 0.1520 0.041*
H2B 0.8593 0.2084 0.0894 0.041*
C3 0.85963 (16) 0.18541 (15) 0.27130 (12) 0.0367 (4)
H3A 0.9397 0.2234 0.2387 0.044*
H3B 0.8749 0.1014 0.2717 0.044*
C4 0.81202 (17) 0.21393 (14) 0.36774 (12) 0.0365 (4)
C5 0.8922 (2) 0.23550 (16) 0.41321 (15) 0.0491 (5)
H5 0.9795 0.2366 0.3829 0.059*
C6 0.8438 (3) 0.25523 (18) 0.50269 (16) 0.0596 (6)
H6 0.8973 0.2682 0.5355 0.071*
C7 0.7165 (3) 0.25604 (18) 0.54439 (15) 0.0568 (6)
H7 0.6811 0.2711 0.6059 0.068*
C8 0.6414 (2) 0.23465 (16) 0.49564 (12) 0.0444 (4)
H8 0.5537 0.2357 0.5243 0.053*
C9 0.69333 (16) 0.14408 (13) 0.02599 (10) 0.0325 (3)
H9 0.7714 0.1523 −0.0211 0.039*
C10 0.58756 (18) 0.12519 (14) 0.00635 (11) 0.0370 (4)
H10 0.5917 0.1203 −0.0546 0.044*
C11 0.47552 (17) 0.11350 (14) 0.07615 (12) 0.0356 (4)
H11 0.4014 0.0999 0.0644 0.043*
C12 0.47377 (15) 0.12198 (13) 0.16317 (11) 0.0304 (3)
H12 0.3965 0.1148 0.2112 0.037*
C13 0.76954 (15) 0.34957 (14) 0.20102 (12) 0.0343 (3)
H13A 0.8208 0.3691 0.1365 0.041*
H13B 0.8098 0.3824 0.2389 0.041*
C14 0.64285 (14) 0.40629 (13) 0.21531 (10) 0.0265 (3)
C15 0.63108 (16) 0.51242 (14) 0.16752 (11) 0.0350 (4)
H15 0.7008 0.5458 0.1207 0.042*
C16 0.51625 (18) 0.56882 (15) 0.18919 (14) 0.0424 (4)
H16 0.5064 0.6423 0.1580 0.051*
C17 0.41608 (17) 0.51760 (15) 0.25640 (13) 0.0389 (4)
H17 0.3367 0.5555 0.2731 0.047*
C18 0.43378 (15) 0.41047 (13) 0.29869 (11) 0.0304 (3)
H18 0.3642 0.3739 0.3435 0.036*
C19 0.33901 (15) 0.11975 (13) 0.44512 (10) 0.0298 (3)
C20 0.20607 (17) 0.09291 (19) 0.49920 (13) 0.0473 (5)
H20A 0.1625 0.1621 0.5240 0.071*
H20B 0.2037 0.0322 0.5493 0.071*
H20C 0.1652 0.0669 0.4596 0.071*
C21 0.6314 (2) −0.10245 (16) 0.29597 (14) 0.0516 (5)
H21A 0.6816 −0.0813 0.2322 0.077*
H21B 0.5461 −0.1167 0.2996 0.077*
H21C 0.6675 −0.1721 0.3208 0.077*
C22 0.87749 (14) 0.44057 (12) 0.82076 (11) 0.0275 (3)
C23 0.88441 (18) 0.54783 (14) 0.76863 (13) 0.0385 (4)
H23 0.9513 0.5613 0.7131 0.046*
C24 0.7964 (2) 0.63588 (16) 0.79538 (17) 0.0520 (5)
H24 0.8044 0.7079 0.7584 0.062*
C25 0.6982 (2) 0.61887 (17) 0.87495 (16) 0.0518 (5)
H25 0.6373 0.6783 0.8924 0.062*
C26 0.68858 (18) 0.51532 (17) 0.92930 (14) 0.0433 (4)
H26 0.6213 0.5030 0.9847 0.052*
C27 0.77791 (15) 0.42884 (14) 0.90271 (11) 0.0328 (3)
H27 0.7712 0.3586 0.9419 0.039*
C28 0.90673 (13) 0.22992 (12) 0.76412 (9) 0.0239 (3)
C29 0.77827 (14) 0.22214 (13) 0.78503 (10) 0.0260 (3)
H29 0.7251 0.2787 0.8177 0.031*
C30 0.72484 (15) 0.13489 (15) 0.75994 (11) 0.0323 (3)
H30 0.6369 0.1328 0.7760 0.039*
C31 0.79897 (16) 0.05108 (15) 0.71164 (11) 0.0343 (4)
H31 0.7629 −0.0084 0.6942 0.041*
