Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Jul 13;74(Pt 8):1093–1096. doi: 10.1107/S205698901800912X

Crystal structures of dimethyl 5-iodo­iso­phthal­ate and dimethyl 5-ethynyl­iso­phthal­ate

Ines Hauptvogel a, Wilhelm Seichter a, Edwin Weber a,*
PMCID: PMC6073011  PMID: 30116569

The 5-iodo- and 5-ethynyl-substituted dimethyl isophthalates show mol­ecular frameworks with methyl carboxyl­ate moieties being tilted or perfectly planar with respect to the benzene ring, respectively. Crystal structures feature a three- or two-dimensional supra­molecular aggregation in the iodo and ethynyl derivatives, respectively, supported by C—H⋯I and C—H⋯O hydrogen bonding as well as I⋯O and π–π inter­actions.

Keywords: crystal structure, 5-substituted dimethyl isophthalates, I⋯O=C inter­action, C—H⋯O and C—H⋯I hydrogen bonding, π–π stacking

Abstract

In dimethyl 5-iodo­isophthalate, C10H9IO4, (I), the planes through the methyl carboxyl­ate moieties are tilted with respect to the benzene ring, whereas the mol­ecular framework of dimethyl 5-ethynylisophthalate, C12H10O4, (II), is perfectly planar. The crystal structure of (I) is stabilized by a three-dimensional supra­molecular network comprising C—H⋯O=C hydrogen bonds, as well as I⋯O=C inter­actions. In the crystal of (II), the mol­ecules are connected via C—Hethyn­yl⋯O=C hydrogen bonds to infinite strands. Moreover, π–π arene stacking inter­actions connect the mol­ecular chains into two-dimensional supra­molecular aggregates.

Chemical context  

In recent years, the design of solid porous framework materials (MacGillivray, 2010; Furukawa et al., 2013; Eddaoudi et al., 2015) has become a very important topic in the field of supra­molecular crystal engineering (Desiraju et al., 2011). Associated with it, so-called linker mol­ecules featuring a geometrically rigid structure frequently being of linear, trigonal or tetra­hedral shape and having carb­oxy­lic acid functions as terminal groups play a key role in building such systems (Lin et al., 2006; Hausdorf et al., 2009; Zheng et al., 2010). In the course of the synthesis of the respective linkers, the title compounds (I) and (II), both being 5-substituted dimethyl isophthalates, are much used inter­mediates. However, these compounds are not only synthetically significant but also show inter­esting structures in the crystalline state, as demonstrated herein.graphic file with name e-74-01093-scheme1.jpg

Structural commentary  

The mol­ecular structures of the title compounds, (I) and (II), are illustrated in Fig. 1 a and 1b, respectively. Taking into account experimental error, the bond distances within the isophthalate framework agree well with those found in the crystal structure of dimethyl isophthalate (Gallagher, 2012). Compound (I) crystallizes in the ortho­rhom­bic space group Pna21 with one mol­ecule in the asymmetric unit. The mol­ecule adopts a twisted conformation with the mean planes defined by the methyl carboxyl­ate moieties inclined at angles of 12.6 (2) and 6.0 (2)° with respect to the plane of the benzene ring. Compound (II) crystallizes in the ortho­rhom­bic space group Pnma with the mol­ecule located on a symmetry plane, i.e. the mol­ecule is perfectly planar. However, the mol­ecule adopts approximate C 2v symmetry with the atoms C2, C5, C11 and C12 lying on a non-crystallographic bis­ecting symmetry plane.

Figure 1.

Figure 1

Perspective view of the mol­ecular structures of the title compounds, (a) (I) and (b) (II), with atom labelling. Anisotropic displacement ellipsoids are drawn at the 40% probability level.

