Skip to main content
Current Neuropharmacology logoLink to Current Neuropharmacology
. 2018 Jul;16(6):769–785. doi: 10.2174/1570159X15666171016163951

Blood Brain Barrier and Alzheimer’s Disease: Similarity and Dissimilarity of Molecular Alerts

Alla P Toropova 1,*, Andrey A Toropov 1, Sanija Begum 2, Patnala GR Achary 2
PMCID: PMC6080101  PMID: 29046157

Abstract

Background

Blood brain barrier and Alzheimer’s disease are interrelated. This interrelation is detected by physicochemical methods, pharmacological and electrophysiological analyses. Nature of the phenomenon is extremely complex. The description of this interrelation in mathematical terms is a very important task.

Objective

The systematization of facts, which are described in the literature and related to interaction between processes, which influence Alzheimer's disease and blood brain barrier is the subject of this work. In addition, establishing of correlations between molecular features and endpoints, which are related to the treatment of Alzheimer's disease and blood brain barrier using the CORAL software are subjects of this work.

Methods

The information on logically structured analysis is available in the literature and building up quantitative structure – activity relationships (QSARs) by the Monte Carlo method has been used to solve the task of systematization of facts related to the “treatment of Alzheimer's disease vs. blood brain barrier”.

Results

Comparison of agreements and disagreements of the available published papers together with the statistical quality of built up QSARs are results of this work.

Conclusion

The facts from published papers and technical details of QSAR built up in this study give possibility to formulate the following rules: (i) there are molecular alerts, which are promoters to increase blood brain barrier and therapeutic activity of anti-Alzheimer disease agents; (ii) there are molecular alerts, which contradict each other.

Keywords: Alzheimer's disease, blood brain barrier, QSAR, monte carlo method, molecular alerts, CORAL software

1. INTRODUCTION

Alzheimer’s disease is a disorder of the central nervous system accompanied by memory deterioration, and progressive impairment of daily life activities. Aging of an organism is a biochemical process. Therefore, the injection of chemicals can influence this process. The blood-brain barrier is a major factor hindering the development of neurotherapeutics. Experimental methods of Blood Brain Barrier permeation determination as well as experimental definition of many other biomedical endpoints are cumbersome and expensive. Under such circumstances, computational approaches for the prediction of biomedical endpoints, in general, and computational methods for prediction of Blood Brain Barrier permeation, in particular are attractive alternatives of the direct experiment. Currently, there is no cure for Alzheimer's disease [1].

Being the most common form of dementia, Alzheimer’s disease is currently affecting over 5.5 million people in the United States and more than 35 million worldwide [2, 3]. The hallmark of the disease is progressive cognitive decline that results in loss of language skills, difficulty in learning, loss of memory, and alterations in personality and mood [4-6].

There are some circumstances, which indicate the possible interrelation between processes related to Alzheimer’s disease and Blood Brain Barrier [7-9]. It has been noticed that breakdown of the Blood Brain Barrier is a particularly important development in Alzheimer’s disease progression [10-12].

According to the listed circumstances, the attractive paradigm to search agents versus Alzheimer’s disease can be represented by scheme illustrated in Fig. (1). It is important to note that there are logical implications and interrelation between all the mentioned components of the paradigm.

Fig. (1).

Fig. (1)

Possible scheme to design agents versus Alzheimer’s disease.

2. ONTOLOGY

The information about the interaction between the elements of phenomena represented in Fig. (1) is very complex and unclear owing to dynamical and combinatorial aspects. The methods to represent this information in a format, which is convenient for understanding, should be regarded as methods of critical importance. One of the possible ways to construct a method of the above mentioned quality is the analysis of molecular alerts (features) able to influence the blood brain barrier and likely able to suggest the perspective list of molecular features valuable from the point of view of drug discovery oriented to define a group of agents versus Alzheimer’s disease.

2.1. Task Definition: Interrelation Between Blood Brain Barrier and Alzheimer’s Disease

Much of the underlying biology leading to Alzheimer’s disease is unknown. Popular etiologic hypotheses have largely ignored the blood brain barrier as an important factor contributing to the pathologic hallmarks of this most common form of dementia. However, evidence identifying blood brain barrier dysfunction in Alzheimer’s disease continues to escalate [13].

Normal ageing and Alzheimer's disease have many common features. In many ways, both conditions only differ by quantitative criteria. A variety of genetic, medical and environmental factors modulate the ageing-related processes leading to Alzheimer’s disease. Thus, Alzheimer's disease is a metabolic disease [14]. The pathophysiological influence of microelements, including aluminum and iron, is highly controversial; at any rate, they may adversely affect of Alzheimer's disease progress [14].

The application of gene transfer (i.e. macromolecular sequences of amino acids) can also be used to augment existing or provide new functions to cells in the hope that this will be of therapeutic benefit [15].

The Blood Brain Barrier is a dynamic and complex interface between the blood and the central nervous system regulating brain homeostasis. Major functions of the Blood Brain Barrier include the transport of nutrients and protection of the brain from toxic compounds. The nutrition of the brain involves small molecules like sugars, amino acids, vitamins, and trace elements. Large biomolecules, lipoproteins, peptide and protein hormones cross the Blood Brain Barrier by receptor-mediated transport [16]. Dysfunction in the transport of nutrients at the Blood Brain Barrier is described in several neurological disorders and diseases. The Blood Brain Barrier penetration of neuroprotective nutrients, especially the potential protective effect of polyphenols and alkaloids, on brain endothelium is well-known [16, 17].

Thus, the search for molecular features (fragments, 3D-isomerism, intramolecular and intermolecular quantum mechanical conditions) with apparent influence to blood brain barrier and destructed fragments of neurons can be a perspective for drug discovery.

2.2. Molecular Features which Influence to Blood Brain Barrier

Mechanistic interpretation for QSAR related to blood brain barrier usually based on physicochemical conditions such as octanol/water partition coefficient, isolated atomic energy [18], H-bond donor surface area, H-acceptor surface area [19], Rotatable bonds count, Hydrogen bond acceptor count [20]. There is influence of the presence of heavy atoms on the blood brain barrier and central nervous system [17]. The binding energy predictions were highly correlated with r2=0.88, F=692.4, standard error of estimate =0.775, for selected blood brain barrier active/inactive compounds (n=93) [17].

Inhibition of efflux pumps present at the blood brain barrier by nutraceuticals and plant compounds can be carried out with a number of organic compounds such as Apigenin, Berbamine, Catechin, Chrysin, Rutin, etc. [16]. The rings are common attributes of these biologically active compounds [16]. Thus the six-membered rings are of molecular feature with influence on the blood brain barrier and central nervous system [16]. Presence of nitrogen in rings and size of linear molecular fragment connecting a couple of rings is also a molecular alert related to blood brain barrier [21].

2.3. Molecular Features which Influence the Alzheimer's Disease

Mechanistic interpretation for QSAR related to Alzheimer’s disease is usually based on physicochemical and biochemical conditions, such as molecular weight, total polar surface area hydrophilicity, absorption rate constants, etc., without molecular alerts [22]. However, modifiers of pharmacokinetics effects include molecular images such as 2-propan-water, acetone-water and the number of carbon atoms [22]. Chlorine and oxygen connected to six-membered rings, triple covalent bonds, as well as 3D-conformations can also be examined as structural alerts related to endpoints interrelated to Alzheimer’s disease [23]. Finally, groups of five-membered and six-membered rings involve oxygen and nitrogen respectively, aspotential agents for treating Alzheimer’s disease [24].

3. QSAR MODELS

3.1. Data

The binding affinity data (IC50 nM converted into negative decimal logarithm pIC50= -log10IC50) of 233 gamma-secretase inhibitors (potential agents for treatment Alzheimer’s disease) are studied in the literature [25, 26]. The database for Blood brain barrier permeation (logBB) values for 291 substances is available from the literature [27].

3.2. Optimal Descriptor

A model for biological activity is building up as one-variable correlation

Activity=C0+C1×DCWT,N (1)

The C0 and C1 are regression coefficients (intercept and slope) calculated with the Least squares method. “T” is threshold to define rare features extracted from SMILES. For instance, if T=3, all features which have prevalence less than 3 in the training set are considered as rare. The rare features are not used to build up a model (their correlation weights are zero). N is the number of epochs of the Monte Carlo optimization for correlation weights of molecular features involved in the modelling process. The T* and N* are values of the T and N which give the best statistical characteristics for model calculated with Eq. 1 for the calibration set.

The optimal descriptor of correlation weights (DCW) of different molecular features extracted from simplified molecular input-line entry system (SMILES) [28] and from molecular graph:

DCWT,N=DCWgraphT,N+DCWSMILEST,N (2)

where

DCWSMILEST,N=CWHARD+CWSk+CWSSk (3)
DCWgraph T,N=CWC3+CW(C4)+CW(C5)+CW(C6)+CW(C7) (4)

Twelve symbols for registration of molecular features extracted from SMILES are reserved in the program for possible modifications in the future.

Example of the molecular features extracted from SMILES and represented by twelve symbols is shown in Table 1. The C3 – C7 are situations in a molecular system related to the presence (absence) of three-membered, four-membered, five-membered, six-membered and seven-membered rings. Table 2 represents general scheme of the representation of different situations related to rings by twelve symbols.

Table 1.

Examples of representation of SMILES attributes by means of twelve symbols [SMILES = “NC(SCCF)=N” ].

ID Comment 1 2 3 4 5 6 7 8 9 10 11 12
1 Representation of Sk N . . . . . . . . . . .
C . . . . . . . . . . .
(* . . . . . . . . . . .
S . . . . . . . . . . .
C . . . . . . . . . . .
C . . . . . . . . . . .
F . . . . . . . . . . .
( . . . . . . . . . . .
= . . . . . . . . . . .
N . . . . . . . . . . .
2 Representation of SSk N . . . C . . . . . . .
C . . . ( . . . . . . .
S . . . ( . . . . . . .
S . . . C . . . . . . .
C . . . C . . . . . . .
F . . . C . . . . . . .
F . . . ( . . . . . . .
= . . . ( . . . . . . .
N . . . = . . . . . . .
= # @ N O S P F Cl Br I
3 Definition of HARD attribute $ 1 0 0 1 0 1 0 1 0 0 0

*)Brackets are the representation of molecular branching and used only “without”.

Table 2.

Definition of SMILES attributes related to the presence of rings.

1 2 3 4 5 6 7 8 9 10 11 12
Ring status C x . . . a h . y . . .

The CW(x) is the correlation weights for a molecular feature x. The correlation weights are calculated with the Monte Carlo method optimization. The CORAL software is available for the calculations [29]. The optimal correlation weights give maximal correlation coefficient value between experimental and predicted activity for the training set. The predictive potential of the model should be checked up with external validation set [29]. The detailed description of the CORAL software is available on the Internet (http://www.insilico.eu/coral).

3.4. Predictive Models Built up with the CORAL Software

Three different splits into the training and validation set were studied for the binding affinity data on gamma-secretase inhibitors (pIC50), and were also studied for Blood brain barrier permeation (logBB). It is to be noted that the training set for the CORAL models is structured into training, invisible and calibration sets [30, 31].

Computational experiments have shown that efficacy of the “training” can be improved by means of special set which permanently checks the absence of overtraining. This set can be named as “passive training set” or “invisible training set”.

In other words, there are two ways to use a “total” training set to build up correlation “descriptor - endpoint”:

Traditional scheme: all compounds of the total training set are taken into the Monte Carlo optimization process. Result will be the maximal correlation coefficient between optimal descriptor and endpoint for all total training set.

Balance of correlations: The first half of the total training set is involved in the Monte Carlo optimization process. However, second half is not involved in the process. In this case, the result will be maximal correlation coefficient between the optimal descriptor and endpoint for the first half of compounds, whereas second half of compounds will give hint whether the correlation is objective or this correlation is preferable solely for the first active half of compounds.

Thus, the balance of correlation is building up a QSAR model with the following participants:

  1. The training set is “builder of the model”;

  2. The invisible training set is the “inspector of the model”; the inspector must detect and stop the process of the overtraining;

  3. The calibration set is an expert; the expert must declare, “Model is ready”;

  4. The validation set is the appraiser of real predictive potential of the model.

The advantage to this approach is the possibility of building up a model solely from 2D data on the molecular structure represented by SMILES with the interpretation of influence of different molecular features extracted from SMILES. However, there are some disadvantages of the approach. In particular, the Monte Carlo optimization is not a fast calculation especially for large datasets. In addition, some of the SMILES fragments do not have transparent physical meaning (e.g. symbols “[“, “@”, dots, etc.).

The x is the size of rings i.e. x=3, 4, 5, 6, 7; If there are aromatic rings then a=’A’, otherwise a=’.’; If there are heteroatoms in rings then h=’H’, otherwise h=‘.’; The y is the number of rings i.e. y=0, 1, 2, …

The models, which were built up with the balance of correlations, are as follows:

Binding Affinity of Gamma-secretase Inhibitors (Potential Agents for Treatment Alzheimer’s Disease)

Split 1

pIC50 = 1.2942501 (± 0.0382248) + 0.1606057 (± 0.0009709) * DCW(1,15) (5)

n=62, r2=0.8258, RMSE=0.623, F=284 (training set)

n=71, r2=0.6856, RMSE=0.727 (invisible training set)

n=51, r2=0.6810, RMSE=0.751 (calibration set)

n=49, r2=0.7752, RMSE=0.733 (validation set)

Split 2

pIC50 = 3.2737064 (± 0.0326601) + 0.1974723 (± 0.0013567) * DCW(1,15) (6)

n=66, r2=0.7711, RMSE=0.694, F=216 (training set)

n=67, r2=0.7702, RMSE=0.703 (invisible training set)

n=50, r2=0.7258, RMSE=0.718 (calibration set)

n=50, r2=0.7676, RMSE=0.645 (validation set)

Split 3

pIC50 = 2.1408654 (± 0.0416128) + 0.1757965 (± 0.0012683) * DCW(1,15) (7)

n=61, r2=0.7725, RMSE=0.665, F=200 (training set)

n=63, r2=0.7724, RMSE=0.756 (invisible training set)

n=55, r2=0.7610, RMSE=1.11 (calibration set)

n=54, r2=0.7753, RMSE=0.882 (validation set)

Blood Brain Barrier Permeation (logBB)

Split 1

Log(BB) = -0.8609358 (± 0.0066439) + 0.0537248 (± 0.0003448) * DCW(1,15) (8)

n=101, r2=0.7438, RMSE=0.286, F=287 (training set)

n=104, r2=0.7540, RMSE=0.331 (invisible training set)

n=43, r2=0.9141, RMSE=0.198 (calibration set)

n=43, r2=0.8592, RMSE=0.240 (validation set)

Split 2

Log(BB) = -0.9164493 (± 0.0072757) + 0.0385240 (± 0.0002497) * DCW(1,10) (9)

n=103, r2=0.6830, RMSE=0.350, F=218 (training set)

n=107, r2=0.6828, RMSE=0.330 (invisible training set)

n=41, r2=0.8350, RMSE=0.229 (calibration set)

n=40, r2=0.8310, RMSE=0.319 (validation set)

Split 3

Log(BB) = -0.5038388 (± 0.0053701) + 0.0231569 (± 0.0001622) * DCW(1,10) (10)

n=104, r2=0.6388, RMSE=0.359, F=180 (training set)

n=105, r2=0.6477, RMSE=0.389 (invisible training set)

n=41, r2=0.8344, RMSE=0.275 (calibration set)

n=41, r2=0.7273, RMSE=0.274 (validation set)

3.5. Molecular Features which Influence the pIC50 and logBB Extracted from Coral-models

Table 3 contains correlation weights of different molecular features obtained in three runs of the Monte Carlo method

Table 3.

Lists of stable promoter of increase (all correlation weights are positive) or decrease (all correlation weights are negative) for pIC50 and logBB.

No. Feature, F CW(F) Run 1 CW(F) Run 2 CW(F) Run 3 Training Set Invisible Training Set Calibration Set
pIC50, split 1
1 1........... 0.24936 0.81527 1.00426 62 71 51
2 O...(....... 1.81598 2.00425 2.94093 62 71 51
3 O...=....... 0.62907 0.75437 1.18718 62 71 51
4 C3......0... 1.74618 3.12552 2.49983 60 71 51
5 C4......0... 3.12573 4.43867 1.99580 60 71 51
6 C...(....... 0.68970 0.62551 0.25068 59 62 43
7 C...1....... 1.37112 1.12572 1.43837 59 61 43
8 c...(....... 1.25445 1.43762 1.37518 57 63 46
9 c...1....... 0.37510 0.68855 0.24748 55 65 47
10 N...(....... 0.43569 0.12723 0.12950 50 54 38
11 1...(....... 0.62013 0.37156 0.50154 41 46 28
12 N...C....... 0.74564 0.93512 0.62564 41 43 29
13 S........... 1.87883 1.44122 2.56649 40 43 33
14 [...C....... 2.87716 1.68980 1.75250 38 34 25
15 F........... 0.68765 0.74914 0.37233 37 38 28
16 C5......0... 4.87431 4.87313 3.87512 36 40 31
1 (........... -0.50046 -0.62885 -0.05899 62 71 51
2 =...(....... -0.37242 -0.24593 -0.56678 62 69 51
3 =........... -2.24798 -1.12583 -2.05997 62 71 51
4 C........... -0.56673 -0.56218 -0.50032 62 71 51
5 c........... -0.06497 -0.18722 -0.31242 62 71 51
6 c...c....... -0.56687 -0.49790 -0.81516 62 71 51
7 N........... -0.68973 -1.12750 -0.68769 54 62 41
8 (...(....... -0.74772 -1.12089 -1.81062 39 44 34
9 [...H....... -1.56676 -1.25190 -0.31208 38 34 25
10 Cl..(....... -0.24951 -0.56565 -0.62721 35 27 26
11 C...=....... -2.37058 -2.74693 -3.44246 26 30 14
12 H...@@...... -1.06063 -0.37158 -1.43490 21 21 13
13 [...@....... -2.31200 -2.81686 -1.50485 19 11 9
14 =...1....... -1.31479 -1.74616 -1.00456 9 15 10
15 [...N....... -0.43407 -2.19238 -1.93745 9 12 6
16 C6...AH.4... -3.74966 -2.99712 -2.99987 8 6 5
No. Feature, F CW(F) Run 1 CW(F) Run 2 CW(F) Run 3 Training Set Invisible Training Set Calibration Set
pIC50, split 2
1 1........... 0.37791 0.75136 0.50087 66 67 50
2 O........... 1.93510 2.31473 1.06252 66 67 50
3 C...(....... 0.06720 0.43483 0.62375 61 61 45
4 C...1....... 1.56744 1.62065 1.75150 61 58 43
5 c...(....... 1.56080 1.18804 1.75301 60 60 46
6 N...(....... 0.50498 0.62805 0.43364 54 49 36
7 C...C....... 0.37205 0.62336 0.37277 51 58 42
8 2........... 0.43523 0.56398 0.12820 45 51 32
9 C5......0... 6.00472 5.99545 6.25140 43 36 34
10 N...C....... 1.37968 1.68793 1.87623 39 41 27
11 [...C....... 0.12456 0.49768 1.80975 37 38 23
12 [...H....... 1.62581 0.69162 1.00379 37 38 23
13 c...2....... 0.99918 0.56194 1.12751 35 36 24
14 F........... 0.49877 0.44089 1.30846 34 37 28
15 F...(....... 0.62920 0.69236 0.37820 33 35 27
16 S........... 3.12476 2.87269 3.37296 33 43 31
1 (........... -0.55900 -0.55795 -1.06147 66 67 50
2 =........... -0.31255 -1.99752 -1.87560 66 67 50
3 C........... -0.24649 -0.62194 -0.37101 66 67 50
4 C3......0... -4.12984 -4.74520 -3.49783 66 66 49
5 c........... -0.43299 -0.12822 -0.37044 66 67 50
6 c...c....... -0.56748 -0.50425 -0.99606 66 67 50
7 N........... -1.25121 -1.12588 -1.00118 57 60 39
8 H........... -1.37596 -0.25167 -1.18672 37 38 23
9 c...C....... -0.37586 -0.37213 -0.49682 37 38 25
10 [...(....... -1.37164 -1.62892 -0.87345 35 35 22
11 (...(....... -1.00341 -1.05836 -0.99682 32 44 32
12 C...=....... -1.87617 -0.49606 -0.87942 26 28 23
13 C...@@...... -1.93993 -0.24818 -0.05935 23 21 15
14 [...1....... -0.25399 -0.87790 -0.06226 22 25 17
15 $10011100100 -1.24578 -1.56069 -1.81534 13 10 7
16 C7...A..1... -0.24768 -1.18849 -0.62114 11 21 10
pIC50, split 3
1 1........... 0.80782 0.12046 1.00472 61 63 55
2 =...(....... 0.80859 0.43861 1.24558 61 63 53
3 O...(....... 2.81151 2.62129 2.31681 61 63 55
No. Feature, F CW(F) Run 1 CW(F) Run 2 CW(F) Run 3 Training Set Invisible Training Set Calibration Set
pIC50, split 3
4 O...=....... 0.93514 1.43913 0.68355 61 63 55
5 c........... 0.06327 0.00247 0.12191 61 63 55
6 C...1....... 0.81487 1.06109 1.12812 58 60 46
7 c...(....... 0.68932 0.75280 0.93721 57 59 47
8 c...1....... 0.06090 0.30887 0.37182 53 58 51
9 N...(....... 0.37516 0.87510 1.68538 50 48 43
10 2........... 0.94011 1.18721 1.05999 48 43 36
11 [...C....... 1.18350 0.74643 1.12063 39 35 26
12 N...C....... 1.25462 1.31352 1.62911 37 42 33
13 S........... 1.24827 2.00081 0.93984 36 39 36
14 C5......0... 3.43701 5.50479 6.44186 35 37 34
15 F...(....... 1.12015 0.55846 1.12187 35 33 27
16 S...(....... 1.99622 1.55892 1.68773 33 37 34
1 (........... -0.37339 -0.06365 -0.62191 61 63 55
2 =........... -1.62730 -2.31258 -2.12289 61 63 55
3 C........... -0.37397 -0.69070 -0.56000 61 63 55
4 c...c....... -0.62350 -0.50475 -1.12573 61 63 55
5 N........... -1.12086 -1.31212 -2.06263 54 53 48
6 C...C....... -0.24581 -0.06071 -0.37304 48 47 46
7 [...H....... -0.44110 -0.30958 -1.24568 39 35 26
8 @@.......... -0.87191 -0.19206 -0.62280 30 20 14
9 C...=....... -1.75324 -1.80866 -1.87391 28 25 22
10 [...1....... -0.12014 -0.56717 -0.31449 24 22 18
11 [...@....... -2.05908 -1.00253 -0.12596 16 10 13
12 C7...A..1... -1.06160 -1.43859 -0.62483 15 16 14
13 $10011100100 -0.62031 -0.25133 -2.50400 9 12 7
14 [...2....... -1.31346 -1.43451 -0.75249 9 8 7
15 C6...AH.4... -0.94103 -2.06365 -1.55992 8 7 7
16 S...C....... -1.12210 -1.62776 -1.19212 8 1 1
LogBB, split 1
1 C........... 0.69000 0.44177 0.44099 101 102 42
2 C4......0... 1.44233 1.93619 0.87009 100 104 43
3 C3......0... 9.24711 8.24931 6.37970 99 102 43
4 C...C....... 0.18958 0.24932 0.31713 90 88 41
5 C...(....... 1.06715 0.74746 1.24582 87 91 35
6 C...1....... 0.50407 0.68784 0.99825 80 76 26
No. Feature, F CW(F) Run 1 CW(F) Run 2 CW(F) Run 3 Training Set Invisible Training Set Calibration Set
LogBB, split 1
7 C...=....... 1.06451 1.00467 0.93251 80 80 24
8 C5......0... 5.18616 4.87599 3.06013 66 70 32
9 N...C....... 1.06163 1.25062 1.05830 61 59 20
10 N...(....... 1.87440 1.80861 1.50002 50 50 16
11 O...=....... 3.74850 3.12144 3.50390 45 49 17
12 O...C....... 1.87390 1.62698 1.50087 42 35 10
13 =...2....... 1.31662 2.37411 1.93516 41 37 12
14 C...3....... 1.56423 0.24589 0.69105 36 43 10
15 $10011000000 3.49649 2.87644 4.06526 32 23 7
16 C5....H.1... 0.93855 0.49718 0.24570 29 28 11
1 =........... -1.94237 -2.00425 -1.12592 89 86 30
2 (........... -1.94146 -1.44173 -1.93644 88 91 35
3 N........... -1.69081 -1.80786 -1.68985 74 69 22
4 O........... -3.93612 -3.12302 -3.87867 66 69 27
5 =...(....... -0.87699 -0.37408 -0.56436 62 58 23
6 C...2....... -1.87318 -2.18807 -1.87392 60 59 16
7 O...(....... -1.74592 -1.74659 -1.50041 43 49 19
8 2...(....... -2.06074 -0.87009 -1.37681 36 35 10
9 N...=....... -1.62360 -1.50313 -2.12455 30 35 11
10 =...3....... -0.68502 -0.93424 -1.18858 26 29 8
11 N...2....... -2.81032 -1.19035 -2.12915 24 19 6
12 [........... -0.81319 -1.12785 -1.31036 10 8 3
13 =...4....... -1.31236 -0.81692 -0.68350 9 19 5
14 N...H....... -1.12172 -0.87838 -1.62984 7 6 3
15 [...C....... -2.87947 -2.75490 -2.06543 7 5 3
16 Br.......... -0.49505 -0.49665 -1.94093 6 2 2
LogBB, split 2
1 C3......0... 10.87070 9.99674 11.00131 103 103 41
2 C........... 0.12071 0.12533 0.37494 101 106 41
3 C...C....... 0.93320 0.87535 0.50239 89 96 37
4 C...(....... 1.19210 1.25322 0.62690 83 93 36
5 C...=....... 0.37918 1.37448 0.44201 80 86 24
6 1........... 1.49679 0.12476 1.06684 74 88 26
7 C...1....... 1.18368 1.49925 1.56002 74 88 26
8 C5......0... 4.25337 4.68880 4.12680 68 66 36
9 N...C....... 1.74585 1.50379 1.31711 61 68 19
No. Feature, F CW(F) Run 1 CW(F) Run 2 CW(F) Run 3 Training Set Invisible Training Set Calibration Set
LogBB, split 2
10 2........... 1.37069 0.93599 0.87107 56 71 15
11 =...1....... 1.00094 1.00452 1.18761 48 61 19
12 N...(....... 2.00333 2.24552 1.81625 47 50 18
13 O...=....... 3.62311 3.49517 3.37670 42 52 19
14 =...2....... 1.18866 0.62164 0.18527 40 45 11
15 C...3....... 1.31047 0.87676 1.31327 38 47 9
16 O...C....... 2.12437 2.25455 1.81321 36 40 12
1 C4......0... -0.49732 -0.50309 -0.50008 103 106 41
2 C7......0... -3.50133 -3.24763 -2.87060 90 88 34
3 =........... -1.12942 -2.24834 -1.31595 85 96 28
4 (........... -1.62048 -1.81308 -1.18864 84 94 36
5 N........... -2.49537 -2.68449 -2.25354 70 78 23
6 O........... -3.62711 -4.25421 -3.56712 64 75 28
7 =...(....... -2.18783 -0.74894 -1.93659 56 71 23
8 C...2....... -2.49624 -2.30834 -1.81363 56 70 15
9 O...(....... -2.12646 -1.87628 -2.00250 41 54 18
10 N...=....... -1.12893 -0.99861 -0.99789 37 34 5
11 2...(....... -1.75032 -0.75119 -0.49969 35 43 8
12 =...3....... -1.00262 -0.62848 -0.25161 27 32 7
13 N...2....... -2.00309 -0.24532 -0.87223 22 29 5
14 S........... -0.80988 -2.37982 -1.12535 16 17 3
15 =...4....... -2.24740 -0.99940 -1.12895 12 17 3
16 [...C....... -3.81523 -3.37811 -2.81052 8 6 2
LogBB, split 3
1 C........... 0.00132 0.19167 0.25322 103 104 40
2 C3......0... 9.74655 10.49769 9.50124 102 104 40
3 C...C....... 1.00004 1.25242 1.00283 92 97 33
4 C...(....... 0.50101 1.37191 1.00401 90 89 35
5 C...1....... 1.31706 1.00284 1.49553 77 83 27
6 C...=....... 0.55849 1.49910 0.06478 76 87 25
7 C5......0... 6.00291 4.74699 5.25173 71 66 32
8 N...C....... 1.24857 0.87346 1.62565 61 63 21
9 N...(....... 0.75396 1.37567 1.68298 58 43 17
10 O...=....... 1.50315 2.50127 1.49589 49 45 18
11 =...2....... 3.25269 1.68316 2.25396 38 45 12
12 3........... 1.62996 0.75194 0.74545 36 45 10
No. Feature, F CW(F) Run 1 CW(F) Run 2 CW(F) Run 3 Training Set Invisible Training Set Calibration Set
LogBB, split 3
13 C...3....... 0.00153 0.25042 0.74564 36 45 10
14 1...(....... 1.87609 2.19099 3.00002 34 27 14
15 C6......0... 2.50113 4.75479 4.37791 33 27 16
16 O...C....... 0.62800 0.49543 0.74706 31 37 14
1 (........... -0.50197 -1.74939 -1.25398 92 89 35
2 C7......0... -3.00432 -2.24765 -2.50016 92 86 35
3 =........... -1.74993 -2.19227 -0.93260 84 93 30
4 N........... -1.50133 -2.62558 -3.30976 69 75 24
5 =...(....... -0.37305 -0.00161 -0.68413 66 63 18
6 O........... -3.49561 -3.49608 -3.05869 66 69 28
7 C...2....... -1.25479 -1.19206 -1.56163 55 66 17
8 O...(....... -1.62599 -1.87859 -2.25388 46 48 15
9 2...(....... -1.25291 -1.75055 -2.00114 37 36 11
10 N...=....... -3.00207 -2.49735 -2.24940 31 34 10
11 C5....H.1... -0.31727 -0.62372 -0.06462 29 29 6
12 =...3....... -1.25013 -2.25139 -0.31558 27 29 6
13 (...(....... -1.49562 -1.56378 -2.00367 23 16 7
14 N...2....... -2.18457 -2.87062 -2.50423 23 24 8
15 [........... -0.44089 -0.31661 -0.31291 8 11 3
16 [...H....... -0.75060 -0.74589 -0.12414 8 6 2

optimization procedure. These features are extracted according to the principles: (i) these have significant prevalence in training, invisible training and calibration sets; and (ii) these features have stable positive or stable negative correlation weights in all runs.

3.5. Molecular Features, which have Similar Effects for pIC50 and logBB

Table 4 contains lists of molecular features which are promoters of increase for both pIC50 and logBB together with features which are promoters of decrease for both pIC50 and logBB. In the first approximation, oxygen and nitrogen connected in rings and oxygen connected with carbon or nitrogen are promoters of increase for both pIC50 and logBB. Branching and the presence of double bonds as well as nitrogen itself are promoters of decrease for both pIC50 and logBB.

Table 4.

Molecular features which have the same effect for pIC50 (denoted 1) and logBB (denoted 2).

1 1 1 2 2 2 TRN1* iTRN1 CLB1 TRN2 iTRN2 CLB2
pIC50-split1-logBB-split1
O...=....... + + + + + + 62 71 51 45 49 17
C3......0... + + + + + + 60 71 51 99 102 43
C4......0... + + + + + + 60 71 51 100 104 43
C...(....... + + + + + + 59 62 43 87 91 35
C...1....... + + + + + + 59 61 43 80 76 26
N...(....... + + + + + + 50 54 38 50 50 16
1...(....... + + + + + + 41 46 28 25 29 14
N...C....... + + + + + + 41 43 29 61 59 20
C5......0... + + + + + + 36 40 31 66 70 32
N...1....... + + + + + + 36 33 22 23 23 6
O...C....... + + + + + + 22 23 20 42 35 10
(........... - - - - - - 62 71 51 88 91 35
=...(....... - - - - - - 62 69 51 62 58 23
=........... - - - - - - 62 71 51 89 86 30
N........... - - - - - - 54 62 41 74 69 22
pIC50-split1-logBB-split2
1........... + + + + + + 62 71 51 74 88 26
O...=....... + + + + + + 62 71 51 42 52 19
C3......0... + + + + + + 60 71 51 103 103 41
C...(....... + + + + + + 59 62 43 83 93 36
C...1....... + + + + + + 59 61 43 74 88 26
N...(....... + + + + + + 50 54 38 47 50 18
1...(....... + + + + + + 41 46 28 33 28 14
N...C....... + + + + + + 41 43 29 61 68 19
F........... + + + + + + 37 38 28 21 11 5
C5......0... + + + + + + 36 40 31 68 66 36
N...1....... + + + + + + 36 33 22 26 27 5
O...C....... + + + + + + 22 23 20 36 40 12
(........... - - - - - - 62 71 51 84 94 36
=...(....... - - - - - - 62 69 51 56 71 23
=........... - - - - - - 62 71 51 85 96 28
N........... - - - - - - 54 62 41 70 78 23
pIC50-split1-logBB-split3
O...=....... + + + + + + 62 71 51 49 45 18
C3......0... + + + + + + 60 71 51 102 104 40
1 1 1 2 2 2 TRN1* iTRN1 CLB1 TRN2 iTRN2 CLB2
pIC50-split1-logBB-split3
C...(....... + + + + + + 59 62 43 90 89 35
C...1....... + + + + + + 59 61 43 77 83 27
N...(....... + + + + + + 50 54 38 58 43 17
1...(....... + + + + + + 41 46 28 34 27 14
N...C....... + + + + + + 41 43 29 61 63 21
C5......0... + + + + + + 36 40 31 71 66 32
O...C....... + + + + + + 22 23 20 31 37 14
(........... - - - - - - 62 71 51 92 89 35
=...(....... - - - - - - 62 69 51 66 63 18
=........... - - - - - - 62 71 51 84 93 30
N........... - - - - - - 54 62 41 69 75 24
(...(....... - - - - - - 39 44 34 23 16 7
pIC50-split2-logBB-split1
C...(....... + + + + + + 61 61 45 87 91 35
C...1....... + + + + + + 61 58 43 80 76 26
N...(....... + + + + + + 54 49 36 50 50 16
C...C....... + + + + + + 51 58 42 90 88 41
C5......0... + + + + + + 43 36 34 66 70 32
N...C....... + + + + + + 39 41 27 61 59 20
O...C....... + + + + + + 22 18 19 42 35 10
(........... - - - - - - 66 67 50 88 91 35
=........... - - - - - - 66 67 50 89 86 30
N........... - - - - - - 57 60 39 74 69 22
pIC50-split2-logBB-split2
1........... + + + + + + 66 67 50 74 88 26
C...(....... + + + + + + 61 61 45 83 93 36
C...1....... + + + + + + 61 58 43 74 88 26
N...(....... + + + + + + 54 49 36 47 50 18
C...C....... + + + + + + 51 58 42 89 96 37
2........... + + + + + + 45 51 32 56 71 15
C5......0... + + + + + + 43 36 34 68 66 36
N...C....... + + + + + + 39 41 27 61 68 19
F........... + + + + + + 34 37 28 21 11 5
O...C....... + + + + + + 22 18 19 36 40 12
(........... - - - - - - 66 67 50 84 94 36
=........... - - - - - - 66 67 50 85 96 28
N........... - - - - - - 57 60 39 70 78 23
1 1 1 2 2 2 TRN1* iTRN1 CLB1 TRN2 iTRN2 CLB2
pIC50-split2-logBB-split3
C...(....... + + + + + + 61 61 45 90 89 35
C...1....... + + + + + + 61 58 43 77 83 27
N...(....... + + + + + + 54 49 36 58 43 17
C...C....... + + + + + + 51 58 42 92 97 33
C5......0... + + + + + + 43 36 34 71 66 32
N...C....... + + + + + + 39 41 27 61 63 21
O...C....... + + + + + + 22 18 19 31 37 14
(........... - - - - - - 66 67 50 92 89 35
=........... - - - - - - 66 67 50 84 93 30
N........... - - - - - - 57 60 39 69 75 24
(...(....... - - - - - - 32 44 32 23 16 7
pIC50-split3-logBB-split1
O...=....... + + + + + + 61 63 55 45 49 17
C...1....... + + + + + + 58 60 46 80 76 26
N...(....... + + + + + + 50 48 43 50 50 16
N...C....... + + + + + + 37 42 33 61 59 20
C5......0... + + + + + + 35 37 34 66 70 32
N...1....... + + + + + + 32 31 29 23 23 6
(........... - - - - - - 61 63 55 88 91 35
=........... - - - - - - 61 63 55 89 86 30
N........... - - - - - - 54 53 48 74 69 22
pIC50-split3-logBB-split2
1........... + + + + + + 61 63 55 74 88 26
O...=....... + + + + + + 61 63 55 42 52 19
C...1....... + + + + + + 58 60 46 74 88 26
N...(....... + + + + + + 50 48 43 47 50 18
2........... + + + + + + 48 43 36 56 71 15
N...C....... + + + + + + 37 42 33 61 68 19
C5......0... + + + + + + 35 37 34 68 66 36
N...1....... + + + + + + 32 31 29 26 27 5
(........... - - - - - - 61 63 55 84 94 36
=........... - - - - - - 61 63 55 85 96 28
N........... - - - - - - 54 53 48 70 78 23
pIC50-split3-logBB-split3
O...=....... + + + + + + 61 63 55 49 45 18
C...1....... + + + + + + 58 60 46 77 83 27
N...(....... + + + + + + 50 48 43 58 43 17
1 1 1 2 2 2 TRN1* iTRN1 CLB1 TRN2 iTRN2 CLB2
pIC50-split3-logBB-split3
N...C....... + + + + + + 37 42 33 61 63 21
C5......0... + + + + + + 35 37 34 71 66 32
(........... - - - - - - 61 63 55 92 89 35
=........... - - - - - - 61 63 55 84 93 30
N........... - - - - - - 54 53 48 69 75 24

*)TRN1, iTRN1 and CLB1 are the numbers of a feature in the training, invisible training and calibration sets for endpoint 1; TRN2, iTRN2 and CLB2 mean the same for endpoint 2.

3.6. Molecular Features, which have Opposite Effects for pIC50 and logBB

Table 5 contains lists of molecular features, which have opposite effect on both pIC50 and for logBB. In the first approximation, presence of two rings and presence of carbon with double covalent bond have opposite effects on pIC50 and logBB.

Table 5.

Molecular features which have the opposite effect for pIC50 (denoted 1) and logBB (denoted 2).

1 1 1 2 2 2 TRN1* iTRN1 CLB1 TRN2 iTRN2 CLB2
pIC50-split1-logBB-split1
O...(....... + + + - - - 62 71 51 43 49 19
2...(....... + + + - - - 31 33 18 36 35 10
C........... - - - + + + 62 71 51 101 102 42
C...=....... - - - + + + 26 30 14 80 80 24
pIC50-split1-logBB-split2
O...(....... + + + - - - 62 71 51 41 54 18
C4......0... + + + - - - 60 71 51 103 106 41
2...(....... + + + - - - 31 33 18 35 43 8
C7......0... + + + - - - 28 21 22 90 88 34
C........... - - - + + + 62 71 51 101 106 41
C...=....... - - - + + + 26 30 14 80 86 24
pIC50-split1-logBB-split3
O...(....... + + + - - - 62 71 51 46 48 15
2...(....... + + + - - - 31 33 18 37 36 11
C7......0... + + + - - - 28 21 22 92 86 35
C........... - - - + + + 62 71 51 103 104 40
C...=....... - - - + + + 26 30 14 76 87 25
pIC50-split2-logBB-split1
O........... + + + - - - 66 67 50 66 69 27
2...(....... + + + - - - 31 30 25 36 35 10
C........... - - - + + + 66 67 50 101 102 42
C3......0... - - - + + + 66 66 49 99 102 43
C...=....... - - - + + + 26 28 23 80 80 24
pIC50-split2-logBB-split2
O........... + + + - - - 66 67 50 64 75 28
2...(....... + + + - - - 31 30 25 35 43 8
1 1 1 2 2 2 TRN1* iTRN1 CLB1 TRN2 iTRN2 CLB2
pIC50-split2-logBB-split2
C7......0... + + + - - - 27 23 21 90 88 34
C........... - - - + + + 66 67 50 101 106 41
C3......0... - - - + + + 66 66 49 103 103 41
C...=....... - - - + + + 26 28 23 80 86 24
pIC50-split2-logBB-split3
O........... + + + - - - 66 67 50 66 69 28
2...(....... + + + - - - 31 30 25 37 36 11
C7......0... + + + - - - 27 23 21 92 86 35
C........... - - - + + + 66 67 50 103 104 40
C3......0... - - - + + + 66 66 49 102 104 40
C...=....... - - - + + + 26 28 23 76 87 25
pIC50-split3-logBB-split1
=...(....... + + + - - - 61 63 53 62 58 23
O...(....... + + + - - - 61 63 55 43 49 19
C........... - - - + + + 61 63 55 101 102 42
C...C....... - - - + + + 48 47 46 90 88 41
C...=....... - - - + + + 28 25 22 80 80 24
pIC50-split3-logBB-split2
=...(....... + + + - - - 61 63 53 56 71 23
O...(....... + + + - - - 61 63 55 41 54 18
C7......0... + + + - - - 22 23 24 90 88 34
C........... - - - + + + 61 63 55 101 106 41
C...C....... - - - + + + 48 47 46 89 96 37
C...=....... - - - + + + 28 25 22 80 86 24
pIC50-split3-logBB-split3
=...(....... + + + - - - 61 63 53 66 63 18
O...(....... + + + - - - 61 63 55 46 48 15
C7......0... + + + - - - 22 23 24 92 86 35
C........... - - - + + + 61 63 55 103 104 40
C...C....... - - - + + + 48 47 46 92 97 33
C...=....... - - - + + + 28 25 22 76 87 25

*)TRN1, iTRN1 and CLB1 are the numbers of feature in the training, invisible training and calibration sets for endpoint 1; TRN2, iTRN2, and CLB2 mean the same for endpoint 2.

It is to be noted that the number of features which have the same effect for pIC50 and logBB is larger than the number of features which have opposite effects for pIC50 and logBB. Consequently, the consideration of interrelations between these endpoints (maybe not only those) can be a perspective in the aspect of drug discovery.

Supplementary materials section contains SMILES and numerical data on examined endpoints.

CONCLUSION

There are arguments to consider the interrelation between gamma-secretase inhibitors activity (pIC50) and blood brain barrier permeation (logBB). The interrelation is described in the literature and confirmed in this work (Table 4). The interrelation can be detected and described in terms of molecular features extracted from SMILES and molecular graph which are involved in building up QSAR models for the pIC50 and logBB. The examination of equivalent and opposite effect of the presence of molecular features for other endpoint can be useful for other pairs of endpoints. From practical point of view, these can be (a) water solubility and octanol water partition coefficient; (b) water solubility and toxicity; (c) carcinogenicity and mutagenicity, etc.

Acknowledgements

AAT and APT thank the project LIFE-COMBASE contract (LIFE15 ENV/ES/000416) for financial support.

LIST OF ABBREVIATIONS

QSAR

Quantitative structure – activity relationships

CWs

Correlation weights

BBB

Blood brain barrier

AD

Alzheimer's disease

SMILES

Simplified molecular input-line entry system

SUPPLEMENTARY MATERIAL

Supplementary material is available on the publisher’s web site along with the published article.

CN-16-769_SD1.pdf (171.8KB, pdf)

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no conflict of interest, financial or otherwise.

REFERENCES

  • 1.Trifunović J., Borčić V., Vukmirović S., Mikov M. Assessment of the pharmacokinetic profile of novel s-triazine derivatives and their potential use in treatment of Alzheimer’s disease. Life Sci. 2017;168:1–6. doi: 10.1016/j.lfs.2016.11.001. [http://dx.doi.org/10.1016/j.lfs.2016.11.001]. [PMID: 27818183]. [DOI] [PubMed] [Google Scholar]
  • 2.Querfurth H.W., LaFerla F.M. Alzheimer’s disease. N. Engl. J. Med. 2010;362(4):329–344. doi: 10.1056/NEJMra0909142. [http://dx.doi.org/10.1056/NEJMra 0909142]. [PMID: 20107219]. [DOI] [PubMed] [Google Scholar]
  • 3.Alzheimer’s disease facts and figures. Alzheimers Dement. 2015;11(3):332–384. doi: 10.1016/j.jalz.2015.02.003. [http://dx.doi.org/10.1016/j.jalz.2015.02.003]. [PMID: 25984581]. [DOI] [PubMed] [Google Scholar]
  • 4.Braak H., Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–259. doi: 10.1007/BF00308809. [http:// dx.doi.org/10.1007/BF00308809]. [PMID: 1759558]. [DOI] [PubMed] [Google Scholar]
  • 5.Felician O., Sandson T.A. The neurobiology and pharmacotherapy of Alzheimer’s disease. J. Neuropsychiatry Clin. Neurosci. 1999;11(1):19–31. doi: 10.1176/jnp.11.1.19. [http://dx.doi.org/10.1176/jnp.11.1.19]. [PMID: 9990552]. [DOI] [PubMed] [Google Scholar]
  • 6.Sanders S., Morano C. Alzheimer’s disease and related dementias. J. Gerontol. Soc. Work. 2008;50(Suppl. 1):191–214. doi: 10.1080/01634370802137900. [http://dx.doi. org/10.1080/01634370802137900]. [PMID: 18924393]. [DOI] [PubMed] [Google Scholar]
  • 7.Abbott N.J., Patabendige A.A.K., Dolman D.E.M., Yusof S.R., Begley D.J. Structure and function of the blood-brain barrier. Neurobiol. Dis. 2010;37(1):13–25. doi: 10.1016/j.nbd.2009.07.030. [http://dx.doi.org/10.1016/j.nbd. 2009.07.030]. [PMID: 19664713]. [DOI] [PubMed] [Google Scholar]
  • 8.Pardridge W.M. The blood-brain barrier: bottleneck in brain drug development. NeuroRx. 2005;2(1):3–14. doi: 10.1602/neurorx.2.1.3. [http://dx.doi.org/10. 1602/neurorx.2.1.3]. [PMID: 15717053]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Pan W., Banks W.A., Fasold M.B., Bluth J., Kastin A.J. Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology. 1998;37(12):1553–1561. doi: 10.1016/s0028-3908(98)00141-5. [http://dx. doi.org/10.1016/S0028-3908(98)00141-5]. [PMID: 9886678]. [DOI] [PubMed] [Google Scholar]
  • 10.Clifford P.M., Zarrabi S., Siu G., Kinsler K.J., Kosciuk M.C., Venkataraman V., D’Andrea M.R., Dinsmore S., Nagele R.G. Abeta peptides can enter the brain through a defective blood-brain barrier and bind selectively to neurons. Brain Res. 2007;1142(1):223–236. doi: 10.1016/j.brainres.2007.01.070. [http://dx.doi.org/10.1016/j.brainres.2007.01.070]. [PMID: 17306234]. [DOI] [PubMed] [Google Scholar]
  • 11.Zlokovic B.V. New therapeutic targets in the neurovascular pathway in Alzheimer’s disease. Neurotherapeutics. 2008;5(3):409–414. doi: 10.1016/j.nurt.2008.05.011. [http://dx.doi.org/10.1016/j.nurt.2008.05.011]. [PMID: 18625452]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Nagele R.G., Clifford P.M., Siu G., Levin E.C., Acharya N.K., Han M., Kosciuk M.C., Venkataraman V., Zavareh S., Zarrabi S., Kinsler K., Thaker N.G., Nagele E.P., Dash J., Wang H.Y., Levitas A. Brain-reactive autoantibodies prevalent in human sera increase intraneuronal amyloid-β(1-42) deposition. J. Alzheimers Dis. 2011;25(4):605–622. doi: 10.3233/JAD-2011-110098. [PMID: 21483091]. [DOI] [PubMed] [Google Scholar]
  • 13.Bowman G.L., Quinn J.F. Alzheimer’s disease and the blood-brain barrier: Past, present and future. Aging Health. 2008;4(1):47–55. doi: 10.2217/1745509X.4.1.47. [http://dx.doi.org/10.2217/1745509X.4.1.47]. [PMID: 19924258]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Heininger K. A unifying hypothesis of Alzheimer’s disease. III. Risk factors. Hum. Psychopharmacol. 2000;15(1):1–70. doi: 10.1002/(SICI)1099-1077(200001)15:1<1::AID-HUP153>3.0.CO;2-1. [http://dx.doi.org/10.1002/(SICI)1099-1077(200001)15:1<1:AID-HUP153>3.0.CO;2-1]. [PMID: 12404343]. [DOI] [PubMed] [Google Scholar]
  • 15.Hermens W.T.J.M.C., Verhaagen J. Viral vectors, tools for gene transfer in the nervous system. Prog. Neurobiol. 1998;55(4):399–432. doi: 10.1016/s0301-0082(98)00007-0. [http://dx.doi.org/10.1016/S0301-0082(98)00007-0]. [PMID: 9654386]. [DOI] [PubMed] [Google Scholar]
  • 16.Campos-Bedolla P., Walter F.R., Veszelka S., Deli M.A. Role of the blood-brain barrier in the nutrition of the central nervous system. Arch. Med. Res. 2014;45(8):610–638. doi: 10.1016/j.arcmed.2014.11.018. [http://dx.doi.org/ 10.1016/j.arcmed.2014.11.018]. [PMID: 25481827]. [DOI] [PubMed] [Google Scholar]
  • 17.Shityakov S., Förster C. In silico predictive model to determine vector-mediated transport properties for the blood-brain barrier choline transporter. Adv. Appl. Bioinform. Chem. 2014;7:23–36. doi: 10.2147/AABC.S63749. [http://dx.doi.org/10.2147/AABC.S63749]. [PMID: 25214795]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Bujak R., Struck-Lewicka W., Kaliszan M., Kaliszan R., Markuszewski M.J. Blood-brain barrier permeability mechanisms in view of quantitative structure-activity relationships (QSAR). J. Pharm. Biomed. Anal. 2015;108:29–37. doi: 10.1016/j.jpba.2015.01.046. [http://dx.doi.org/ 10.1016/j.jpba.2015.01.046]. [PMID: 25703237]. [DOI] [PubMed] [Google Scholar]
  • 19.Zhang D., Xiao J., Zhou N., Zheng M., Luo X., Jiang H., Chen K. A genetic algorithm based support vector machine model for blood-brain barrier penetration prediction. BioMed Res. Int. 2015;2015:292683. doi: 10.1155/2015/292683. [http://dx.doi.org/10.1155/2015/292683]. [PMID: 26504797]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Suenderhauf C., Hammann F., Huwyler J. Computational prediction of blood-brain barrier permeability using decision tree induction. Molecules. 2012;17(9):10429–10445. doi: 10.3390/molecules170910429. [http://dx.doi.org/ 10.3390/molecules170910429]. [PMID: 22941223]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Geldenhuys W.J., Manda V.K., Mittapalli R.K., Van der Schyf C.J., Crooks P.A., Dwoskin L.P., Allen D.D., Lockman P.R. Predictive screening model for potential vector-mediated transport of cationic substrates at the blood-brain barrier choline transporter. Bioorg. Med. Chem. Lett. 2010;20(3):870–877. doi: 10.1016/j.bmcl.2009.12.079. [http://dx.doi.org/ 10.1016/j.bmcl.2009.12.079]. [PMID: 20053562]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Trifunović J., Borčić V., Vukmirović S., Mikov M. Assessment of the pharmacokinetic profile of novel s-triazine derivatives and their potential use in treatment of Alzheimer’s disease. Life Sci. 2017;168:1–6. doi: 10.1016/j.lfs.2016.11.001. [http://dx.doi.org/10.1016/j.lfs.2016.11.001]. [PMID: 27818183]. [DOI] [PubMed] [Google Scholar]
  • 23.Nikolic K., Mavridis L., Djikic T., Vucicevic J., Agbaba D., Yelekci K., Mitchell J.B.O. Drug design for CNS diseases: Polypharmacological profiling of compounds using cheminformatic, 3D-QSAR and virtual screening methodologies. Front. Neurosci. 2016;10(JUN):265. doi: 10.3389/fnins.2016.00265. [PMID: 27375423]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Tian Y.L., Lv M., Li J.J., Xu T., Zhai H.L., Zhang X.Y. Study on the active mechanism of β-secretase inhibitors by molecular simulations. Eur. J. Pharm. Sci. 2015;76:138–148. doi: 10.1016/j.ejps.2015.05.007. [http:// dx.doi.org/10.1016/j.ejps.2015.05.007]. [PMID: 25965961]. [DOI] [PubMed] [Google Scholar]
  • 25.Ajmani S., Janardhan S., Viswanadhan V.N. Toward a general predictive QSAR model for gamma-secretase inhibitors. Mol. Divers. 2013;17(3):421–434. doi: 10.1007/s11030-013-9441-2. [http://dx.doi.org/10.1007/s11030-013-9441-2]. [PMID: 23612850]. [DOI] [PubMed] [Google Scholar]
  • 26.Toropova M.A., Toropov A.A., Raška I., Jr, Rašková M. Searching therapeutic agents for treatment of Alzheimer disease using the Monte Carlo method. Comput. Biol. Med. 2015;64:148–154. doi: 10.1016/j.compbiomed.2015.06.019. [http://dx.doi.org/10.1016/j.compbiomed.2015.06.019]. [PMID: 26164035]. [DOI] [PubMed] [Google Scholar]
  • 27.Hou T., Xu X. ADME evaluation in drug discovery. 1. Applications of genetic algorithms to the prediction of blood-brain partitioning of a large set of drugs. J. Mol. Model. 2002;8(12):337–349. doi: 10.1007/s00894-002-0101-1. [http://dx.doi.org/10.1007/s00894-002-0101-1]. [PMID: 12541001]. [DOI] [PubMed] [Google Scholar]
  • 28.Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 1988;28:31–36. [http://dx.doi.org/10. 1021/ci00057a005]. [Google Scholar]
  • 29.Toropova A.P., Toropov A.A., Martyanov S.E., Benfenati E., Gini G., Leszczynska D., Leszczynski J. CORAL: Monte Carlo method as a tool for the prediction of the bioconcentration factor of industrial pollutants. Mol. Inform. 2013;32(2):145–154. doi: 10.1002/minf.201200069. [http://dx.doi.org/10.1002/minf.201200069]. [PMID: 27481276]. [DOI] [PubMed] [Google Scholar]
  • 30.Begum S., Achary P.G.R. Simplified molecular input line entry system-based: QSAR modelling for MAP kinase-interacting protein kinase (MNK1). SAR QSAR Environ. Res. 2015;26(5):343–361. doi: 10.1080/1062936X.2015.1039577. [http://dx.doi.org/10.1080/1062936X.2015.1039577]. [PMID: 25967103]. [DOI] [PubMed] [Google Scholar]
  • 31.Achary P.G.R. QSPR modelling of dielectric constants of π-conjugated organic compounds by means of the CORAL software. SAR QSAR Environ. Res. 2014;25(6):507–526. doi: 10.1080/1062936X.2014.899267. [http://dx.doi.org/ 10.1080/1062936X.2014.899267]. [PMID: 24716837]. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary material is available on the publisher’s web site along with the published article.

CN-16-769_SD1.pdf (171.8KB, pdf)

Articles from Current Neuropharmacology are provided here courtesy of Bentham Science Publishers

RESOURCES