C32 0.92625 (16) 0.05606 (14) 0.68956 (11) 0.0334 (3)
H32 0.9787 −0.0005 0.6564 0.040*
C33 0.97842 (15) 0.14322 (13) 0.71539 (11) 0.0299 (3)
H33 1.0664 0.1442 0.6994 0.036*
C34 1.02371 (13) 0.28206 (12) 0.87796 (10) 0.0238 (3)
C35 1.05266 (15) 0.16588 (13) 0.89976 (11) 0.0305 (3)
H35 1.0374 0.1108 0.8660 0.037*
C36 1.10278 (16) 0.12836 (15) 0.96888 (12) 0.0370 (4)
H36 1.1217 0.0490 0.9809 0.044*
C37 1.12527 (15) 0.20534 (16) 1.02014 (12) 0.0361 (4)
H37 1.1606 0.1798 1.0668 0.043*
C38 1.09545 (15) 0.32066 (15) 1.00249 (11) 0.0327 (3)
H38 1.1088 0.3747 1.0379 0.039*
C39 1.04616 (14) 0.35686 (13) 0.93316 (11) 0.0286 (3)
H39 1.0265 0.4363 0.9223 0.034*
C40 1.09510 (15) 0.37221 (12) 0.70190 (10) 0.0277 (3)
C41 1.21400 (15) 0.38527 (13) 0.70467 (11) 0.0314 (3)
H41 1.2281 0.3688 0.7616 0.038*
C42 1.31390 (17) 0.42153 (16) 0.62752 (13) 0.0414 (4)
H42 1.3934 0.4299 0.6329 0.050*
C43 1.2972 (2) 0.44500 (17) 0.54396 (13) 0.0484 (5)
H43 1.3649 0.4689 0.4912 0.058*
C44 1.1809 (2) 0.43339 (18) 0.53774 (13) 0.0509 (5)
H44 1.1680 0.4498 0.4804 0.061*
C45 1.08230 (18) 0.39766 (16) 0.61519 (12) 0.0403 (4)
H45 1.0030 0.3902 0.6091 0.048*
B1 0.97542 (15) 0.33157 (13) 0.79157 (11) 0.0245 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.02860 (12) 0.02566 (12) 0.02341 (11) −0.00437 (8) −0.00563 (9) −0.00115 (8)
O1 0.0554 (8) 0.0279 (6) 0.0311 (6) 0.0023 (5) −0.0115 (6) −0.0019 (5)
O2 0.0386 (7) 0.0386 (7) 0.0363 (6) −0.0014 (5) −0.0102 (5) −0.0024 (5)
O3 0.0376 (7) 0.0460 (7) 0.0263 (6) −0.0104 (5) −0.0018 (5) 0.0002 (5)
N1 0.0463 (9) 0.0316 (7) 0.0326 (7) −0.0079 (6) −0.0160 (6) −0.0003 (5)
N2 0.0265 (6) 0.0273 (6) 0.0319 (7) −0.0024 (5) −0.0086 (5) −0.0034 (5)
N3 0.0292 (6) 0.0236 (6) 0.0241 (6) −0.0041 (5) −0.0042 (5) −0.0019 (5)
N4 0.0280 (6) 0.0262 (6) 0.0251 (6) −0.0031 (5) −0.0085 (5) −0.0036 (5)
C1 0.0289 (7) 0.0203 (6) 0.0270 (7) −0.0010 (5) −0.0030 (6) −0.0016 (5)
C2 0.0253 (8) 0.0398 (9) 0.0348 (8) −0.0005 (6) −0.0030 (6) −0.0107 (7)
C3 0.0305 (8) 0.0372 (9) 0.0446 (10) −0.0005 (7) −0.0156 (7) −0.0037 (7)
C4 0.0451 (10) 0.0272 (8) 0.0427 (9) −0.0071 (7) −0.0231 (8) 0.0026 (6)
C5 0.0594 (13) 0.0370 (10) 0.0644 (13) −0.0122 (8) −0.0396 (11) 0.0031 (9)
C6 0.0905 (19) 0.0443 (11) 0.0657 (15) −0.0172 (11) −0.0548 (14) 0.0016 (10)
C7 0.0952 (19) 0.0447 (11) 0.0406 (11) −0.0183 (11) −0.0340 (12) −0.0010 (8)
C8 0.0651 (13) 0.0388 (9) 0.0310 (9) −0.0133 (8) −0.0169 (9) 0.0000 (7)
C9 0.0385 (9) 0.0268 (7) 0.0245 (7) −0.0002 (6) −0.0002 (6) −0.0030 (6)
C10 0.0500 (11) 0.0342 (8) 0.0276 (8) −0.0006 (7) −0.0125 (7) −0.0070 (6)
C11 0.0402 (9) 0.0337 (8) 0.0373 (9) −0.0029 (7) −0.0160 (7) −0.0092 (7)