Supra­molecular features  

Infinite strands with the mol­ecules connected via I⋯O=C interactions [I1⋯O3—C9(x − Inline graphic, y + Inline graphic, z − 1; DA = 3.129 (2) (Desiraju & Steiner, 1999) (Politzer et al. 2007; Desiraju et al., 2013), represent the basic supra­molecular aggregates of the crystal structure of (I). Association of the mol­ecular strands by C—H⋯O=C type hydrogen bonds (Table 1) (Desiraju & Steiner, 1999) and π–π stacking inter­actions [centroid–centroid distance = 4.149 (2) Å] (Tiekink & Zukerman-Schpector, 2012) generate a three-dimensional supra­molecular network (Fig. 2). In the crystal structure of (II), the mol­ecules are connected via Cethyn­yl—H⋯O=C bonds (Table 2) into infinite strands, which are further arranged into mol­ecular sheets that extend parallel to the ac plane (Fig. 3). Furthermore, π–π arene inter­actions with a centroid–centroid distance of 3.566 (1) Å and a slippage of 1.325 Å between the inter­acting aromatic rings stabilize the crystal structure along the stacking axis of the mol­ecular sheets.

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O1i 0.98 2.55 3.257 (4) 129

Symmetry code: (i) Inline graphic.

Figure 2.

Figure 2

Packing diagram of compound (I) viewed down the a axis. Dashed lines represent hydrogen-bonding inter­actions.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1i 0.94 2.29 3.223 (1) 172

Symmetry code: (i) Inline graphic.

Figure 3.

Figure 3

Packing excerpt of compound (II) viewed down the b axis. Dashed lines represent hydrogen-bonding inter­actions.

Database survey  

The search in the Cambridge Structural Database (CSD, Version 5.38, update May 2017; Groom et al., 2016) for meta-substituted derivatives of dimethyl isophthalate excluding their metal complexes, solvates and salts gave 18 hits. None of these compounds represents a 5-halogen- and 5-alkynyl-substituted dimethyl isophalate. The parent compound, dimethyl isophthalate (CSD refcode GOHRUS; Gallagher & Mocilac, 2012) crystallizes in space group Pna21 with two conformationally similar mol­ecules in the asymmetric unit. The independent mol­ecules participate in different ways in non-covalent bonding. One of them is involved in the formation of linear strands with the mol­ecules connected by C—Har­yl⋯O=C bonds. Inter­strand association is accomplished by π–π arene stacking. Mol­ecules related by the twofold screw axis are also linked via C—Har­yl⋯O=C bonding to form helical strands. In addition, these strands are stabilized by π–π stacking forces.

Synthesis and crystallization  

Compounds (I) and (II) were synthesized following literature procedures. This involves a diazo­tization/iodination reaction of dimethyl 5-amino­isophthalate (Mazik & König, 2006) to give compound (I). Subsequent reaction of (I) with 2-methyl­but-3-yne-2-ol (MEBYNOL) using a Pd-catalysed Sonogashira coupling procedure (Doucet & Hierso, 2007; Rafael & Carmen, 2007) yielded the corresponding blocked acetyl­enic diester as an inter­mediate (Hauptvogel et al., 2011). Removal of the 2-hy­droxy­propyl blocking group was undertaken using sodium hydride in toluene and quenching with water to result in the title compound (II) (Havens & Hergenrother, 1985; Hauptvogel et al., 2011).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms were positioned geometrically and refined using a riding model with C—H distances of 0.94–0.98 Å and U iso(H) = 1.5U eq(C-meth­yl) or U iso(H) = 1.2U eq(C) for other H atoms.

