Skip to main content
. 2018 Jun 19;23(6):1486. doi: 10.3390/molecules23061486

Table 1.

Small molecules that target mitochondria effectively prevent the cardiotoxicity induced by Dox.

Name of Molecules Model Key Mechanisms of the Action Against Dox Anti-Cancer Effect Refs.
AA NRC, rats ↓Disruption of ΔΨm - [24]
↓Mitochondrial apoptotic pathway
Baicalein Chick cardiomyocytes ↓Disruption of ΔΨm [25,26,27,28]
↓ROS
↓JNK activation
Berberine NRC, MCF-7 cells, rats ↓Mitochondrial dysfunction [29,30,31,32,33,34]
↓Disruption of ΔΨm
↓Mitochondrial apoptotic pathway
↓Mitochondrial Ca2+
↓Dox metabolize
Curcumin Rats, Mice
H9c2
↑Mitochondrial KATP channel - [35,36,37,38,39,40]
↓Mitochondrial phosphate carrier
↓Mitochondrial superoxide radicals
CRY Rats ↑Mitochondrial biogenesis - [41]
↑Activities of mitochondrial respiratory chain complex
Chrysin Rats ↓Mitochondrial apoptotic pathway - [42]
↓MAPK and NF-κB activation
↑VEGF/AKT pathway
CVB-D Mice ↑Mitochondrial biogenesis - [43]
CBD Mice, rats ↑Mitochondrial function - [13,44]
↑Mitochondrial biogenesis
↓Pro-inflammatory response
Esculetin H9c2 ↑Mitochondrial function - [45]
↑Bmi-1 expression
↓ROS
HKL Mice ↑Cardiac mitochondrial respiration [46,47]
↑Sirt3
↑PPARγ
HT Rats ↑Mitochondrial dysfunction - [48]
↑Mitochondrial electron transport chain
Isorhamnetin H9c2, rats, MCF-7, HepG2 and Hep2 ↓Mitochondria-dependent apoptotic Pathway [49]
↓MAPK pathway
↓ROS
Kaempferol H9c2, rats ↓Mitochondrial dysfunction [50,51]
↓Disruption of ΔΨm
↓Mitochondrial apoptotic pathway
LUTG H9c2 ↓Disruption of ΔΨm [52,53]
Myricitrin H9c2, rats ↓Disruption of ΔΨm - [54]
↓Mitochondrial apoptotic pathway
↓ROS
Naringin H9c2, rats ↓Disruption of ΔΨm - [55,56]
↓P38 MAPK
↓ROS
OMT H9c2, rats ↓Mitochondrial apoptotic pathway - [57,58]
↓ROS
OP-D H9c2, mice ↓Disruption of ΔΨm - [59]
↓Autophagy and ROS
PD H9c2 ↓Disruption of ΔΨm - [60]
↓ROS
↓NF-κB activation
Quercetin H9c2, mice ↓Mitochondrial dysfunction - [61,62,63,64]
↓Disruption of ΔΨm
↓ROS
↑Bmi-1 expression
RV NRC ↓Disruption of ΔΨm - [65,66,67]
↑Sirt1 pathway
↓ROS
RA H9c2 ↓Disruption of ΔΨm - [68,69]
↓ROS
Ses H9c2, rats ↓Disruption of ΔΨm - [70]
↑Sirt1 and Mn-SOD pathway
Sulforaphane H9c2, NRC, rats ↑Nrf2 [71,72]
↓Disruption of ΔΨm
↓Mitochondrial apoptotic pathway
SAI Rats ↓Membrane sclerosis [73,74]
L1210 cells
Tetrandrine Rats ↑Mitochondrial function [75]
↓Mitochondrial oxidative phosphorylation
THSG Mice, NRC ↓Disruption of ΔΨm [76,77]
↓Mitochondrial apoptotic pathway
↓ROS
Visnagin Zebrafish, Mice, NRC, HL1, MCF7, DU145, LNCaP, MDA-MB-231 ↓Mitochondrial malate dehydrogenase 2 activity [78,79]
ALA Rats ↓Mitochondrial apoptotic pathway - [80,81]
↑Nrf2
ATRA H9c2 ↑Mitochondrial function [82,83]
↓Mitochondrial biogenesis damage
BAY60-2770 H9c2, rats ↓ROS - [84,85]
↓Disruption of ΔΨm
↑Mitochondrial ferritin
Ghrelin NRC, H9c2, mice ↓Disruption of ΔΨm - [86,87,88]
↑mitochondrial bioenergetics
↓Mitochondrial apoptotic pathway
Melatonin H9c2, rats ↑Mitochondrial biogenesis [89,90]
NIH3T3 cells ↑PPARγ
↓ROS
D006 H9c2, zebrafish ↓mitochondrial biogenesis [91]
MCF-7
Mdivi-1 Rats, NRC, HL60 ↓Mitochondrial fission [92,93]
STS Mice, Rats ↓Mitochondrial lipid peroxidation and swelling - [94,95]
Bafilomycin A1, rapamycin H9c2, mice ↑Autophagy [96]
↓ROS
↑Mitochondrial function
Diazoxide Rats, mice ↑Mitochondrial KATP channel - [97,98,99]
↑Mitochondrial connexin
Dxz NRC, Rats ↓Mitochondrial iron accumulation [11,100,101]
Mice ↓Mitochondrial DNA
Met Mice, rats ↑Mitochondrial function [102,103,104]
HL-1 ↓Mitochondrial apoptotic pathway
MCF7/ADR
Nicorandil Rats, HL-1 ↑Mitochondrial function [105,106,107]
↓Mitochondrial apoptotic pathway
↑Mitochondrial creatine kinase activity and oxidative phosphorylation capacity
↑Mitochondrial KATP channel
Sildenafil Mice, mouse cardiomyocytes ↑Mitochondrial KATP channel [108,109,110]
↓Disruption of ΔΨm

↑, increase or open; ↓, decrease or inhibit; ↔, no difference; -, no description; ↕, biphasic effect; ΔΨm, mitochondrial membrane potential; NRC, Neonatal rat cardiomyocytes.