C12 0.0299 (8) 0.0296 (7) 0.0296 (7) −0.0064 (6) −0.0054 (6) −0.0042 (6)
C13 0.0279 (8) 0.0296 (8) 0.0400 (9) −0.0061 (6) −0.0049 (7) 0.0011 (6)
C14 0.0288 (7) 0.0273 (7) 0.0247 (7) −0.0056 (6) −0.0092 (6) −0.0034 (5)
C15 0.0370 (9) 0.0350 (8) 0.0344 (8) −0.0118 (7) −0.0154 (7) 0.0057 (6)
C16 0.0436 (10) 0.0337 (9) 0.0539 (11) −0.0046 (7) −0.0266 (9) 0.0104 (8)
C17 0.0343 (9) 0.0360 (9) 0.0493 (10) 0.0015 (7) −0.0194 (8) −0.0017 (7)
C18 0.0288 (8) 0.0315 (8) 0.0306 (8) −0.0032 (6) −0.0086 (6) −0.0043 (6)
C19 0.0329 (8) 0.0229 (7) 0.0279 (7) −0.0030 (6) −0.0017 (6) −0.0038 (5)
C20 0.0340 (9) 0.0643 (13) 0.0331 (9) −0.0098 (8) 0.0030 (7) −0.0010 (8)
C21 0.0766 (15) 0.0312 (9) 0.0400 (10) −0.0003 (9) −0.0088 (10) −0.0067 (7)
C22 0.0298 (8) 0.0228 (7) 0.0353 (8) −0.0003 (5) −0.0167 (6) −0.0068 (6)
C23 0.0437 (10) 0.0255 (8) 0.0508 (10) −0.0020 (7) −0.0224 (8) −0.0015 (7)
C24 0.0655 (14) 0.0262 (9) 0.0791 (15) 0.0092 (8) −0.0450 (13) −0.0071 (9)
C25 0.0553 (13) 0.0427 (11) 0.0744 (15) 0.0252 (9) −0.0403 (12) −0.0301 (10)
C26 0.0363 (9) 0.0539 (11) 0.0498 (11) 0.0155 (8) −0.0217 (8) −0.0294 (9)
C27 0.0329 (8) 0.0333 (8) 0.0356 (8) 0.0059 (6) −0.0139 (7) −0.0121 (6)
C28 0.0258 (7) 0.0229 (6) 0.0228 (6) −0.0036 (5) −0.0074 (5) −0.0022 (5)
C29 0.0254 (7) 0.0287 (7) 0.0241 (7) −0.0019 (5) −0.0082 (5) −0.0032 (5)
C30 0.0270 (8) 0.0430 (9) 0.0277 (7) −0.0105 (6) −0.0078 (6) −0.0048 (6)
C31 0.0387 (9) 0.0379 (9) 0.0272 (7) −0.0170 (7) −0.0077 (6) −0.0061 (6)
C32 0.0371 (9) 0.0296 (8) 0.0327 (8) −0.0054 (6) −0.0066 (7) −0.0112 (6)
C33 0.0261 (7) 0.0310 (8) 0.0336 (8) −0.0037 (6) −0.0081 (6) −0.0095 (6)
C34 0.0187 (6) 0.0241 (6) 0.0263 (7) −0.0019 (5) −0.0035 (5) −0.0043 (5)
C35 0.0314 (8) 0.0282 (7) 0.0323 (8) 0.0028 (6) −0.0098 (6) −0.0084 (6)
C36 0.0355 (9) 0.0330 (8) 0.0415 (9) 0.0100 (7) −0.0134 (7) −0.0047 (7)
C37 0.0270 (8) 0.0482 (10) 0.0347 (8) 0.0034 (7) −0.0130 (7) −0.0046 (7)
C38 0.0282 (8) 0.0393 (9) 0.0331 (8) −0.0051 (6) −0.0109 (6) −0.0080 (7)
C39 0.0268 (7) 0.0258 (7) 0.0334 (8) −0.0046 (5) −0.0087 (6) −0.0053 (6)
C40 0.0312 (8) 0.0214 (7) 0.0298 (7) −0.0058 (5) −0.0072 (6) −0.0047 (5)
C41 0.0291 (8) 0.0293 (7) 0.0326 (8) −0.0060 (6) −0.0035 (6) −0.0072 (6)
C42 0.0326 (9) 0.0410 (9) 0.0434 (10) −0.0115 (7) 0.0009 (7) −0.0089 (8)
C43 0.0513 (12) 0.0440 (10) 0.0369 (10) −0.0175 (8) 0.0060 (8) −0.0043 (8)
C44 0.0677 (14) 0.0531 (12) 0.0283 (9) −0.0187 (10) −0.0109 (9) 0.0040 (8)
C45 0.0447 (10) 0.0445 (10) 0.0324 (9) −0.0129 (8) −0.0128 (7) −0.0008 (7)
B1 0.0241 (8) 0.0207 (7) 0.0282 (8) −0.0029 (6) −0.0069 (6) −0.0041 (6)