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C10H9IO4 C12H10O4
M r 320.07 218.20
Crystal system, space group Orthorhombic, P n a21 Orthorhombic, P n m a
Temperature (K) 143 223
a, b, c (Å) 7.7483 (2), 19.3451 (6), 7.2338 (2) 10.1206 (5), 6.6219 (4), 16.3658 (8)
V3) 1084.29 (5) 1096.80 (10)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 2.94 0.10
Crystal size (mm) 0.30 × 0.22 × 0.15 0.54 × 0.12 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD area detector Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Sheldrick, 2008a ) Multi-scan (SADABS; Sheldrick, 2008a )
T min, T max 0.472, 0.666 0.948, 0.990
No. of measured, independent and observed [I > 2σ(I)] reflections 22794, 2909, 2806 12397, 1292, 932
R int 0.026 0.033
(sin θ/λ)max−1) 0.684 0.638
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.015, 0.038, 1.05 0.039, 0.110, 1.03
No. of reflections 2909 1292
No. of parameters 139 87
No. of restraints 1 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.47, −0.44 0.17, −0.18
Absolute structure Flack x determined using 1255 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.004 (8)

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXT (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and SHELXTL (Sheldrick, 2008b ).

Supplementary Material

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S205698901800912X/zl2732sup1.cif

e-74-01093-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901800912X/zl2732Isup4.hkl

e-74-01093-Isup4.hkl (232.6KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S205698901800912X/zl2732IIsup5.hkl

e-74-01093-IIsup5.hkl (105KB, hkl)

Supporting information file. DOI: 10.1107/S205698901800912X/zl2732Isup4.cml

Supporting information file. DOI: 10.1107/S205698901800912X/zl2732IIsup5.cml

CCDC references: 780476, 780475

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

1,3-Dimethyl 1-iodocyclohexa-3,5-diene-1,3-dicarboxylate (I). Crystal data

C10H9IO4 Dx = 1.961 Mg m3
Mr = 320.07 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21 Cell parameters from 5755 reflections
a = 7.7483 (2) Å θ = 3.0–33.7°
b = 19.3451 (6) Å µ = 2.94 mm1
c = 7.2338 (2) Å T = 143 K
V = 1084.29 (5) Å3 Irregular, colourless
Z = 4 0.30 × 0.22 × 0.15 mm
F(000) = 616

1,3-Dimethyl 1-iodocyclohexa-3,5-diene-1,3-dicarboxylate (I). Data collection

Bruker APEXII CCD area detector diffractometer 2806 reflections with I > 2σ(I)
φ and ω scans Rint = 0.026
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) θmax = 29.1°, θmin = 1.1°
Tmin = 0.472, Tmax = 0.666 h = −10→10
22794 measured reflections k = −26→26
2909 independent reflections l = −9→9

1,3-Dimethyl 1-iodocyclohexa-3,5-diene-1,3-dicarboxylate (I). Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.015 w = 1/[σ2(Fo2) + (0.019P)2 + 0.3689P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.038 (Δ/σ)max = 0.002
S = 1.05 Δρmax = 0.47 e Å3
2909 reflections Δρmin = −0.44 e Å3
139 parameters Absolute structure: Flack x determined using 1255 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: −0.004 (8)

1,3-Dimethyl 1-iodocyclohexa-3,5-diene-1,3-dicarboxylate (I). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component twin.

1,3-Dimethyl 1-iodocyclohexa-3,5-diene-1,3-dicarboxylate (I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.81504 (2) 0.66115 (2) 0.83115 (6) 0.02386 (5)
O1 0.5202 (3) 0.54751 (11) 0.1864 (3) 0.0327 (5)
O2 0.3831 (3) 0.63417 (11) 0.0411 (3) 0.0260 (4)
O3 0.4971 (3) 0.87789 (10) 0.2029 (3) 0.0281 (5)
O4 0.6557 (3) 0.89701 (11) 0.4576 (3) 0.0282 (5)
C1 0.5514 (4) 0.66267 (12) 0.2993 (4) 0.0190 (8)
C2 0.5347 (3) 0.73272 (14) 0.2585 (4) 0.0198 (5)
H2 0.479369 0.746965 0.147720 0.024*
C3 0.5994 (3) 0.78152 (14) 0.3805 (3) 0.0194 (5)
C4 0.6796 (3) 0.76086 (15) 0.5445 (4) 0.0206 (5)
H4 0.723931 0.794439 0.627770 0.025*
C5 0.6940 (3) 0.69088 (15) 0.5850 (4) 0.0207 (5)
C6 0.6295 (4) 0.64128 (15) 0.4637 (4) 0.0209 (5)
H6 0.638485 0.593502 0.492478 0.025*
C7 0.4856 (4) 0.60819 (14) 0.1721 (4) 0.0223 (5)
C8 0.3221 (5) 0.58545 (18) −0.0951 (5) 0.0330 (7)
H8A 0.418544 0.571014 −0.173823 0.049*
H8B 0.232932 0.607288 −0.171341 0.049*
H8C 0.273509 0.544937 −0.032593 0.049*
C9 0.5768 (3) 0.85636 (11) 0.3323 (8) 0.0214 (4)
C10 0.6363 (5) 0.97101 (16) 0.4293 (5) 0.0338 (7)
H10A 0.688803 0.984036 0.311034 0.051*
H10B 0.693716 0.995947 0.529896 0.051*
H10C 0.513396 0.982919 0.427800 0.051*

1,3-Dimethyl 1-iodocyclohexa-3,5-diene-1,3-dicarboxylate (I). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.02804 (8) 0.02336 (8) 0.02019 (8) −0.00006 (6) −0.00121 (12) 0.00381 (11)
O1 0.0500 (14) 0.0174 (10) 0.0308 (12) 0.0032 (9) −0.0060 (10) −0.0006 (9)
O2 0.0300 (11) 0.0187 (10) 0.0293 (11) 0.0017 (8) −0.0066 (9) −0.0048 (8)
O3 0.0347 (12) 0.0194 (10) 0.0301 (11) 0.0027 (9) −0.0082 (9) 0.0019 (8)
O4 0.0382 (12) 0.0165 (9) 0.0299 (11) −0.0011 (8) −0.0073 (9) −0.0004 (9)
C1 0.0216 (11) 0.0183 (10) 0.017 (2) 0.0009 (9) 0.0020 (10) −0.0004 (9)
C2 0.0196 (12) 0.0190 (12) 0.0209 (11) 0.0022 (10) 0.0042 (10) 0.0019 (10)
C3 0.0191 (11) 0.0183 (11) 0.0208 (13) 0.0013 (9) 0.0025 (9) 0.0012 (8)
C4 0.0217 (13) 0.0191 (13) 0.0211 (12) −0.0014 (10) 0.0017 (10) −0.0012 (10)
C5 0.0224 (13) 0.0217 (13) 0.0181 (12) 0.0022 (10) 0.0023 (10) 0.0017 (10)
C6 0.0242 (13) 0.0183 (12) 0.0201 (12) 0.0016 (10) 0.0024 (11) 0.0013 (10)
C7 0.0256 (13) 0.0197 (12) 0.0217 (13) −0.0011 (10) 0.0035 (11) −0.0011 (10)
C8 0.0409 (19) 0.0257 (15) 0.0323 (15) 0.0005 (13) −0.0088 (13) −0.0075 (13)
C9 0.0218 (10) 0.0173 (9) 0.0250 (10) −0.0001 (8) 0.0096 (18) −0.002 (2)
C10 0.0453 (19) 0.0174 (14) 0.0387 (19) 0.0014 (13) −0.0064 (15) −0.0021 (12)

1,3-Dimethyl 1-iodocyclohexa-3,5-diene-1,3-dicarboxylate (I). Geometric parameters (Å, º)

I1—C5 2.093 (3) C3—C4 1.398 (4)
O1—C7 1.209 (3) C3—C9 1.499 (4)
O2—C7 1.335 (4) C4—C5 1.390 (4)
O2—C8 1.443 (4) C4—H4 0.9500
O3—C9 1.196 (5) C5—C6 1.393 (4)
O4—C9 1.347 (5) C6—H6 0.9500
O4—C10 1.454 (4) C8—H8A 0.9800
C1—C2 1.393 (3) C8—H8B 0.9800
C1—C6 1.398 (4) C8—H8C 0.9800
C1—C7 1.489 (4) C10—H10A 0.9800
C2—C3 1.386 (4) C10—H10B 0.9800
C2—H2 0.9500 C10—H10C 0.9800
C7—O2—C8 115.7 (2) C1—C6—H6 120.4
C9—O4—C10 115.7 (3) O1—C7—O2 124.0 (3)
C2—C1—C6 120.5 (3) O1—C7—C1 124.0 (3)
C2—C1—C7 121.8 (3) O2—C7—C1 112.1 (2)
C6—C1—C7 117.7 (2) O2—C8—H8A 109.5
C3—C2—C1 119.7 (3) O2—C8—H8B 109.5
C3—C2—H2 120.2 H8A—C8—H8B 109.5
C1—C2—H2 120.2 O2—C8—H8C 109.5
C2—C3—C4 120.4 (3) H8A—C8—H8C 109.5
C2—C3—C9 117.9 (3) H8B—C8—H8C 109.5
C4—C3—C9 121.7 (3) O3—C9—O4 123.9 (2)
C5—C4—C3 119.5 (3) O3—C9—C3 125.3 (3)
C5—C4—H4 120.2 O4—C9—C3 110.7 (3)
C3—C4—H4 120.2 O4—C10—H10A 109.5
C4—C5—C6 120.6 (3) O4—C10—H10B 109.5
C4—C5—I1 118.9 (2) H10A—C10—H10B 109.5
C6—C5—I1 120.5 (2) O4—C10—H10C 109.5
C5—C6—C1 119.2 (3) H10A—C10—H10C 109.5
C5—C6—H6 120.4 H10B—C10—H10C 109.5
C6—C1—C2—C3 1.3 (4) C8—O2—C7—O1 −4.1 (4)
C7—C1—C2—C3 −179.4 (2) C8—O2—C7—C1 176.3 (3)
C1—C2—C3—C4 −0.6 (4) C2—C1—C7—O1 168.0 (3)
C1—C2—C3—C9 −179.3 (3) C6—C1—C7—O1 −12.7 (4)
C2—C3—C4—C5 −0.1 (4) C2—C1—C7—O2 −12.5 (4)
C9—C3—C4—C5 178.5 (3) C6—C1—C7—O2 166.8 (3)
C3—C4—C5—C6 0.1 (4) C10—O4—C9—O3 1.1 (5)
C3—C4—C5—I1 179.86 (19) C10—O4—C9—C3 −177.5 (3)
C4—C5—C6—C1 0.7 (4) C2—C3—C9—O3 5.3 (5)
I1—C5—C6—C1 −179.1 (2) C4—C3—C9—O3 −173.3 (3)
C2—C1—C6—C5 −1.3 (4) C2—C3—C9—O4 −176.1 (3)
C7—C1—C6—C5 179.4 (2) C4—C3—C9—O4 5.3 (4)

1,3-Dimethyl 1-iodocyclohexa-3,5-diene-1,3-dicarboxylate (I). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C8—H8A···O1i 0.98 2.55 3.257 (4) 129

Symmetry code: (i) −x+1, −y+1, z−1/2.

1,3-Dimethyl 1-ethynylcyclohexa-3,5-diene-1,3-dicarboxylate (II). Crystal data

C12H10O4 Dx = 1.321 Mg m3
Mr = 218.20 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pnma Cell parameters from 2950 reflections
a = 10.1206 (5) Å θ = 2.4–23.1°
b = 6.6219 (4) Å µ = 0.10 mm1
c = 16.3658 (8) Å T = 223 K
V = 1096.80 (10) Å3 Column, colourless
Z = 4 0.54 × 0.12 × 0.10 mm
F(000) = 456

1,3-Dimethyl 1-ethynylcyclohexa-3,5-diene-1,3-dicarboxylate (II). Data collection

Bruker APEXII CCD area detector diffractometer 932 reflections with I > 2σ(I)
φ and ω scans Rint = 0.033
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) θmax = 27.0°, θmin = 2.5°
Tmin = 0.948, Tmax = 0.990 h = −12→12
12397 measured reflections k = −8→5
1292 independent reflections l = −20→19

1,3-Dimethyl 1-ethynylcyclohexa-3,5-diene-1,3-dicarboxylate (II). Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039 H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0486P)2 + 0.2932P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
1292 reflections Δρmax = 0.17 e Å3
87 parameters Δρmin = −0.18 e Å3

1,3-Dimethyl 1-ethynylcyclohexa-3,5-diene-1,3-dicarboxylate (II). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

1,3-Dimethyl 1-ethynylcyclohexa-3,5-diene-1,3-dicarboxylate (II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 1.25864 (13) 0.2500 0.40733 (10) 0.0552 (4)
O2 1.08848 (14) 0.2500 0.32081 (9) 0.0519 (4)
O3 1.15356 (16) 0.2500 0.70802 (10) 0.0759 (6)
O4 0.94247 (15) 0.2500 0.74402 (9) 0.0617 (5)
C1 0.98919 (18) 0.2500 0.60451 (11) 0.0339 (4)
C2 1.08100 (18) 0.2500 0.54143 (12) 0.0350 (4)
H2 1.1718 0.2500 0.5536 0.042*
C3 1.03958 (18) 0.2500 0.46063 (12) 0.0339 (4)
C4 0.90505 (19) 0.2500 0.44325 (12) 0.0361 (4)
H4 0.8767 0.2500 0.3886 0.043*
C5 0.81192 (17) 0.2500 0.50582 (12) 0.0348 (4)
C6 0.85496 (18) 0.2500 0.58682 (12) 0.0340 (4)
H6 0.7929 0.2500 0.6296 0.041*
C7 1.0392 (2) 0.2500 0.68995 (13) 0.0428 (5)
C8 0.9818 (3) 0.2500 0.82935 (14) 0.0791 (9)
H8A 1.0203 0.1202 0.8431 0.119* 0.5
H8B 0.9050 0.2740 0.8634 0.119* 0.5
H8C 1.0465 0.3558 0.8385 0.119* 0.5
C9 1.1418 0.2500 0.3949 0.039
C10 1.1813 0.2500 0.2530 0.067
H10A 1.1353 0.2149 0.2030 0.101* 0.5
H10B 1.2505 0.1519 0.2633 0.101* 0.5
H10C 1.2202 0.3832 0.2474 0.101* 0.5
C11 0.67260 (19) 0.2500 0.48649 (12) 0.0406 (5)
C12 0.5604 (2) 0.2500 0.47022 (14) 0.0532 (6)
H12 0.4700 0.2500 0.4571 0.064*

1,3-Dimethyl 1-ethynylcyclohexa-3,5-diene-1,3-dicarboxylate (II). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0293 (8) 0.0828 (11) 0.0536 (10) 0.000 0.0049 (7) 0.000
O2 0.0409 (9) 0.0783 (11) 0.0364 (8) 0.000 0.0066 (7) 0.000
O3 0.0329 (9) 0.1475 (18) 0.0473 (10) 0.000 −0.0079 (8) 0.000
O4 0.0362 (9) 0.1153 (14) 0.0336 (8) 0.000 −0.0026 (7) 0.000
C1 0.0294 (10) 0.0371 (10) 0.0352 (11) 0.000 −0.0006 (8) 0.000
C2 0.0257 (9) 0.0385 (10) 0.0408 (11) 0.000 −0.0029 (8) 0.000
C3 0.0295 (10) 0.0338 (9) 0.0385 (11) 0.000 0.0023 (8) 0.000
C4 0.0343 (11) 0.0404 (10) 0.0334 (10) 0.000 −0.0020 (9) 0.000
C5 0.0275 (9) 0.0379 (10) 0.0389 (11) 0.000 −0.0002 (8) 0.000
C6 0.0276 (9) 0.0398 (10) 0.0347 (11) 0.000 0.0011 (8) 0.000
C7 0.0299 (11) 0.0568 (12) 0.0416 (12) 0.000 −0.0013 (9) 0.000
C8 0.0550 (16) 0.151 (3) 0.0315 (13) 0.000 −0.0049 (12) 0.000
C9 0.034 0.043 0.039 0.000 0.003 0.000
C10 0.063 0.098 0.041 0.000 0.018 0.000
C11 0.0341 (11) 0.0558 (12) 0.0319 (10) 0.000 0.0003 (9) 0.000
C12 0.0340 (12) 0.0849 (17) 0.0409 (13) 0.000 −0.0041 (10) 0.000

1,3-Dimethyl 1-ethynylcyclohexa-3,5-diene-1,3-dicarboxylate (II). Geometric parameters (Å, º)

O1—C9 1.1998 (14) C4—C5 1.392 (3)
O2—C9 1.3272 (15) C4—H4 0.9400
O2—C10 1.4544 (14) C5—C6 1.395 (3)
O3—C7 1.195 (3) C5—C11 1.445 (3)
O4—C7 1.319 (3) C6—H6 0.9400
O4—C8 1.452 (3) C8—H8A 0.9700
C1—C2 1.389 (3) C8—H8B 0.9700
C1—C6 1.389 (3) C8—H8C 0.9700
C1—C7 1.487 (3) C10—H10A 0.9700
C2—C3 1.387 (3) C10—H10B 0.9700
C2—H2 0.9400 C10—H10C 0.9700
C3—C4 1.391 (3) C11—C12 1.166 (3)
C3—C9 1.4925 (18) C12—H12 0.9400
C9—O2—C10 115.75 (10) O3—C7—O4 123.6 (2)
C7—O4—C8 116.19 (18) O3—C7—C1 124.21 (19)
C2—C1—C6 119.96 (18) O4—C7—C1 112.23 (17)
C2—C1—C7 118.13 (17) O4—C8—H8A 109.5
C6—C1—C7 121.91 (17) O4—C8—H8B 109.5
C3—C2—C1 120.42 (17) H8A—C8—H8B 109.5
C3—C2—H2 119.8 O4—C8—H8C 109.5
C1—C2—H2 119.8 H8A—C8—H8C 109.5
C2—C3—C4 119.39 (18) H8B—C8—H8C 109.5
C2—C3—C9 118.53 (15) O1—C9—O2 123.76 (10)
C4—C3—C9 122.09 (16) O1—C9—C3 124.12 (11)
C3—C4—C5 120.83 (18) O2—C9—C3 112.12 (9)
C3—C4—H4 119.6 O2—C10—H10A 109.5
C5—C4—H4 119.6 O2—C10—H10B 109.5
C4—C5—C6 119.18 (17) H10A—C10—H10B 109.5
C4—C5—C11 119.98 (18) O2—C10—H10C 109.5
C6—C5—C11 120.84 (17) H10A—C10—H10C 109.5
C1—C6—C5 120.21 (17) H10B—C10—H10C 109.5
C1—C6—H6 119.9 C12—C11—C5 179.5 (2)
C5—C6—H6 119.9 C11—C12—H12 180.0
C6—C1—C2—C3 0.000 (1) C8—O4—C7—O3 0.000 (1)
C7—C1—C2—C3 180.000 (1) C8—O4—C7—C1 180.000 (1)
C1—C2—C3—C4 0.000 (1) C2—C1—C7—O3 0.000 (1)
C1—C2—C3—C9 180.000 (1) C6—C1—C7—O3 180.000 (1)
C2—C3—C4—C5 0.000 (1) C2—C1—C7—O4 180.000 (1)
C9—C3—C4—C5 180.000 (1) C6—C1—C7—O4 0.000 (1)
C3—C4—C5—C6 0.000 (1) C10—O2—C9—O1 0.000 (1)
C3—C4—C5—C11 180.000 (1) C10—O2—C9—C3 180.000 (1)
C2—C1—C6—C5 0.000 (1) C2—C3—C9—O1 0.000 (1)
C7—C1—C6—C5 180.000 (1) C4—C3—C9—O1 180.000 (1)
C4—C5—C6—C1 0.000 (1) C2—C3—C9—O2 180.000 (1)
C11—C5—C6—C1 180.000 (1) C4—C3—C9—O2 0.000 (1)

1,3-Dimethyl 1-ethynylcyclohexa-3,5-diene-1,3-dicarboxylate (II). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C12—H12···O1i 0.94 2.29 3.223 (1) 172

Symmetry code: (i) x−1, y, z.

Funding Statement

This work was funded by Deutsche Forschungsgemeinschaft grant DFG Priority Program 1362.

References

  1. Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Desiraju, G. R., Ho, P. S., Kloo, L., Legon, A. C., Marquardt, R., Metrangolo, P., Politzer, P., Resnati, G. & Rissanen, K. (2013). Pure Appl. Chem. 85, 1711–1713.
  3. Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press.
  4. Desiraju, G. R., Vittal, J. J. & Ramanan, A. (2011). Crystal Engineering. Singapore: World Scientific Publications.
  5. Doucet, H. & Hierso, J. C. (2007). Angew. Chem. Int. Ed. 46, 834–871. [DOI] [PubMed]
  6. Eddaoudi, M., Sava, D. F., Eubank, J. F., Adil, K. & Guillerm, V. (2015). Chem. Soc. Rev. 44, 228–249. [DOI] [PubMed]
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. (2013). Science, 341, 1230444. [DOI] [PubMed]
  9. Gallagher, C. F. & Mocilac, P. (2012). CSD Communication (Refcode GOHRUS). CCDC, Cambridge, England.
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. Hauptvogel, I. M., Seichter, W. & Weber, E. (2011). Supramol. Chem. 23, 398–406.
  12. Hausdorf, S., Seichter, W., Weber, E. & Mertens, F. O. R. L. (2009). Dalton Trans. pp. 1107–1113. [DOI] [PubMed]
  13. Havens, S. J. & Hergenrother, P. M. (1985). J. Org. Chem. 50, 1863–1865.
  14. Lin, X., Jia, J., Zhao, X., Thomas, K. M., Blake, A. J., Walker, G. S., Champness, N. R., Hubberstey, P. & Schröder, M. (2006). Angew. Chem. Int. Ed. 45, 7358–7364. [DOI] [PubMed]
  15. MacGillivray, L. R. (2010). Metal-Organic Frameworks. Hoboken: Wiley.
  16. Mazik, M. & König, A. (2006). J. Org. Chem. 71, 7854–7857. [DOI] [PubMed]
  17. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  18. Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311. [DOI] [PubMed]
  19. Rafael, C. & Carmen, N. (2007). Chem. Rev. B107, 874–922.
  20. Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.
  21. Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  22. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  23. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  24. Tiekink, E. R. T. & Zukerman-Schpector, J. (2012). In The Importance of Pi-Interactions in Crystal Engineering. Frontiers in Crystal Engineering. Chichester: Wiley.
  25. Zheng, B., Liang, Z., Li, G., Huo, Q. & Liu, Y. (2010). Cryst. Growth Des. 10, 3405–3409.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S205698901800912X/zl2732sup1.cif

e-74-01093-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901800912X/zl2732Isup4.hkl

e-74-01093-Isup4.hkl (232.6KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S205698901800912X/zl2732IIsup5.hkl

e-74-01093-IIsup5.hkl (105KB, hkl)

Supporting information file. DOI: 10.1107/S205698901800912X/zl2732Isup4.cml

Supporting information file. DOI: 10.1107/S205698901800912X/zl2732IIsup5.cml

CCDC references: 780476, 780475

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES