Skip to main content
Springer logoLink to Springer
. 2018 Aug 15;2018(1):211. doi: 10.1186/s13660-018-1808-6

On some nonlinear retarded Volterra–Fredholm type integral inequalities on time scales and their applications

Haidong Liu 1,
PMCID: PMC6096914  PMID: 30839564

Abstract

In this paper, we establish some new nonlinear retarded Volterra–Fredholm type integral inequalities on time scales. Our results not only generalize and extend some known integral inequalities, but also provide a handy and effective tool for the study of qualitative properties of solutions of some Volterra–Fredholm type dynamic equations.

Keywords: Time scale, Retarded integral inequality, Volterra–Fredholm type

Introduction

In recent years, there exist a large number of published papers on the theory of time scales which was introduced by Stefan Hilger [1] in his Ph.D. thesis in 1988 in order to unify and extend the difference and differential calculus in a consistent way, for instance, [216] and the references therein. In particular, many scholars attached great importance to the study of dynamic inequalities on time scales (see, e.g., [1731] and the references therein), which extended some discrete and continuous inequalities (see [3236] and the references therein).

In 2013, the authors in [22] established and applied the following useful linear Volterra–Fredholm type integral inequality on time scales:

u(t)u0+t0tf(τ)[u(τ)+t0τg(s)u(s)Δs]Δτ+t0αh(τ)u(τ)Δτ,tI,

where I=[t0,α]T, t0T, αT, α>t0, u0 is a nonnegative constant, u, f, g, and h are nonnegative rd-continuous functions defined on I.

In 2014, the authors in [27] investigated the nonlinear Volterra–Fredholm type integral inequality on time scales

u(t)k+t0tf1(s)w(u(s))Δs+t0tf2(s)t0sf3(τ)w(u(τ))ΔτΔs+t0αf1(s)w(u(s))Δs+t0αf2(s)t0sf3(τ)w(u(τ))ΔτΔs,tI,

where I=[t0,α]T, t0T, αT, α>t0, u, f1, f2, f3 are rd-continuous functions defined on I, f1, f2, f3 are nonnegative, wC(R+,R+) is a nondecreasing function with w(u)>0 for u>0, and k is a nonnegative constant.

Very recently, the author in [29] discovered the retarded Volterra–Fredholm type integral inequality on time scales

u(t)a(t)+b(t)α(t0)α(t)[f1(s)u(s)+f2(s)α(t0)sg(τ)u(τ)Δτ]Δs+λb(T)α(t0)α(T)[f1(s)u(s)+f2(s)α(t0)sg(τ)u(τ)Δτ]Δs,tI,

where I=[t0,T]T, t0T, TT, T>t0, α:II is continuous and strictly increasing satisfying α(t)t, αΔ is rd-continuous, u, a, b, f, and g:IR+ are rd-continuous functions and a is nondecreasing.

Inspired by the ideas employed in [22, 27, 29], here we obtain some new nonlinear Volterra–Fredholm type integral inequalities on time scales. Our results not only generalize and extend the results of [22, 27] and some known integral inequalities but also provide a handy and effective tool for the study of qualitative properties of solutions of some complicated Volterra–Fredholm type dynamic equations.

Preliminaries

For an excellent introduction to the calculus on time scales, we refer the reader to [5] and [6].

In what follows, we always assume that R denotes the set of real numbers, R+=[0,), Z denotes the set of integers, and T is an arbitrary time scale (nonempty closed subset of R), R denotes the set of all regressive and rd-continuous functions, R+={pR:1+μ(t)p(t)>0,for all tT}, I=[t0,T]Tκ, where t0Tκ, TTκ, T>t0. The set Tκ is defined as follows: If T has a maximum m and m is left-scattered, then Tκ=T{m}. Otherwise Tκ=T. The graininess function μ:T[0,) is defined by μ(t):=σ(t)t, the forward jump operator σ:TT by σ(t):=inf{sT:s>t}, and the “circle plus” addition ⊕ defined by (pq)(t):=p(t)+q(t)+μ(t)p(t)q(t) for all tTκ.

We give the following lemmas in order to use them in our proofs. One can find details in [5].

Lemma 2.1

([5, Theorem 1.16])

Assume that f:TR is a function and let tT. If f is differentiable at t, then

f(σ(t))=f(t)+μ(t)fΔ(t).

Lemma 2.2

([5, Theorem 1.98])

Assume that ν:TR is a strictly increasing function and T˜:=ν(T) is a time scale. If f:TR is an rd-continuous function and ν is differentiable with rd-continuous derivative, then for a,bT,

abf(t)νΔ(t)Δt=ν(a)ν(b)(fν1)(s)Δ˜s.

Lemma 2.3

([29])

Let α:II be a continuous and strictly increasing function such that α(t)t, and αΔ is rd-continuous. Assume that f:IR is an rd-continuous function, then

g(t)=α(t0)α(t)f(s)Δs,tI, 2.1

implies

gΔ(t)=f(α(t))αΔ(t),tI. 2.2

Lemma 2.4

([5, Theorem 1.117])

Suppose that for each ε>0 there exists a neighborhood U of t, independent of τ[t0,σ(t)], such that

|w(σ(t),τ)w(s,τ)wtΔ(t,τ)(σ(t)s)|ε|σ(t)s|,sU, 2.3

where w:T×TκR+ is continuous at (t,t), tTκ with t>t0, and wtΔ(t,) are rd-continuous on [t0,σ(t)]. Then

g(t):=t0tw(t,τ)Δτ

implies

gΔ(t)=t0twtΔ(t,τ)Δτ+w(σ(t),t),tTκ. 2.4

Lemma 2.5

([5, Theorem 6.1])

Suppose that y and f are rd-continuous functions and pR+. Then

yΔ(t)p(t)y(t)+f(t),tT

implies

y(t)y(t0)ep(t,t0)+t0tep(t,σ(τ))f(τ)Δτ,tT.

Lemma 2.6

Let mn0, m0, and a0, then

annmknmam+mnmkn 2.5

for any k>0.

Proof

Set F(x)=nmxnmam+mnmxn, x>0. It is seen that F(x) obtains its minimum at x0=a. Hence we get (2.5) holds for any k>0. □

Throughout this paper, we assume that:

(H1)

α:II is continuous and strictly increasing satisfying α(t)t and αΔ is rd-continuous.

(H2)

β,γ:II are continuous satisfying β(t)t and γ(t)t.

(H3)

u,a,b:IR+ are rd-continuous functions, a is nondecreasing, and bΔ(t)0.

(H4)

fi(i=1,2,3,4,5,6),gi(i=1,2,3):IR+ are rd-continuous functions.

(H5)

v,w:T×TκR+ is continuous at (t,t), tTκ with t>t0.

(H6)

m,n:T×TκR+ is continuous at (t,t), tTκ with t>t0.

Main results

Theorem 3.1

Assume that (H1)(H4) hold, 0p1, 0q1, 0r1 are constants, and μ(t)A(t)<1. Suppose that u satisfies

u(t)a(t)+b(t)α(t0)α(t)f1(s)[u(s)+f2(s)α(t0)sg1(τ)u(τ)Δτ]pΔs+β(t0)β(T)f3(s)[u(s)+f4(s)β(t0)sg2(τ)u(τ)Δτ]qΔs+γ(t0)γ(T)f5(s)[u(s)+f6(s)γ(t0)sg3(τ)u(τ)Δτ]rΔs,tI. 3.1

If there exist positive constants ki (i=1,2,3) such that

λ:=β(t0)β(T)[qk2q1f3(s)(eBC(s,t0)+f4(s)β(t0)sg2(τ)eBC(τ,t0)Δτ)]Δs+γ(t0)γ(T)[rk3r1f5(s)(eBC(s,t0)+f6(s)γ(t0)sg3(τ)eBC(τ,t0)Δτ)]Δs<1, 3.2

then

u(t)K+V(T)1λeBC(t,t0),tI, 3.3

where

K=β(t0)β(T)(1q)k2qf3(s)Δs+γ(t0)γ(T)(1r)k3rf5(s)Δs, 3.4
V(t)=a(t)+b(t)α(t0)α(t)(1p)k1pf1(s)Δs, 3.5
A(t)=bΔ(t)α(t0)α(σ(t))[pk1p1f1(s)(1+f2(s)α(t0)sg1(τ)Δτ)]Δs, 3.6
B(t)=A(t)1μ(t)A(t), 3.7
C(t)=b(t)[pk1p1f1(α(t))(1+f2(α(t))α(t0)α(t)g1(τ)Δτ)]αΔ(t). 3.8

Proof

Denote

z(t)=a(t)+b(t)α(t0)α(t)f1(s)[u(s)+f2(s)α(t0)sg1(τ)u(τ)Δτ]pΔs+β(t0)β(T)f3(s)[u(s)+f4(s)β(t0)sg2(τ)u(τ)Δτ]qΔs+γ(t0)γ(T)f5(s)[u(s)+f6(s)γ(t0)sg3(τ)u(τ)Δτ]rΔs,tI. 3.9

Then z is nondecreasing on I. From (3.1) and (3.9) we have

u(t)z(t),tI. 3.10

Now using Lemma 2.6 for a=u(s)+fi(s)α(t0)sgj(τ)u(τ)Δτ, i=2,4,6, and j=i/2 with m=1 and n=p,q,r for any k1,k2,k3>0, respectively, we have

z(t)a(t)+b(t)α(t0)α(t){pk1p1f1(s)[u(s)+f2(s)α(t0)sg1(τ)u(τ)Δτ]+(1p)k1pf1(s)}Δs+β(t0)β(T){qk2q1f3(s)[u(s)+f4(s)β(t0)sg2(τ)u(τ)Δτ]+(1q)k2qf3(s)}Δs+γ(t0)γ(T){rk3r1f5(s)[u(s)+f6(s)γ(t0)sg3(τ)u(τ)Δτ]+(1r)k3rf5(s)}Δs. 3.11

Now using (3.4) and (3.5) and (3.10) we get

z(t)K+V(t)+b(t)α(t0)α(t){pk1p1f1(s)[z(s)+f2(s)α(t0)sg1(τ)z(τ)Δτ]}Δs+β(t0)β(T){qk2q1f3(s)[z(s)+f4(s)β(t0)sg2(τ)z(τ)Δτ]}Δs+γ(t0)γ(T){rk3r1f5(s)[z(s)+f6(s)γ(t0)sg3(τ)z(τ)Δτ]}Δs,tI. 3.12

Since V(t) is nondecreasing on I, then for tI, from the above inequality we have

z(t)K+V(T)+b(t)α(t0)α(t)[pk1p1f1(s)(z(s)+f2(s)α(t0)sg1(τ)z(τ)Δτ)]Δs+β(t0)β(T)[qk2q1f3(s)(z(s)+f4(s)β(t0)sg2(τ)z(τ)Δτ)]Δs+γ(t0)γ(T)[rk3r1f5(s)(z(s)+f6(s)γ(t0)sg3(τ)z(τ)Δτ)]Δs,tI. 3.13

Let

M=K+V(T)+β(t0)β(T)[qk2q1f3(s)(z(s)+f4(s)β(t0)sg2(τ)z(τ)Δτ)]Δs+γ(t0)γ(T)[rk3r1f5(s)(z(s)+f6(s)γ(t0)sg3(τ)z(τ)Δτ)]Δs. 3.14

Then (3.13) can be restated as

z(t)M+b(t)α(t0)α(t)[pk1p1f1(s)(z(s)+f2(s)α(t0)sg1(τ)z(τ)Δτ)]Δs,tI. 3.15

Set

w(t)=M+b(t)α(t0)α(t)[pk1p1f1(s)(z(s)+f2(s)α(t0)sg1(τ)z(τ)Δτ)]Δs,tI. 3.16

Then w(t) is nondecreasing, and from (3.15) and (3.16) we obtain

z(t)w(t),tI. 3.17

Using Lemma 2.3, taking delta derivative of (3.16), and from (3.17), we have

wΔ(t)=bΔ(t)α(t0)α(σ(t))[pk1p1f1(s)(z(s)+f2(s)α(t0)sg1(τ)z(τ)Δτ)]Δs+b(t)[pk1p1f1(α(t))(z(α(t))+f2(α(t))α(t0)α(t)g1(τ)z(τ)Δτ)]αΔ(t)bΔ(t)α(t0)α(σ(t))[pk1p1f1(s)(w(s)+f2(s)α(t0)sg1(τ)w(τ)Δτ)]Δs+b(t)[pk1p1f1(α(t))(w(α(t))+f2(α(t))α(t0)α(t)g1(τ)w(τ)Δτ)]αΔ(t)w(σ(t))bΔ(t)α(t0)α(σ(t))[pk1p1f1(s)(1+f2(s)α(t0)sg1(τ)Δτ)]Δs+w(t)b(t)[pk1p1f1(α(t))(1+f2(α(t))α(t0)α(t)g1(τ)Δτ)]αΔ(t)=A(t)w(σ(t))+C(t)w(t),tI, 3.18

where A(t) and C(t) are defined as in (3.6) and (3.8). From (3.7), we get

A(t)=B(t)1+μ(t)B(t), 3.19

and from (3.18), (3.19), and Lemma 2.1, we have

wΔ(t)B(t)1+μ(t)B(t)w(σ(t))+C(t)w(t)=B(t)1+μ(t)B(t)[w(t)+μ(t)wΔ(t)]+C(t)w(t), 3.20

which yields

11+μ(t)B(t)wΔ(t)[B(t)1+μ(t)B(t)+C(t)]w(t), 3.21

i.e.,

wΔ(t)[B(t)+(1+μ(t)B(t))C(t)]w(t)=(BC)(t)w(t),tI. 3.22

Note that w is rd-continuous and BCR+, from Lemma 2.5, (3.16), and (3.22), we obtain

w(t)w(t0)eBC(t,t0)=MeBC(t,t0),tI. 3.23

From (3.17) and (3.23), we have

z(t)MeBC(t,t0),tI. 3.24

Using (3.24) on the right–hand side of (3.14) and according to (3.2), we obtain

MK+V(T)1λ. 3.25

From (3.24) and (3.25), we obtain

z(t)K+V(T)1λeBC(t,t0),tI. 3.26

Noting (3.10), we get the desired inequality (3.3). This completes the proof. □

If we take p=q=r=1, we can get the following corollary.

Corollary 3.1

Assume that (H1)(H4) hold. Suppose that u satisfies

u(t)a(t)+b(t)α(t0)α(t)f1(s)[u(s)+f2(s)α(t0)sg1(τ)u(τ)Δτ]Δs+β(t0)β(T)f3(s)[u(s)+f4(s)β(t0)sg2(τ)u(τ)Δτ]Δs+γ(t0)γ(T)f5(s)[u(s)+f6(s)γ(t0)sg3(τ)u(τ)Δτ]Δs,tI.

If

λ:=β(t0)β(T)[f3(s)(eBC(s,t0)+f4(s)β(t0)sg2(τ)eBC(τ,t0)Δτ)]Δs+γ(t0)γ(T)[f5(s)(eBC(s,t0)+f6(s)γ(t0)sg3(τ)eBC(τ,t0)Δτ)]Δs<1,

then

u(t)a(T)1λeBC(t,t0),tI,

where

A(t)=bΔ(t)α(t0)α(σ(t))[f1(s)(1+f2(s)α(t0)sg1(τ)Δτ)]Δs,B(t)=A(t)1μ(t)A(t),C(t)=b(t)[f1(α(t))(1+f2(α(t))α(t0)α(t)g1(τ)Δτ)]αΔ(t).

Theorem 3.2

Assume that (H1)(H4) hold, 0qil, 0ril, l0, and 0θi1 (i=1,2,3) are constants, and μ(t)A(t)<1. Suppose that u satisfies

ul(t)a(t)+b(t)α(t0)α(t)f1(s)[uq1(s)+f2(s)α(t0)sg1(τ)ur1(τ)Δτ]θ1Δs+β(t0)β(T)f3(s)[uq2(s)+f4(s)β(t0)sg2(τ)ur2(τ)Δτ]θ2Δs+γ(t0)γ(T)f5(s)[uq3(s)+f6(s)γ(t0)sg3(τ)ur3(τ)Δτ]θ3Δs,tI. 3.27

If there exist positive constants ki (i=1,2,,9) such that

λ:=β(t0)β(T)[θ2k4θ21f˜3(s)(eBC(s,t0)+f4(s)β(t0)sg˜2(τ)eBC(τ,t0)Δτ)]Δs+γ(t0)γ(T)[θ3k7θ31f˜5(s)(eBC(s,t0)+f6(s)γ(t0)sg˜3(τ)eBC(τ,t0)Δτ)]Δs<1, 3.28

then

u(t)(K˜+V˜(T)1λeBC(t,t0))1l,tI, 3.29

where

K˜=β(t0)β(T){θ2k4θ21f3(s)[lq2lk5q2+f4(s)β(t0)sg2(τ)(lr2lk6r2)Δτ]+(1θ2)k4θ2f3(s)}Δs+γ(t0)γ(T){θ3k7θ31f5(s)[lq3lk8q3+f6(s)γ(t0)sg3(τ)(lr3lk9r3)Δτ]+(1θ3)k7θ3f5(s)}Δs, 3.30
V˜(t)=a(t)+b(t)α(t0)α(t){θ1k1θ11f1(s)[lq1lk2q1+f2(s)α(t0)sg1(τ)(lr1lk3r1)Δτ]+(1θ1)k1θ1f1(s)}Δs, 3.31
A(t)=bΔ(t)α(t0)α(σ(t))[θ1k1θ11f˜1(s)(1+f2(s)α(t0)sg˜1(τ)Δτ)]Δs, 3.32
B(t)=A(t)1μ(t)A(t), 3.33
C(t)=b(t)[θ1k1θ11f˜1(α(t))(1+f2(α(t))α(t0)α(t)g˜1(τ)Δτ)]αΔ(t), 3.34
f˜1(t)=q1lk2q1lf1(t),f˜3(t)=q2lk5q2lf3(t),f˜5(t)=q3lk8q3lf5(t), 3.35
g˜1(t)=r1q1k2lq1k3r1lg1(t),g˜2(t)=r2q2k5lq2k6r2lg2(t), 3.36
g˜3(t)=r3q3k8lq3k9r3lg3(t). 3.37

Proof

Denote

z(t)=a(t)+b(t)α(t0)α(t)f1(s)[uq1(s)+f2(s)α(t0)sg1(τ)ur1(τ)Δτ]θ1Δs+β(t0)β(T)f3(s)[uq2(s)+f4(s)β(t0)sg2(τ)ur2(τ)Δτ]θ2Δs+γ(t0)γ(T)f5(s)[uq3(s)+f6(s)γ(t0)sg3(τ)ur3(τ)Δτ]θ3Δs,tI. 3.38

Then z is nondecreasing on I. From (3.27) and (3.38) we have

ul(t)z(t),tI. 3.39

Using Lemma 2.6, we obtain

z(t)a(t)+b(t)α(t0)α(t)f1(s)[uq1(s)+f2(s)α(t0)sg1(τ)ur1(τ)Δτ]θ1Δs+β(t0)β(T)f3(s)[uq2(s)+f4(s)β(t0)sg2(τ)ur2(τ)Δτ]θ2Δs+γ(t0)γ(T)f5(s)[uq3(s)+f6(s)γ(t0)sg3(τ)ur3(τ)Δτ]θ3Δsa(t)+b(t)α(t0)α(t){θ1k1θ11f1(s)[q1lk2q1lul(s)+lq1lk2q1+f2(s)α(t0)sg1(τ)(r1lk3r1lul(τ)+lr1lk3r1)Δτ]+(1θ1)k1θ1f1(s)}Δs+β(t0)β(T){θ2k4θ21f3(s)[q2lk5q2lul(s)+lq2lk5q2+f4(s)β(t0)sg2(τ)(r2lk6r2lul(τ)+lr2lk6r2)Δτ]+(1θ2)k4θ2f3(s)}Δs+γ(t0)γ(T){θ3k7θ31f5(s)[q3lk8q3lul(s)+lq3lk8q3+f6(s)γ(t0)sg3(τ)(r3lk9r3lul(τ)+lr3lk9r3)Δτ]+(1θ3)k7θ3f5(s)}Δs. 3.40

Using (3.30), (3.31), (3.35)–(3.37), and (3.39), we get

z(t)K˜+V˜(t)+b(t)α(t0)α(t){θ1k1θ11f˜1(s)[z(s)+f2(s)α(t0)sg˜1(τ)z(τ)Δτ]}Δs+β(t0)β(T){θ2k4θ21f˜3(s)[z(s)+f4(s)β(t0)sg˜2(τ)z(τ)Δτ]}Δs+γ(t0)γ(T){θ3k7θ31f˜5(s)[z(s)+f6(s)γ(t0)sg˜3(τ)z(τ)Δτ]}Δs,tI. 3.41

It is similar to the proof of Theorem 3.1, we get

z(t)K˜+V˜(T)1λeBC(t,t0),tI.

Then, using ul(t)z(t), we have (3.29). This completes the proof. □

Remark 3.1

If we take a(t)u0, b(t)1, α(t)t, β(t)t, f2(t)1, and f4(t)=f5(t)0, then Corollary 3.1 reduces to [22, Theorem 2.2]. If we take a(t)k, b(t)1, α(t)t, β(t)t, p=1, q1=r1=q2=r2, θ1=θ2=1, f1(t)=f3(t), f2(t)=f4(t), g1(t)=g2(t), and f5(t)0, then Theorem 3.2 gives an exact estimation for the solution of (3.27) compared with the result of [27, Theorem 4].

Theorem 3.3

Assume that (H1)(H3), (H5), (H6) hold, 0p1, 0q1 are constants, μ(t)A˜(t)<1, vtΔ(t,s)0, wtΔ(t,s)0 for ts and (2.3) holds. Suppose that u satisfies

u(t)a(t)+b(t)t0t[v(t,s)u(s)+w(t,s)α(t0)α(s)f(τ)u(τ)Δτ]pΔs+t0T[m(T,s)u(s)+n(T,s)β(t0)β(s)g(τ)u(τ)Δτ]qΔs,tI. 3.42

If there exist positive constants ki (i=1,2) such that

λ:=β(t0)β(T)[qk2q1f3(s)(eBC(s,t0)+f4(s)β(t0)sg2(τ)eBC(τ,t0)Δτ)]Δs+γ(t0)γ(T)[rk3r1f5(s)(eBC(s,t0)+f6(s)γ(t0)sg3(τ)eBC(τ,t0)Δτ)]Δs<1, 3.43

then

u(t)K+V(T)1λeBC(t,t0),tI, 3.44

where

K=t0T(1q)k2qΔs, 3.45
V(t)=a(t)+b(t)t0t(1p)k1pΔs, 3.46
A˜(t)=bΔ(t)t0σ(t)[v(σ(t),s)+w(σ(t),s)α(t0)α(s)g(τ)Δτ]Δs,B˜(t)=A˜(t)1μ(t)A˜(t), 3.47
C˜(t)=b(t)[v(σ(t),t)+w(σ(t),t)α(t0)α(t)g(τ)Δτ+t0t[vtΔ(t,s)+wtΔ(t,s)α(t0)α(s)g(τ)Δτ]Δs]. 3.48

Proof

Denote

z(t)=a(t)+b(t)t0t[v(t,s)u(s)+w(t,s)α(t0)α(s)f(τ)u(τ)Δτ]pΔs+t0T[m(T,s)u(s)+n(T,s)β(t0)β(s)g(τ)u(τ)Δτ]qΔs,tI. 3.49

Then z is nondecreasing on I. From (3.42) and (3.49), we have

u(t)z(t),tI. 3.50

Now, using Lemma 2.6 for a=v(t,s)u(s)+w(t,s)α(t0)α(s)f(τ)u(τ)Δτ, and m(T,s)u(s)+n(T,s)β(t0)β(s)g(τ)u(τ)Δτ with m=1 and n=p,q for any k1,k2>0, respectively, we have

z(t)a(t)+b(t)t0t{pk1p1[v(t,s)u(s)+w(t,s)α(t0)α(s)f(τ)u(τ)Δτ]+(1p)k1p}Δs+t0T{qk2q1[m(T,s)u(s)+n(T,s)β(t0)β(s)g(τ)u(τ)Δτ]+(1q)k2q}Δs,tI. 3.51

Now, using (3.45) and (3.46) and (3.51), we have

z(t)K+V(t)+b(t)t0t{pk1p1[v(t,s)z(s)+w(t,s)α(t0)α(s)f(τ)z(τ)Δτ]}Δs+t0T{qk2q1[m(T,s)z(s)+n(T,s)β(t0)β(s)g(τ)z(τ)Δτ]}Δs,tI. 3.52

Since V(t) is nondecreasing on I, then for tI, from the above inequality we have

z(t)K+V(T)+b(t)t0t{pk1p1[v(t,s)z(s)+w(t,s)α(t0)α(s)f(τ)z(τ)Δτ]}Δs+t0T{qk2q1[m(T,s)z(s)+n(T,s)β(t0)β(s)g(τ)z(τ)Δτ]}Δs,tI. 3.53

Let

M=K+V(T)+t0T{qk2q1[m(T,s)z(s)+n(T,s)β(t0)β(s)g(τ)z(τ)Δτ]}Δs. 3.54

Then (3.53) can be restated as

z(t)M+b(t)t0t{pk1p1[v(t,s)z(s)+w(t,s)α(t0)α(s)f(τ)z(τ)Δτ]}Δs,tI. 3.55

Set

y(t)=M+b(t)t0t{pk1p1[v(t,s)z(s)+w(t,s)α(t0)α(s)f(τ)z(τ)Δτ]}Δs,tI. 3.56

Then y(t) is nondecreasing, and from (3.55) and (3.56) we obtain

z(t)y(t),tI. 3.57

Using Lemma 2.3, taking the delta derivative of (3.56), and from (3.57), we have

yΔ(t)=bΔ(t)t0σ(t){pk1p1[v(σ(t),s)z(s)+w(σ(t),s)α(t0)α(s)f(τ)z(τ)Δτ]}Δs+b(t){pk1p1[v(σ(t),t)z(t)+w(σ(t),t)α(t0)α(t)f(τ)z(τ)Δτ]}+b(t)t0t{pk1p1[vtΔ(t,s)z(s)+wtΔ(t,s)α(t0)α(s)f(τ)z(τ)Δτ]}ΔsbΔ(t)t0σ(t){pk1p1[v(σ(t),s)y(s)+w(σ(t),s)α(t0)α(s)f(τ)y(τ)Δτ]}Δs+b(t){pk1p1[v(σ(t),t)y(t)+w(σ(t),t)α(t0)α(t)f(τ)y(τ)Δτ]}+b(t)t0t{pk1p1[vtΔ(t,s)y(s)+wtΔ(t,s)α(t0)α(s)f(τ)y(τ)Δτ]}Δsy(σ(t))bΔ(t)t0σ(t){pk1p1[v(σ(t),s)+w(σ(t),s)α(t0)α(s)f(τ)Δτ]}Δs+b(t)y(t){pk1p1[v(σ(t),t)+w(σ(t),t)α(t0)α(t)f(τ)Δτ]+t0tpk1p1[vtΔ(t,s)+wtΔ(t,s)α(t0)α(s)f(τ)Δτ]Δs}=A˜(t)y(σ(t))+C˜(t)y(t),tI, 3.58

where A˜(t) and C˜(t) are defined as in (3.47) and (3.48). It is similar to the proof of Theorem 3.1, we get (3.44). This completes the proof. □

Theorem 3.4

Assume that (H3)(H5) hold, 0qil, 0ril, l0, 0θi1 (i=1,2) are constants, and μ(t)A(t)<1, vtΔ(t,s)0, wtΔ(t,s)0 for ts. And assume (2.3) holds. Suppose that u satisfies

ul(t)a(t)+t0tf1(s)[uq1(s)+t0sv(s,τ)ur1(τ)Δτ]θ1Δs+t0Tf2(s)[uq2(s)+t0sw(s,τ)ur2(τ)Δτ]θ2Δs,tI. 3.59

If there exist positive constants ki (i=1,2,3,4,5,6) such that

λ:=t0Tf˜2(s)[1+t0sf˜1(s)eA(s,t0)Δs+t0sw˜(s,τ)(1+t0τf˜1(ξ)eA(ξ,t0)Δξ)Δτ]Δs<1, 3.60

then

u(t)[K+F(t)1λ(1+t0tf˜1(s)eA(s,t0)Δs)]1l,tI, 3.61

where

K=t0T{θ2k4θ21f2(s)[lq2lk5q2+t0sw(s,τ)(lr2lk6r2)Δτ]+(1θ2)k4θ1f2(s)}Δs, 3.62
F(t)=a(t)+t0t{θ1k1θ11f1(s)[lq1lk2q1+t0sv(s,τ)(lr1lk3r1)Δτ]+(1θ1)k1θ1f1(s)}Δs, 3.63
A(t)=f˜1(t)+v˜(σ(t),t)+t0tv˜tΔ(t,τ)Δτ, 3.64
f˜1(t)=q1lθ1k1θ11k2q1lf1(t),f˜2(t)=q2lθ2k4θ21k5q2lf2(t), 3.65
v˜(s,t)=r1q1k2lq1k3r1lv(s,t),w˜(s,t)=r2q2k5lq2k6r2lw(s,t). 3.66

Proof

Denote

z(t)=a(t)+t0tf1(s)[uq1(s)+t0sv(s,τ)ur1(τ)Δτ]θ1Δs+t0Tf2(s)[uq2(s)+t0sw(s,τ)ur2(τ)Δτ]θ2Δs,tI. 3.67

Then z is nondecreasing on I. From (3.59) and (3.67) we have

ul(t)z(t),tI. 3.68

Using Lemma 2.6, we obtain

z(t)a(t)+t0t{θ1k1θ11f1(s)[q1lk2q1lul(s)+lq1lk2q1+t0sv(s,τ)(r1lk3r1lul(τ)+lr1lk3r1)Δτ]+(1θ1)k1θ1f1(s)}Δs+t0T{θ2k4θ21f2(s)[q2lk5q2lul(s)+lq2lk5q2+t0sw(s,τ)(r2lk6r2lul(τ)+lr2lk6r2)Δτ]+(1θ2)k4θ1f2(s)}Δs,tI. 3.69

Using (3.62), (3.63), (3.65), (3.66), (3.68), and (3.69), we get

z(t)K+F(t)+t0tf˜1(s)[z(s)+t0sv˜(s,τ)z(τ)Δτ]Δs+t0Tf˜2(s)[z(s)+t0sw˜(s,τ)z(τ)Δτ]Δs,tI. 3.70

Since F(t) is nondecreasing on I, then for tI, from the above inequality we have

z(t)K+F(T)+t0tf˜1(s)[z(s)+t0sv˜(s,τ)z(τ)Δτ]Δs+t0Tf˜2(s)[z(s)+t0sw˜(s,τ)z(τ)Δτ]Δs,tI. 3.71

Let

M=K+F(T)+t0Tf˜2(s)[z(s)+t0sw˜(s,τ)z(τ)Δτ]Δs. 3.72

Then (3.71) can be restated as

z(t)M+t0tf˜1(s)[z(s)+t0sv˜(s,τ)z(τ)Δτ]Δs,tI. 3.73

Set

N(t)=M+t0tf˜1(s)[z(s)+t0sv˜(s,τ)z(τ)Δτ]Δs,tI. 3.74

Then N(t) is nondecreasing, and from (3.73) and (3.74) we obtain

z(t)N(t),tI. 3.75

Taking the delta derivative of (3.74) and from (3.75), we get

NΔ(t)=f˜1(t)z(t)+f˜1(t)t0tv˜(t,τ)z(τ)Δτf˜1(t)[N(t)+t0tv˜(t,τ)N(τ)Δτ],tI. 3.76

Let

V(t)=N(t)+t0tv˜(t,τ)N(τ)Δτ,tI. 3.77

Obviously,

V(t0)=N(t0),N(t)V(t),NΔ(t)f˜1(t)V(t). 3.78

From Lemma 2.4, (3.77), and (3.78), we obtain

VΔ(t)=NΔ(t)+v˜(σ(t),t)N(t)+t0tv˜tΔ(t,τ)N(τ)Δτ[f˜1(t)+v˜(σ(t),t)+t0tv˜tΔ(t,τ)Δτ]V(t)=A(t)V(t),tI.

It is easy to see that AR+. Therefore, from Lemma 2.5 and the above inequality, we have

V(t)V(t0)eA˜(t,t0)=N(t0)eA(t,t0),tI. 3.79

Combining (3.78) and (3.79), we get

NΔ(t)f˜1(t)N(t0)eA(t,t0). 3.80

Setting t=τ in (3.80), integrating it from t0 to t, we easily obtain

N(t)N(t0)+N(t0)t0tf˜1(s)eA(s,t0)Δs,tI. 3.81

By (3.74) and (3.81), we get

N(t)M(1+t0tf˜1(s)eA(s,t0)Δs),tI. 3.82

From (3.75) and (3.82), we have

z(t)M(1+t0tf˜1(s)eA(s,t0)Δs),tI. 3.83

Using (3.83) on the right-hand side of (3.72) and according to (3.60), we obtain

MK+F(T)1λ. 3.84

From (3.83) and (3.84), we obtain

z(t)K+F(T)1λ(1+t0tf˜1(s)eA(s,t0)Δs),tI. 3.85

Then using (3.68), we have (3.61). This completes the proof. □

Remark 3.2

If we take l=q1=r1=θ1=1, and f2(t)0, then Theorem 3.4 reduces to [28, Theorem 3.2].

Applications

In this section, we will present some simple applications for our results. First, we consider the following Volterra–Fredholm type dynamic integral equation:

u(t)=K0+1t2s[u(s)+s2s+11s1+qq2τ3u(τ)Δτ]12Δs+1T32s[u(s)+s2s+11s1+qq2τ3u(τ)Δτ]13Δs,tI, 4.1

on time scales T=qN0, where qN0={qn:nN0,q>1}, and I=[1,T]qN0, T=qN, N is some positive integer and K0R.

The following theorem gives the bound on the solution of Eq. (4.1).

Theorem 4.1

Suppose that u is a solution of Eq. (4.1) on I. If there exist positive constants k1 and k2 such that

λ:=1T{k22312s[τ[1,s)[1+(q1)12k112τ]+s2s+11s1+qq2τ3ν[1,τ)[1+(q1)12k112ν]Δτ]}Δs<1, 4.2

then

|u(t)|(lnTlnq1)(q1)(k213+k112)+|K0|1λs[1,t)[1+(q1)12k112s],tI. 4.3

Proof

From (4.1), we get

|u(t)|=|K0|+1t2s[|u(s)|+s2s+11s1+qq2τ3|u(τ)|Δτ]12Δs+1T32s[|u(s)|+s2s+11s1+qq2τ3|u(τ)|Δτ]13Δs,tI. 4.4

Take t0=1, a(t)=|K0|, b(t)=1, f1(t)=2t, f2(t)=f4(t)=t2t+1, f3(t)=32t, f5(t)=f6(t)0, g1(t)=g2(t)=1+qq2t3, α(t)=t, β(t)=t, p=12, and q=13 in Theorem 3.1, on the basis of a straightforward computation, we have

K=1T23k21332sΔs=(lnTlnq1)(q1)k213,V(t)=|K0|+1t12k1122sΔs=|K0|+(lntlnq1)(q1)k112,A(t)=0,B(t)=0,C(t)=12k112,eBC(t,1)=s[1,t)[1+(q1)12k112s].

Using Theorem 3.1, we obtain the desired inequality (4.3). □

Secondly, we consider the following retarded Volterra–Fredholm type dynamic integral equation on R:

u(t)=K0+0t23s1+3s[u(s)+1s40sτ2u(τ)dτ]12ds+0T3es[u(s)+0su(τ)dτ]13ds,tI, 4.5

where I=[0,T], T is some positive real number and K0R.

The next result also deals with the boundedness of the solutions of Eq. (4.5).

Theorem 4.2

Suppose that u is a solution of Eq. (4.5) on I. If there exist positive constants k1 and k2 such that

λ:=13k223[4k112+114k1121exp{(14k1121)T3}+4k112eT34k112+114k11214k112]<1, 4.6

then

|u(t)|23k213(1eT3)+|K0|+12k112(T213ln(1+3T2))1λexp{14k112s},tI. 4.7

Proof

From (4.5), we have

|u(t)||K0|+0t23s1+3s[|u(s)|+1s40sτ2|u(τ)|dτ]12ds+0T3es[|u(s)|+0s|u(τ)|dτ]13ds,tI. 4.8

Take t0=0, a(t)=|K0|, b(t)=1, f1(t)=3t1+3t, f2(t)=1t4, f3(t)=et, f4(t)1 f5(t)=f6(t)0, g1(t)=t2, g2(t)1, α(t)=t2, β(t)=t3, p=12, and q=13 in Theorem 3.1, on the basis of a straightforward computation, we obtain

K=1T323k213esds=23k213(1eT3),V(t)=|K0|+0t212k1123s1+3sds=|K0|+12k112(t213ln(1+3t2)),A(t)=0,B(t)=0,C(t)=14k112,eBC(t,0)=exp{14k112s}.

Using Theorem 3.1, we obtain the desired inequality (4.7). □

Conclusions

In this paper, we have established some new retarded Volterra–Fredholm type integral inequalities on time scales, which extend some known inequalities and provide a handy tool for deriving bounds of solutions of retarded dynamic equations on time scales. Unlike some existing results in the literature, the integral inequalities considered in this paper involve the power nonlinearity, which results in difficulties in the estimation on the explicit bounds of unknown function u(t). We establish an inequality to overcome the difficulties, which can be used as a handy tool to solve the similar problems.

Acknowledgements

The author is indebted to the anonymous referees for their valuable suggestions and helpful comments which helped improve the paper significantly.

Authors’ contributions

HDL organized and wrote this paper. Further, he examined all the steps of the proofs in this research. The author read and approved the final manuscript.

Funding

This research was supported by A Project of Shandong Province Higher Educational Science and Technology Program (China) (Grant No. J14LI09), and the Natural Science Foundation of Shandong Province (China) (Grant No. ZR2018MA018), and the National Natural Science Foundation of China (Grant No. 11671227).

Competing interests

The author declares that there is no conflict of interests regarding the publication of this paper.

Footnotes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1. Hilger, S.: Ein Maßkettenkalkül mit Anwendung auf Zentrumsmanningfaltigkeiten. Ph.D. thesis, Universität Würzburg (1988)
  • 2.Adivar M., Raffoul Y.N. Existence results for periodic solutions of integro-dynamic equations on time scales. Ann. Mat. Pura Appl. 2009;188:543–559. doi: 10.1007/s10231-008-0088-z. [DOI] [Google Scholar]
  • 3.Atici F.M., Biles D.C., Lebedinsky A. An application of time scales to economics. Math. Comput. Model. 2006;43:718–726. doi: 10.1016/j.mcm.2005.08.014. [DOI] [Google Scholar]
  • 4.Bi L., Bohner M., Fan M. Periodic solutions of functional dynamic equations with infinite delay. Nonlinear Anal. 2008;68:170–174. doi: 10.1016/j.na.2006.12.017. [DOI] [Google Scholar]
  • 5.Bohner M., Peterson A. Dynamic Equations on Time Scales: An Introduction with Applications. Boston: Birkhäuser; 2001. [Google Scholar]
  • 6.Bohner M., Peterson A. Advances in Dynamic Equations on Time Scales. Boston: Birkhäuser; 2003. [Google Scholar]
  • 7.Dogan A. On the existence of positive solutions of the p-Laplacian dynamic equations on time scales. Math. Methods Appl. Sci. 2017;40:4385–4399. doi: 10.1002/mma.4311. [DOI] [Google Scholar]
  • 8.Dogan A. Positive solutions of the p-Laplacian dynamic equations on time scales with sign changing nonlinearity. Electron. J. Differ. Equ. 2018;2018:39. doi: 10.1186/s13662-018-1488-z. [DOI] [Google Scholar]
  • 9.Erbe L., Jia B.G., Peterson A. Belohorec-type oscillation theorem for second order sublinear dynamic equations on time scales. Math. Nachr. 2011;284:1658–1668. doi: 10.1002/mana.200810281. [DOI] [Google Scholar]
  • 10.Erbe L., Jia B.G., Peterson A. On the asymptotic behavior of solutions of Emden–Fowler equations on time scales. Ann. Mat. Pura Appl. 2012;191:205–217. doi: 10.1007/s10231-010-0179-5. [DOI] [Google Scholar]
  • 11.Federson M., Mesquita J.G., Slavik A. Measure functional differential equations and functional dynamic equations on time scales. J. Differ. Equ. 2012;252:3816–3847. doi: 10.1016/j.jde.2011.11.005. [DOI] [Google Scholar]
  • 12.Karpuz B. Volterra theory on time scales. Results Math. 2014;65:263–292. doi: 10.1007/s00025-013-0344-4. [DOI] [Google Scholar]
  • 13.Slavik A. Averaging dynamic equations on time scales. J. Math. Anal. Appl. 2012;388:996–1012. doi: 10.1016/j.jmaa.2011.10.043. [DOI] [Google Scholar]
  • 14.Feng Q.H., Meng F.W. Oscillation results for a fractional order dynamic equation on time scales with conformable fractional derivative. Adv. Differ. Equ. 2018;2018:193. doi: 10.1186/s13662-018-1643-6. [DOI] [Google Scholar]
  • 15.Liu H.D., Ma C.Q. Oscillation criteria for second-order neutral delay dynamic equations with nonlinearities given by Riemann–Stieltjes integrals. Abstr. Appl. Anal. 2013;2013:530457. [Google Scholar]
  • 16.Liu H.D., Ma C.Q. Oscillation criteria of even order delay dynamic equations with nonlinearities given by Riemann–Stieltjes integrals. Abstr. Appl. Anal. 2014;2014:395381. [Google Scholar]
  • 17.Agarwal R.P., Bohner M., Peterson A. Inequalities on time scales: a survey. Math. Inequal. Appl. 2001;4:535–557. [Google Scholar]
  • 18.Anderson D.R. Nonlinear dynamic integral inequalities in two independent variables on time scale pairs. Adv. Dyn. Syst. Appl. 2008;3:1–13. [Google Scholar]
  • 19.Bohner E.A., Bohner M., Akin F. Pachpatte inequalities on time scale. J. Inequal. Pure Appl. Math. 2005;6(1):6. [Google Scholar]
  • 20.Pachpatte D.B. Explicit estimates on integral inequalities with time scale. J. Inequal. Pure Appl. Math. 2006;7:143. [Google Scholar]
  • 21.Saker S.H. Some nonlinear dynamic inequalities on time scales. Math. Inequal. Appl. 2011;14:633–645. [Google Scholar]
  • 22.Meng F.W., Shao J. Some new Volterra–Fredholm type dynamic integral inequalities on time scales. Appl. Math. Comput. 2013;223:444–451. [Google Scholar]
  • 23.Du L.W., Xu R. Some new Pachpatte type inequalities on time scales and their applications. J. Math. Inequal. 2012;6(2):229–240. doi: 10.7153/jmi-06-23. [DOI] [Google Scholar]
  • 24.Feng Q.H., Meng F.W., Zheng B. Gronwall–Bellman type nonlinear delay integral inequalities on time scale. J. Math. Anal. Appl. 2011;382:772–784. doi: 10.1016/j.jmaa.2011.04.077. [DOI] [Google Scholar]
  • 25.Liu H.D., Meng F.W. Nonlinear retarded integral inequalities on time scales and their applications. J. Math. Inequal. 2018;12(1):219–234. doi: 10.1186/s13660-018-1808-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Wang J.F., Meng F.W., Gu J. Estimates on some power nonlinear Volterra–Fredholm type dynamic integral inequalities on time scales. Adv. Differ. Equ. 2017;2017:257. doi: 10.1186/s13662-017-1310-3. [DOI] [Google Scholar]
  • 27.Gu J., Meng F.W. Some new nonlinear Volterra–Fredholm type dynamic integral inequalities on time scales. Appl. Math. Comput. 2014;245:235–242. [Google Scholar]
  • 28.Li W.N., Sheng W.H. Some Gronwall type inequalities on time scales. J. Math. Inequal. 2010;4(1):67–76. doi: 10.7153/jmi-04-08. [DOI] [Google Scholar]
  • 29.Liu H.D. A class of retarded Volterra–Fredholm type integral inequalities on time scales and their applications. J. Inequal. Appl. 2017;2017:293. doi: 10.1186/s13660-017-1573-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Wang T.L., Xu R. Bounds for some new integral inequalities with delay on time scales. J. Math. Inequal. 2012;6(3):355–366. doi: 10.7153/jmi-06-35. [DOI] [Google Scholar]
  • 31.Wang T.L., Xu R. Some integral inequalities in two independent variables on time scales. J. Math. Inequal. 2012;6(1):107–118. doi: 10.7153/jmi-06-11. [DOI] [Google Scholar]
  • 32.Feng Q.H., Meng F.W., Zhang Y.M. Some new finite difference inequalities arising in the theory of difference equations. Adv. Differ. Equ. 2011;2011:21. doi: 10.1186/1687-1847-2011-21. [DOI] [Google Scholar]
  • 33.Liu H.D., Meng F.W. Some new generalized Volterra–Fredholm type discrete fractional sum inequalities and their applications. J. Inequal. Appl. 2016;2016:213. doi: 10.1186/s13660-016-1152-7. [DOI] [Google Scholar]
  • 34.Li L.Z., Meng F.W., He L.L. Some generalized integral inequalities and their applications. J. Math. Anal. Appl. 2010;372(1):339–349. doi: 10.1016/j.jmaa.2010.06.042. [DOI] [Google Scholar]
  • 35.Li L.Z., Meng F.W., Ju P.J. Some new integral inequalities and their applications in studying the stability of nonlinear integro-differential equations with time delay. J. Math. Anal. Appl. 2011;377(2):853–862. doi: 10.1016/j.jmaa.2010.12.002. [DOI] [Google Scholar]
  • 36.Feng Q.H., Meng F.W., Fu B.S. Some new generalized Volterra–Fredholm type finite difference inequalities involving four iterated sums. Appl. Math. Comput. 2013;219(15):8247–8258. [Google Scholar]

Articles from Journal of Inequalities and Applications are provided here courtesy of Springer

RESOURCES