Geometric parameters (Å, º)

Mn1—O1 2.1941 (12) C20—H20A 0.9800
Mn1—O2 2.5009 (12) C20—H20B 0.9800
Mn1—O3 2.2004 (13) C20—H20C 0.9800
Mn1—N1 2.2769 (15) C21—H21A 0.9800
Mn1—N2 2.4092 (13) C21—H21B 0.9800
Mn1—N3 2.3022 (13) C21—H21C 0.9800
Mn1—N4 2.2496 (13) C22—C23 1.397 (2)
O1—H1 0.863 (9) C22—C27 1.401 (2)
O1—C21 1.415 (2) C22—B1 1.648 (2)
O2—C19 1.251 (2) C23—H23 0.9500
O3—C19 1.2541 (19) C23—C24 1.395 (3)
N1—C4 1.343 (2) C24—H24 0.9500
N1—C8 1.341 (2) C24—C25 1.373 (3)
N2—C2 1.475 (2) C25—H25 0.9500
N2—C3 1.467 (2) C25—C26 1.375 (3)
N2—C13 1.481 (2) C26—H26 0.9500
N3—C1 1.3406 (19) C26—C27 1.389 (2)
N3—C12 1.334 (2) C27—H27 0.9500
N4—C14 1.3428 (19) C28—C29 1.396 (2)
N4—C18 1.342 (2) C28—C33 1.404 (2)
C1—C2 1.498 (2) C28—B1 1.651 (2)
C1—C9 1.383 (2) C29—H29 0.9500
C2—H2A 0.9900 C29—C30 1.392 (2)
C2—H2B 0.9900 C30—H30 0.9500
C3—H3A 0.9900 C30—C31 1.386 (2)
C3—H3B 0.9900 C31—H31 0.9500
C3—C4 1.504 (3) C31—C32 1.378 (2)
C4—C5 1.386 (3) C32—H32 0.9500
C5—H5 0.9500 C32—C33 1.389 (2)
C5—C6 1.372 (3) C33—H33 0.9500
C6—H6 0.9500 C34—C35 1.404 (2)
C6—C7 1.379 (4) C34—C39 1.406 (2)
C7—H7 0.9500 C34—B1 1.644 (2)
C7—C8 1.377 (3) C35—H35 0.9500
C8—H8 0.9500 C35—C36 1.391 (2)
C9—H9 0.9500 C36—H36 0.9500
C9—C10 1.378 (3) C36—C37 1.379 (3)
C10—H10 0.9500 C37—H37 0.9500
C10—C11 1.379 (2) C37—C38 1.387 (2)
C11—H11 0.9500 C38—H38 0.9500
C11—C12 1.375 (2) C38—C39 1.385 (2)
C12—H12 0.9500 C39—H39 0.9500
C13—H13A 0.9900 C40—C41 1.389 (2)
C13—H13B 0.9900 C40—C45 1.403 (2)
C13—C14 1.505 (2) C40—B1 1.643 (2)
C14—C15 1.386 (2) C41—H41 0.9500
C15—H15 0.9500 C41—C42 1.398 (2)
C15—C16 1.382 (3) C42—H42 0.9500
C16—H16 0.9500 C42—C43 1.372 (3)
C16—C17 1.379 (3) C43—H43 0.9500
C17—H17 0.9500 C43—C44 1.378 (3)
C17—C18 1.374 (2) C44—H44 0.9500
C18—H18 0.9500 C44—C45 1.391 (3)
C19—C20 1.502 (2) C45—H45 0.9500
O1—Mn1—O2 81.52 (4) C18—C17—C16 118.46 (16)
O1—Mn1—O3 101.03 (5) C18—C17—H17 120.8
O1—Mn1—N1 88.33 (5) N4—C18—C17 122.91 (15)
O1—Mn1—N2 92.28 (5) N4—C18—H18 118.5
O1—Mn1—N3 88.03 (4) C17—C18—H18 118.5
O1—Mn1—N4 166.95 (5) O2—C19—O3 120.79 (15)
O2—Mn1—O3 54.74 (4) O2—C19—C20 120.41 (15)
O3—Mn1—N1 132.87 (5) O3—C19—C20 118.79 (16)
O3—Mn1—N2 152.00 (5) C19—C20—H20A 109.5
O3—Mn1—N3 83.91 (5) C19—C20—H20B 109.5
O3—Mn1—N4 88.91 (5) C19—C20—H20C 109.5
N1—Mn1—O2 81.88 (5) H20A—C20—H20B 109.5
N1—Mn1—N2 71.41 (5) H20A—C20—H20C 109.5
N1—Mn1—N3 142.97 (5) H20B—C20—H20C 109.5
N2—Mn1—O2 152.77 (5) O1—C21—H21A 109.5
N3—Mn1—O2 133.76 (4) O1—C21—H21B 109.5
N3—Mn1—N2 71.94 (5) O1—C21—H21C 109.5
N4—Mn1—O2 111.30 (4) H21A—C21—H21B 109.5
N4—Mn1—N1 91.07 (5) H21A—C21—H21C 109.5
N2—Mn1—N4 75.20 (4) H21B—C21—H21C 109.5
N4—Mn1—N3 84.61 (4) C23—C22—C27 115.29 (15)
Mn1—O1—H1 115.2 (11) C23—C22—B1 124.68 (15)
C21—O1—Mn1 129.43 (12) C27—C22—B1 120.02 (13)
C21—O1—H1 106.3 (11) C22—C23—H23 118.9
C19—O2—Mn1 85.21 (9) C24—C23—C22 122.17 (19)
C19—O3—Mn1 99.20 (11) C24—C23—H23 118.9
C4—N1—Mn1 117.72 (11) C23—C24—H24 119.9
C8—N1—Mn1 123.44 (13) C25—C24—C23 120.28 (19)
C8—N1—C4 118.83 (16) C25—C24—H24 119.9
C2—N2—Mn1 109.13 (9) C24—C25—H25 120.2
C2—N2—C13 112.02 (13) C24—C25—C26 119.65 (17)
C3—N2—Mn1 106.06 (10) C26—C25—H25 120.2
C3—N2—C2 110.69 (13) C25—C26—H26 120.2
C3—N2—C13 110.45 (13) C25—C26—C27 119.6 (2)
C13—N2—Mn1 108.28 (9) C27—C26—H26 120.2
C1—N3—Mn1 118.77 (10) C22—C27—H27 118.5
C12—N3—Mn1 122.76 (10) C26—C27—C22 122.97 (17)
C12—N3—C1 118.23 (13) C26—C27—H27 118.5
C14—N4—Mn1 117.29 (10) C29—C28—C33 114.96 (13)
C18—N4—Mn1 123.01 (10) C29—C28—B1 124.89 (13)
C18—N4—C14 118.46 (13) C33—C28—B1 120.14 (13)
N3—C1—C2 116.93 (14) C28—C29—H29 118.6
N3—C1—C9 122.07 (15) C30—C29—C28 122.70 (14)
C9—C1—C2 120.91 (14) C30—C29—H29 118.6
N2—C2—C1 112.94 (13) C29—C30—H30 119.7
N2—C2—H2A 109.0 C31—C30—C29 120.52 (15)
N2—C2—H2B 109.0 C31—C30—H30 119.7
C1—C2—H2A 109.0 C30—C31—H31 120.8
C1—C2—H2B 109.0 C32—C31—C30 118.45 (14)
H2A—C2—H2B 107.8 C32—C31—H31 120.8
N2—C3—H3A 109.4 C31—C32—H32 119.8
N2—C3—H3B 109.4 C31—C32—C33 120.48 (15)
N2—C3—C4 111.33 (14) C33—C32—H32 119.8
H3A—C3—H3B 108.0 C28—C33—H33 118.6
C4—C3—H3A 109.4 C32—C33—C28 122.87 (15)
C4—C3—H3B 109.4 C32—C33—H33 118.6
N1—C4—C3 116.60 (15) C35—C34—C39 114.69 (14)
N1—C4—C5 121.68 (18) C35—C34—B1 124.20 (13)
C5—C4—C3 121.66 (18) C39—C34—B1 121.01 (13)
C4—C5—H5 120.4 C34—C35—H35 118.7
C6—C5—C4 119.1 (2) C36—C35—C34 122.57 (15)
C6—C5—H5 120.4 C36—C35—H35 118.7
C5—C6—H6 120.4 C35—C36—H36 119.7
C5—C6—C7 119.2 (2) C37—C36—C35 120.60 (16)
C7—C6—H6 120.4 C37—C36—H36 119.7
C6—C7—H7 120.5 C36—C37—H37 120.6
C8—C7—C6 119.1 (2) C36—C37—C38 118.89 (15)
C8—C7—H7 120.5 C38—C37—H37 120.6
N1—C8—C7 122.1 (2) C37—C38—H38 120.1
N1—C8—H8 119.0 C39—C38—C37 119.87 (15)
C7—C8—H8 119.0 C39—C38—H38 120.1
C1—C9—H9 120.5 C34—C39—H39 118.3
C10—C9—C1 118.90 (15) C38—C39—C34 123.35 (14)
C10—C9—H9 120.5 C38—C39—H39 118.3
C9—C10—H10 120.4 C41—C40—C45 114.91 (15)
C9—C10—C11 119.28 (15) C41—C40—B1 124.17 (14)
C11—C10—H10 120.4 C45—C40—B1 120.91 (14)
C10—C11—H11 120.8 C40—C41—H41 118.5
C12—C11—C10 118.34 (16) C40—C41—C42 123.04 (16)
C12—C11—H11 120.8 C42—C41—H41 118.5
N3—C12—C11 123.17 (15) C41—C42—H42 120.0
N3—C12—H12 118.4 C43—C42—C41 120.06 (18)
C11—C12—H12 118.4 C43—C42—H42 120.0
N2—C13—H13A 108.4 C42—C43—H43 120.5
N2—C13—H13B 108.4 C42—C43—C44 119.05 (17)
N2—C13—C14 115.31 (13) C44—C43—H43 120.5
H13A—C13—H13B 107.5 C43—C44—H44 119.9
C14—C13—H13A 108.4 C43—C44—C45 120.23 (18)
C14—C13—H13B 108.4 C45—C44—H44 119.9
N4—C14—C13 118.13 (13) C40—C45—H45 118.6
N4—C14—C15 121.82 (15) C44—C45—C40 122.71 (18)
C15—C14—C13 119.89 (14) C44—C45—H45 118.6
C14—C15—H15 120.6 C22—B1—C28 110.31 (12)
C16—C15—C14 118.85 (16) C34—B1—C22 108.42 (12)
C16—C15—H15 120.6 C34—B1—C28 110.47 (11)
C15—C16—H16 120.3 C40—B1—C22 110.69 (12)
C17—C16—C15 119.44 (16) C40—B1—C28 107.22 (12)
C17—C16—H16 120.3 C40—B1—C34 109.72 (12)
C16—C17—H17 120.8
Mn1—O2—C19—O3 −2.16 (14) C23—C22—B1—C28 −109.03 (17)
Mn1—O2—C19—C20 178.52 (15) C23—C22—B1—C34 129.87 (15)
Mn1—O3—C19—O2 2.48 (16) C23—C22—B1—C40 9.5 (2)
Mn1—O3—C19—C20 −178.19 (13) C23—C24—C25—C26 1.4 (3)
Mn1—N1—C4—C3 −0.32 (19) C24—C25—C26—C27 −0.4 (3)
Mn1—N1—C4—C5 −177.45 (13) C25—C26—C27—C22 −1.7 (3)
Mn1—N1—C8—C7 177.02 (14) C27—C22—C23—C24 −1.6 (2)
Mn1—N2—C2—C1 35.27 (16) C27—C22—B1—C28 70.36 (17)
Mn1—N2—C3—C4 −43.91 (15) C27—C22—B1—C34 −50.73 (17)
Mn1—N2—C13—C14 −22.55 (17) C27—C22—B1—C40 −171.13 (14)
Mn1—N3—C1—C2 8.77 (17) C28—C29—C30—C31 −0.4 (2)
Mn1—N3—C1—C9 −174.82 (11) C29—C28—C33—C32 0.1 (2)
Mn1—N3—C12—C11 174.96 (12) C29—C28—B1—C22 −15.7 (2)
Mn1—N4—C14—C13 −18.61 (18) C29—C28—B1—C34 104.11 (16)
Mn1—N4—C14—C15 166.15 (12) C29—C28—B1—C40 −136.36 (14)
Mn1—N4—C18—C17 −167.80 (13) C29—C30—C31—C32 0.3 (2)
N1—C4—C5—C6 0.3 (3) C30—C31—C32—C33 0.1 (3)
N2—C3—C4—N1 32.0 (2) C31—C32—C33—C28 −0.2 (3)
N2—C3—C4—C5 −150.90 (16) C33—C28—C29—C30 0.3 (2)
N2—C13—C14—N4 28.7 (2) C33—C28—B1—C22 163.65 (13)
N2—C13—C14—C15 −155.92 (15) C33—C28—B1—C34 −76.48 (17)
N3—C1—C2—N2 −30.8 (2) C33—C28—B1—C40 43.04 (18)
N3—C1—C9—C10 0.0 (2) C34—C35—C36—C37 0.6 (3)
N4—C14—C15—C16 2.5 (2) C35—C34—C39—C38 1.4 (2)
C1—N3—C12—C11 0.6 (2) C35—C34—B1—C22 146.46 (14)
C1—C9—C10—C11 −0.1 (2) C35—C34—B1—C28 25.47 (19)
C2—N2—C3—C4 −162.15 (14) C35—C34—B1—C40 −92.54 (16)
C2—N2—C13—C14 97.84 (16) C35—C36—C37—C38 0.9 (3)
C2—C1—C9—C10 176.25 (15) C36—C37—C38—C39 −1.2 (2)
C3—N2—C2—C1 151.62 (14) C37—C38—C39—C34 0.0 (2)
C3—N2—C13—C14 −138.27 (15) C39—C34—C35—C36 −1.7 (2)
C3—C4—C5—C6 −176.65 (17) C39—C34—B1—C22 −37.39 (18)
C4—N1—C8—C7 −1.7 (3) C39—C34—B1—C28 −158.39 (13)
C4—C5—C6—C7 −1.7 (3) C39—C34—B1—C40 83.61 (16)
C5—C6—C7—C8 1.3 (3) C40—C41—C42—C43 −0.6 (3)
C6—C7—C8—N1 0.4 (3) C41—C40—C45—C44 −0.1 (3)
C8—N1—C4—C3 178.47 (15) C41—C40—B1—C22 107.07 (16)
C8—N1—C4—C5 1.3 (2) C41—C40—B1—C28 −132.55 (14)
C9—C1—C2—N2 152.78 (14) C41—C40—B1—C34 −12.55 (19)
C9—C10—C11—C12 0.4 (2) C41—C42—C43—C44 0.6 (3)
C10—C11—C12—N3 −0.7 (2) C42—C43—C44—C45 −0.4 (3)
C12—N3—C1—C2 −176.64 (13) C43—C44—C45—C40 0.1 (3)
C12—N3—C1—C9 −0.2 (2) C45—C40—C41—C42 0.3 (2)
C13—N2—C2—C1 −84.62 (16) C45—C40—B1—C22 −72.30 (18)
C13—N2—C3—C4 73.20 (17) C45—C40—B1—C28 48.07 (18)
C13—C14—C15—C16 −172.67 (16) C45—C40—B1—C34 168.08 (14)
C14—N4—C18—C17 −0.9 (2) B1—C22—C23—C24 177.84 (16)
C14—C15—C16—C17 −1.1 (3) B1—C22—C27—C26 −176.78 (15)
C15—C16—C17—C18 −1.1 (3) B1—C28—C29—C30 179.69 (14)
C16—C17—C18—N4 2.2 (3) B1—C28—C33—C32 −179.38 (14)
C18—N4—C14—C13 173.78 (14) B1—C34—C35—C36 174.68 (15)
C18—N4—C14—C15 −1.5 (2) B1—C34—C39—C38 −175.12 (14)
C22—C23—C24—C25 −0.4 (3) B1—C40—C41—C42 −179.08 (14)
C23—C22—C27—C26 2.7 (2) B1—C40—C45—C44 179.36 (17)

Hydrogen-bond geometry (Å, º)

Cg1, Cg2, Cg3, Cg4, Cg6, and Cg7 are the centroids of the N1/C4–C8, N3/C1/C9/C10–C12, N4/C14–C18, C22–C27, C34–C39, and C40–C45 rings, respectively.

D—H···A D—H H···A D···A D—H···A
O1—H1···O2i 0.86 (1) 1.79 (1) 2.6480 (17) 176 (2)
C8—H8···O2 0.95 2.45 3.056 (2) 121
C12—H12···O3 0.95 2.35 2.987 (2) 124
C2—H2B···Cg6ii 0.99 2.70 3.6260 (18) 156
C38—H38···Cg4iii 0.95 2.81 3.7135 (19) 158
C42—H42···Cg3iv 0.95 2.96 3.659 (2) 131
Cg1···Cg7iv 4.2073 (11)
Cg2···Cg3 4.6125 (10)
Cg3···Cg4v 4.2267 (12)
Cg4···Cg6iii 5.0645 (11)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, y, z−1; (iii) −x+2, −y+1, −z+2; (iv) −x+2, −y+1, −z+1; (v) −x+1, −y+1, −z+1.

Selected bond lengths (Å) and angles (°) of the title compound

Mn1—O1 2.1941 (12) Mn1—N4 2.2496 (13)
Mn1—O2 2.5009 (12) O1—Mn1—N4 166.95 (5)
Mn1—O3 2.2004 (13) O2—Mn1—O3 54.74 (4)
Mn1—N1 2.2769 (15) N2—Mn1—N4 75.20 (4)
Mn1—N2 2.4092 (13) O1—Mn1—O2 81.52 (4)
Mn1—N3 2.3022 (13)

Funding Statement

This work was funded by NSF-MRI grant CHE-1039027 to Jerry P. Jasinski.

References

  1. Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
  2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  3. Bani, D. & Bencini, A. (2012). Curr. Med. Chem. 19, 4431–4444. [DOI] [PubMed]
  4. Barros, W. P., Inglis, R., Nichol, G. S., Rajeshkumar, T., Rajaraman, G., Piligkos, S., Stumpf, H. O. & Brechin, E. K. (2013). Dalton Trans. 42, 16510–16517. [DOI] [PubMed]
  5. Batinić-Haberle, I., Rebouças, J. S. & Spasojević, I. (2010). Antioxid. Redox Signal. 13, 877–918. [DOI] [PMC free article] [PubMed]
  6. Batinić-Haberle, I., Tovmasyan, A., Roberts, E. R. H., Vujasković, Z., Leong, K. W. & Spasojevic, I. (2014). Antioxid. Redox Signal. 20, 2372–2415. [DOI] [PMC free article] [PubMed]
  7. Dees, A., Zahl, A., Puchta, R., van Eikema Hommes, N. J. R., Heinemann, F. W. & Ivanović-Burmazović, I. (2007). Inorg. Chem. 46, 2459–2470. [DOI] [PubMed]
  8. Deroche, A., Morgenstern-Badarau, I., Cesario, M., Guilhem, J., Keita, B., Nadjo, L. & Houée-Levin, C. (1996). J. Am. Chem. Soc. 118, 4567–4573.
  9. Duboc, C., Collomb, M.-N., Pécaut, J., Deronzier, A. & Neese, F. (2008). Chem. Eur. J. 14, 6498–6509. [DOI] [PubMed]
  10. Durot, S., Policar, C., Cisnetti, F., Lambert, F., Renault, J.-P., Pelosi, G., Blain, G., Korri-Youssoufi, H. & Mahy, J.-P. (2005). Eur. J. Inorg. Chem. pp. 3513–3523.
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. Gultneh, Y., Farooq, A., Karlin, K. D., Liu, S. & Zubiet, J. (1993). Inorg. Chim. Acta, 211, 171–175.
  13. Hitomi, Y., Ando, A., Matsui, H., Ito, T., Tanaka, T., Ogo, S. & Funabiki, T. (2005). Inorg. Chem. 44, 3473–3478. [DOI] [PubMed]
  14. Iranzo, O. (2011). Bioorg. Chem. 39, 73–87. [DOI] [PubMed]
  15. Khullar, S. & Mandal, S. K. (2013). CrystEngComm, 15, 6652–6662.
  16. Lessa, J. A., Horn, A. Jr, Pinheiro, C. B., Farah, L. L., Eberlin, M. N., Benassi, M., Catharino, R. R. & Fernandes, S. (2007). Inorg. Chem. Commun. 10, 863–866.
  17. Lieb, D., Friedel, F. C., Yawer, M., Zahl, A., Khusniyarov, M. M., Heinemann, F. W. & Ivanovíc-Burmazović, I. (2013). Inorg. Chem. 52, 222–236. [DOI] [PubMed]
  18. Miriyala, S., Spasojević, I., Tovmasyan, A., Salvemini, D., Vujasković, Z., St. Clair, D. & Batinić-Haberle, I. (2012). Biochim. Biophys. Acta, 1822, 794–814. [DOI] [PMC free article] [PubMed]
  19. Ogo, S., Wantanabe, Y. & Funabiki, T. (2014). Private Communication (Refcode 117555). CCDC, Cambridge, England.
  20. Oshio, H., Ino, E., Mogi, I. & Ito, T. (1993). Inorg. Chem. 32, 5697–5703.
  21. Policar, C. (2016). Redox-Active Therapeutics, edited by I. Batinić-Haberle, J. Robouças & I. Spasojević, pp. 125–164. Switzerland: Springer International Publishing.
  22. Policar, C., Durot, S., Lambert, F., Cesario, M., Ramiandrasoa, F. & Morgenstern-Badarau, I. (2001). Eur. J. Inorg. Chem. pp. 1807–1818.
  23. Ribeiro, T., Fernandes, C., Melo, K. V., Ferreira, S. S., Lessa, J. A., Franco, R. W. A., Schenk, G., Pereira, M. D. & Horn, A. Jr (2015). Free Radical Biol. Med. 80, 67–76. [DOI] [PubMed]
  24. Sheldrick, G. M. (2015). Acta Cryst A71, 3–8.
  25. Sheldrick, G. M. (2015). Acta Cryst C71, 3–8.
  26. Shin, B. K., Kim, M. & Han, J. (2010). Polyhedron, 29, 2560–2568.
  27. Wu, H., Yuan, J., Qi, B., Kong, J., Kou, F., Jiaa, F., Fan, X. & Wang, Y. (2010). Z. Naturforsch. Teil B, 65, 1097–1100.
  28. Xiang, D. F., Duan, C. Y., Tan, X. S., Liu, Y. J. & Tang, W. X. (1998). Polyhedron, 17, 2647–2653.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018009611/tx2006sup1.cif

e-74-01075-sup1.cif (745.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018009611/tx2006Isup2.hkl

e-74-01075-Isup2.hkl (1,022.9KB, hkl)

CCDC reference: 1853486

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES