Skip to main content
Data in Brief logoLink to Data in Brief
. 2018 Aug 13;20:375–386. doi: 10.1016/j.dib.2018.08.022

Data on drinking water quality using water quality index (WQI) and assessment of groundwater quality for irrigation purposes in Qorveh&Dehgolan, Kurdistan, Iran

Hamed Soleimani a, Omid Nasri a, Boshra Ojaghi a, Hasan Pasalari b, Mona Hosseini c, Bayram Hashemzadeh d, Ali Kavosi e, Safdar Masoumi f, Majid Radfard g, Amir Adibzadeh g, Ghasem Kiani Feizabadi h,
PMCID: PMC6116340  PMID: 30175202

Abstract

This data article aimed to investigate the quality of drinking water of Qorveh and Dehgolan Counties in Kurdistan province based on the water quality index (WQI) and agricultural quality index based on RSC, PI, KR, MH, Na, SAR and SSP indices. Also, Piper diagram was used to determine hydro chemical features of the groundwater area. The calculation of WQI for groundwater samples indicated that 36% of the samples could be considered as excellent water and 64% of the samples were classified as good water category. The results of the calculated indices for agricultural water quality indicate that water quality in all collected samples are in a good and excellent category. The Piper classification showed that dominant type of groundwater hydro chemical faces of region was calcium bicarbonate (Ca-HCO3).

Keywords: Groundwater, WQI, Irrigation, Kurdistan, Iran


Specifications Table

Subject area Chemistry
More specific subject area Water quality
Type of data Tables, Figures
How data was acquired All water samples were analyzed according to the Standard Methods for Examination of Water and Wastewater and using titration method permanent hardness, magnesium and calcium were measured.
Data format Raw, Analyzed
Experimental factors All water samples in polyethylene bottles were stored in a dark place at room temperature until the metals analysis
Experimental features The mentioned parameters above, in abstract section, were analyzed according to the standards for water and wastewater.
Data source location Qorveh&Dehgolan, Kurdistan province, Iran
Data accessibility Data are included in this article

Value of data

  • Based on limited surveys in Qorveh-Dehgolan, the data can contribute to an understanding of the quality of groundwater in the region and to provide further studies on the quality of water for drinking and agriculture purposes.

  • The water quality indexes (WQI) show useful information on the quality of drinking water. Therefore, these data could be useful for communities or cities that have similar drinking water quality.

  • The data of the calculated water quality index (WQI) can be helpful for irrigation purposes.

  • Piper diagram can be used to determine hydro chemical features of the groundwater.

1. Data

Concentration of studied physicochemical parameters in the groundwater of Iran, Kurdistan province, and water sampling situations are summarized in Table 1 and Fig. 1. Based on the data of the WQI index calculation, water quality can be classified into five classes, as shown in Table 1, Table 2, Table 3. Also, the classification of groundwater samples for use of irrigation in EC, SAR, RSC, KR, SSP, PI, MH, Na%, TH and, as well as The calculated results are presented for these indices in Table 5, Table 6, Table 7, respectively. To obtain the correlation of scale variables we used Spearman correlation coefficient, which is shown in Table 8. Finally, the Piper diagram shows that the hydro chemical type of water is Ca-HCO3 (Fig. 3) and also, water quality index (WQI) classification for individual samples has been shown in (Table 4).

Table 1.

Physico-chemical and statistically analyzed water quality parameters.

Well number Type of water source UTM
pH EC TDS TH Ca2+ Mg2+ Na+ K+ SO42 HCO3 Cl
Y X μmhos/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L
W1 Deep well 35.168068 47.498878 7.85 480 307 228 69 13.431 15.18 0.39 11.04 273.28 8.165
W2 Semi-deep well 35.219263 47.472425 8.08 330 211 138 42 7.986 18.86 0.39 3.84 196.42 3.195
W3 Deep well 35.226098 47.577664 8.02 370 237 166 50 9.922 15.18 0.39 4.8 216.55 4.615
W4 Deep well 35.214918 47.608515 7.9 430 275 210 65 11.495 10.12 0.78 5.76 246.44 7.1
W5 Deep well 35.217779 47.63454 7.78 494 316 172 54 8.954 43.01 0.78 39.84 241.56 10.295
W6 Deep well 35.156122 47.520717 7.73 526 337 260 78 15.73 12.19 0.39 11.04 298.9 9.585
W7 Semi-deep well 35.20883 47.685694 8.01 462 296 224 66 14.278 6.21 0.39 12 209.84 12.78
W8 Deep well 35.17943 47.557788 7.88 393 252 174 54 9.438 20.01 0.39 10.08 237.9 6.035
W9 Deep well 35.177842 47.690503 8.02 389 249 166 51 9.317 20.47 0.78 11.04 223.26 7.1
W10 Semi-deep well 35.256976 47.565125 7.7 454 291 230 74 10.89 8.74 0.39 10.08 272.67 5.325
W11 Deep well 35.172975 47.622313 8 415 266 186 56 11.132 17.94 0.78 10.08 235.46 8.52
W12 Semi-deep well 35.295814 47.365098 8 395 253 202 66 8.954 3.91 0.39 10.08 229.36 4.615
W13 Deep well 35.295077 47.29673 7.9 410 262 190 61 9.075 14.49 0.39 11.04 231.8 6.39
W14 Deep well 35.341614 47.364265 7.86 483 309 246 78 12.342 10.12 0.39 5.76 286.7 6.035
W15 Deep well 35.298951 47.420618 7.9 272 171 132 41 7.139 5.29 0.39 3.84 152.5 3.55
W16 Semi-deep well 35.248597 47.408867 8.1 449 287 116 37 5.687 54.05 0.39 11.04 222.04 20.59
W17 Deep well 35.352906 47.303318 7.96 461 295 192 60 10.164 27.14 0.78 11.04 268.4 8.165
W18 Deep well 35.344516 47.452034 8.15 311 199 140 41 9.075 11.5 0.78 10.08 170.8 5.68
W19 Deep well 35.376907 47.289813 7.91 650 416 292 71 27.709 34.04 1.56 39.84 353.8 15.62
W20 Deep well 35.373085 47.229557 8.1 450 288 218 67 12.221 10.12 0.78 10.08 234.85 9.585
W21 Deep well 35.14605 47.85312 8.02 320 205 146 43 9.317 13.8 0.39 4.8 195.2 4.615
W22 Deep well 35.137667 47.876034 8.55 314 201 130 38 8.47 18.17 0.39 5.76 140.3 5.325
W23 Deep well 35.157183 47.914739 7.9 326 209 154 48 8.228 6.9 0.39 3.84 169.58 4.615
W24 Deep well 35.168433 47.853804 7.75 524 335 158 53 6.171 49.91 0.78 44.16 247.66 8.875
W25 Deep well 35.164491 47.751927 7.88 410 262 204 64 10.648 8.05 0.39 10.08 228.75 7.1
W26 Deep well 35.201912 47.997529 7.91 447 286 170 53 9.075 32.89 0.78 14.88 248.88 12.07
W27 Deep well 35.189449 47.732478 7.8 382 244 154 48 8.228 23.92 0.39 4.8 216.55 6.745
W28 Deep well 35.134725 47.801978 7.8 438 280 186 57 10.527 23 0.78 12 251.32 5.325
W29 Deep well 35.183581 47.906559 7.7 619 396 286 92 13.552 14.95 0.78 18.24 258.64 28.4
W30 Deep well 35.167667 47.905684 7.9 374 239 180 54 10.89 11.27 0.39 4.8 219.6 4.26
W31 Semi-deep well 35.20112 47.820928 7.9 360 230 168 55 7.381 8.97 0.39 4.8 192.15 5.325
W32 Semi-deep well 35.156808 47.714154 7.75 622 398 240 73 13.915 43.01 1.17 54.72 273.28 32.305
W33 Deep well 35.111437 47.95028 7.8 390 250 186 62 7.502 10.58 0.78 7.68 221.43 5.325
W34 Deep well 35.178168 47.941868 7.83 375 240 190 58 10.89 4.83 0.39 5.76 211.06 5.325
W35 Deep well 35.211534 47.779489 8.1 362 232 166 50 9.922 11.5 0.78 10.08 192.76 6.39
W36 Deep well 35.161974 47.95947 8.1 330 211 136 41 8.107 19.55 1.17 10.08 172.63 7.455
W37 Semi-deep well 35.129474 47.914836 7.95 422 270 184 51 13.673 17.48 1.17 12 213.5 11.005
W38 Deep well 35.22061 47.897434 8.1 431 276 200 58 13.31 17.25 0.78 11.04 256.2 7.455
W39 Deep well 35.230987 47.524515 8 342 219 170 49 11.495 5.29 0.39 4.8 186.05 4.26
W40 Deep well 35.248876 47.384327 8.15 340 218 144 44 8.228 10.58 0.78 5.76 159.82 5.68
W41 Deep well 35.252743 47.353516 8.05 382 244 152 48 7.744 19.09 0.78 39.84 140.3 14.2
W42 Deep well 35.054453 47.953708 8 514 329 244 74 14.278 15.41 0.78 13.92 283.04 10.65
W43 Deep well 35.067023 47.951234 7.95 434 278 218 67 12.221 6.44 0.78 12 237.9 8.165
W44 Deep well 35.094387 47.926746 8 453 290 218 63 14.641 14.49 0.78 15.84 263.52 8.165
W45 Deep well 35.060411 47.98421 8 325 208 132.5 40.4 7.623 23 1.17 10.08 195.2 4.26
W46 Deep well 35.073174 47.984565 8.2 524 335 264 82 14.278 8.74 0.78 10.08 279.38 11.005
W47 Deep well 35.097664 47.94214 8 396 253 164 49 10.043 22.08 0.78 11.04 212.28 8.165
W48 Deep well 35.088025 47.962661 8.1 776 504 228 69 13.431 74.06 1.17 123.84 185.44 69.225
W49 Deep well 35.079689 47.975834 8 713 463 180 50 13.31 89.93 3.51 84.96 285.48 20.235
W50 Deep well 35.052643 47.975729 8 613 392 226 64 15.972 43.01 2.73 87.84 212.28 19.525
Mean 7.96 437.64 280.28 189.21 57.57 10.96 20.53 0.76 18.04 227.05 10.29
Max 8.55 776.00 504.00 292.00 92.00 27.71 89.93 3.51 123.84 353.80 69.23
Min 7.70 272.00 171.00 116.00 37.00 5.69 3.91 0.39 3.84 140.30 3.20
SD 0.15 106.26 68.92 41.94 12.53 3.54 17.41 0.57 23.81 43.48 10.41

Fig. 1.

Fig. 1

Location of the study area.

Table 2.

The weight (wi) and relative weight (Wi) of each chemical parameter calculated based on the standard values reported by the World Health Organization [1], [2], [3].

Parameter WHO guideline (mg/L) Weight (wi) Relative weights (Wi)
[K+] 12 2 0.056
[Na+] 200 4 0.111
[Mg+] 50 3 0.083
[Ca2+] 75 3 0.083
[HCO3] 120 1 0.028
[Cl] 250 5 0.139
[SO4] 250 5 0.139
[pH] 8.5 3 0.083
[TDS] 500 5 0.139
Σ Σ

Table 3.

Water quality classification ranges and types of water based on WQI values [1], [4], [5], [6].

Range Type of groundwater
< 50 Excellent water
50–99.99 Good water
100–199.99 Poor Water
200–299.99 Very poor water
≥ 300 Unsuitable for drinking/Irrigation purpose

Table 5.

Summary of water quality indices in present study [7], [8], [9], [10], [11], [12], [13].

Indices Formula
Residual sodium carbonate (RSC) RSC = (CO32−+HCO3)+(Ca2++Mg2+)
Permeability index (PI) PI=Na+K+HCO3Ca+Mg+Na+K×100
Kelly’s ratio (KR) KR=NaCa+Mg
Magnesium hazard(MH) MH=MgCa+Mg×100
Sodium percentage (Na %) Na%=Na+KCa+Mg+Na+K×100
Sodium adsorption ratio (SAR) SAR=Na(Ca+Mg)/2×100
Soluble sodium percentage (SSP) SSP=NaCa+Mg+Na×100

Table 6.

Calculation of RSC, PI, KR, MH, Na%, SAR and SSP of groundwater.

Well number RSC PI KR MH Na% SAR SSP
w1 − 0.1 52.67608 0.140693 25.32468 12.5 0.427669 12.33397
w2 − 4.3 30.43871 0.095517 19.59064 8.880995 0.432681 8.718861
w3 0.26 64.87732 0.208589 23.31288 17.46835 0.532617 17.25888
w4 − 0.3 52.28866 0.103865 22.70531 9.606987 0.298871 9.40919
w5 − 0.22 53.89116 0.126829 19.5122 11.44708 0.363184 11.25541
w6 − 0.28 47.56944 0.103448 27.20307 9.532062 0.334252 9.375
w7 − 1 44.05674 0.057269 28.4141 5.613306 0.172568 5.416667
w8 0.46 66.4299 0.263158 22.51462 21.01617 0.688247 20.83333
w9 0.32 65.4821 0.260479 23.65269 21.04019 0.673226 20.66508
w10 − 0.14 50.14377 0.082969 19.21397 7.847082 0.251111 7.66129
w11 0.18 61.05971 0.208556 23.79679 17.62115 0.570392 17.25664
w12 − 0.34 49.39279 0.041463 19.5122 4.205607 0.118733 3.981265
w13 0.38 71.50413 0.534286 22.85714 35.06494 1.413587 34.82309
w14 − 0.34 52.14724 0.126728 22.81106 11.42857 0.373364 11.24744
w15 − 0.18 60.77683 0.108844 20.06803 10.36585 0.263932 9.815951
w16 1.39 91.91092 1.066964 21.875 51.72414 2.258338 51.61987
w17 0.5 64.45005 0.3 23.07692 23.37917 0.837854 23.07692
w18 0.19 65.51562 0.191489 29.07801 16.56805 0.454762 16.07143
w19 0.32 68.52513 0.212766 27.30496 17.78426 0.505291 17.54386
w20 − 0.51 48.93188 0.09589 22.37443 9.128631 0.28381 8.75
w21 0.14 52.71506 0.286787 30.93093 22.91667 1.046674 22.28705
w22 0.41 76.95 0.480315 31.10236 32.62599 1.082575 32.44681
w23 − 0.3 57.58688 0.092357 25.15924 8.72093 0.231445 8.45481
w24 0.78 74.75866 0.62 24.28571 38.48858 1.640366 38.2716
w25 − 0.07 58.96209 0.094771 23.20261 8.928571 0.234451 8.656716
w26 0.62 71.06918 0.411243 23.07692 29.43633 1.069231 29.14046
w27 0.02 61.54112 0.190058 22.51462 16.17647 0.497067 15.97052
w28 − 0.3 53.45452 0.174009 28.4141 14.98127 0.524341 14.82176
w29 − 1.86 40.33636 0.129738 20.55394 11.71171 0.480555 11.48387
w30 0.18 61.19696 0.156069 24.85549 13.71571 0.410554 13.5
w31 − 0.18 57.48031 0.114035 19.59064 10.4712 0.29824 10.23622
w32 − 0.58 56.58115 0.346304 27.0428 26.04317 1.110333 25.72254
w33 − 0.02 57.06826 0.121622 20.27027 11.05769 0.330847 10.84337
w34 − 0.34 51.38 0.052356 24.08377 5.210918 0.144715 4.975124
w35 − 0.03 59.85215 0.157576 25.75758 14.0625 0.404819 13.61257
w36 0.44 77.45903 0.418699 20.73171 30.31161 0.92872 29.51289
w37 − 0.18 58.25647 0.193122 31.21693 16.55629 0.530997 16.18625
w38 − 0.42 52.36534 0.117073 26.82927 10.86957 0.335247 10.48035
w39 − 0.32 54.00683 0.073099 26.90058 7.065217 0.19118 6.811989
w40 − 0.15 61.79381 0.162069 27.58621 14.45428 0.390314 13.94659
w41 − 0.7 55.80651 0.176301 26.30058 15.40342 0.463774 14.98771
w42 − 0.46 49.87868 0.127615 24.68619 11.6451 0.394576 11.31725
w43 − 0.34 49.66664 0.06338 24.88263 6.373626 0.185001 5.960265
w44 0.38 60.41969 0.201005 25.8794 17.08333 0.567105 16.7364
w45 0.66 80.72443 0.42562 23.55372 30.45977 0.936364 29.85507
w46 0.7 78.02725 0.773006 32.51534 43.7931 1.973816 43.59862
w47 0.13 65.07177 0.282209 24.84663 22.38095 0.7206 22.00957
w48 − 1.34 58.65971 0.503861 24.71042 33.75959 1.621775 33.50449
w49 1.22 80.83319 1.068306 15.30055 52.21932 2.890355 51.65125
w50 0.82 79.43416 0.914201 27.51479 48.2389 2.376923 47.75889

Table 7.

Classification of groundwater sample for irrigation use on the basic of EC, SAR, RSC, KR, SSP, PI, MH, Na%, T.H.

Parameters Range Water class Samples (%)
EC < 250 Excellent 0
250–750 Good 98
750–2250 Permissible 2
> 2250 Doubtful 0
SAR 0–10 Excellent 100
10–18 Good 0
18–26 Doubtful 0
> 26 Unsuitable 0
RSC < 1.25 Good 98
1.25–2.5 Doubtful 2
> 2.5 Unsuitable 0
KR < 1 Suitable 96
1–2 Marginal suitable 4
> 2 Unsuitable 0
SSP < 50 Good 96
> 50 Unsuitable 4
PI > 75 Class-I 8
25–75 Class-II 92
< 25 Class-III 0
MH < 50 Suitable 100
> 50 Harmful and Unsuitable 0
Na% < 20 Excellent 60
20–40 Good 32
40–60 Permissible 8
60–80 Doubtful 0
>80 Unsuitable 0
T.H < 75 Soft 0
75–150 Moderately hard 18
150–300 Hard 82
> 300 Very hard 0

Table 8.

Pearson’s correlation coefficient.

pH Na K Ca Mg SO Cl TDS EC HCO3 TH
pH 1
Na 0.008 1
K 0.077 0.681** 1
Ca − 0.437** − 0.097 0.032 1
Mg − 0.102 0.11 0.383** 0.615** 1
SO4 − 0.013 0.82** 0.71** 0.182 0.325* 1
Cl 0.004 0.658** 0.373** 0.328* 0.308* 0.816** 1
TDS − 0.241 0.69** 0.594** 0.629** 0.629** 0.798** 0.774** 1
EC − 0.247 0.685** 0.591** 0.635** 0.634** 0.793** 0.77** 1 1
HCO3 − 0.473** 0.198 0.217 0.698** 0.66** 0.118 0.095 0.619** 0.625** 1
TH − 0.362** − 0.034 0.157 0.961** 0.808** 0.25 0.353* 0.69** 0.696** 0.752** 1
**

Correlation is significant at the 0.01 level (2-tailed).

*

Correlation is significant at the 0.05 level (2-tailed)

Fig. 3.

Fig. 3

Piper diagram of groundwater samples of the present study.

Table 4.

Water quality index (WQI) classification for individual samples.

Well number DWQI Water quality rating
W1 61.07 Good
W2 43.43 Excellent
W3 48.57 Excellent
W4 56.80 Good
W5 55.46 Good
W6 66.89 Good
W7 59.70 Good
W8 50.83 Good
W9 49.89 Excellent
W10 60.24 Good
W11 53.46 Good
W12 54.54 Good
W13 53.51 Good
W14 63.56 Good
W15 39.95 Excellent
W16 46.04 Excellent
W17 56.13 Good
W18 43.36 Excellent
W19 77.52 Good
W20 59.02 Good
W21 44.13 Excellent
W22 42.34 Excellent
W23 44.90 Excellent
W24 54.58 Good
W25 55.22 Good
W26 52.89 Good
W27 47.29 Excellent
W28 53.97 Good
W29 74.58 Good
W30 50.40 Good
W31 48.23 Excellent
W32 70.75 Good
W33 52.13 Good
W34 51.61 Good
W35 48.66 Excellent
W36 43.84 Excellent
W37 53.27 Good
W38 56.07 Good
W39 47.72 Excellent
W40 44.47 Excellent
W41 48.65 Excellent
W42 65.02 Good
W43 58.25 Good
W44 59.28 Good
W45 43.20 Excellent
W46 68.19 Good
W47 49.73 Excellent
W48 78.90 Good
W49 68.04 Good
W50 69.54 Good

2. Experimental design, materials and methods

2.1. Study area

Our study area includes two counties: Qorveh county, and Dehgolan county. Qorveh and Dehgolan counties in Kurdistan province are located in west of Iran. Qorveh is located between the latitudes 35.1679°N and longitudes 47.8038°E, encompassing an area of about 4338.7 km2 and the average altitude of the city is 1900 m above sea level. Dehgolan is located between the latitudes 35.2798 °N and longitudes 47.4221°E. also. The area of this county is 2050 km2 and the average altitude of the city is 1800 m above sea level.

2.2. Sample collection and analytical procedures

For the purpose of this data article, a total of 50 rural drinking water sources were collected in Qorveh-Dehgolan area in Kurdistan province, for 12 months (2015–2016). Water samples were analyzed according to physical and chemical parameters. The study area, as well as sampling locations, have been shown in Fig. 1. In this study, 10 chemical parameters including calcium (Ca2+), sodium (Na+), potassium (K+), magnesium (Mg+2), bicarbonate (HCO3), sulfate (SO4 2), chloride (Cl), pH, TDS and electrical conductivity (EC) were used to evaluate the groundwater quality for drinking and agricultural purposes. Samples were collected in polyethylene bottles (1 L) and then the collected samples were kept in an ice box and then transferred to a fridge where they were stored at 4 °C until delivery to the laboratory. All water samples were analyzed according to the Standard Methods for Examination of Water and Wastewater and using titration method permanent hardness, magnesium and calcium were measured [14], [15], [16], [17], [18], [19], [20]. The concentration of hydrogen ion (pH) and electrical conductivity was also analyzed with pH meter (model wtw, Esimetrwb) and turbidity meter (model Hach 50161/co 150 model P2100Hach, USA), respectively [21], [22], [23], [24], [25], [26], [27], [28]. On the other hand, Values of, SO42 and Cl were obtained using spectrophotometer technique. In this study, various indices and ratios such as Sodium Absorption Ratio (SAR), Soluble Sodium Percentage (SSP), Residual Sodium Carbonate (RSC), Permeability Index (PI), Total Hardness (TH), Magnesium hazard (MH), Kelly׳s Ratio (KR), Pollution Index (PI), and Sodium percentage (Na %) were also determined that showed in Table 5. Then, to calculate WQI, the weight for physical and chemical parameters were determined with respect to the relative importance of the overall water quality for drinking water purposes.

All data of this study were statistically analyzed, and using a SPSS (IBM Corp. Released 2016. IBM SPSS Statistics for Windows, Version 24.0. Armonk, NY: IBM Corp), a correlation matrix was run. In order to describe groundwater quality and also possible pathways of geochemical changes, major ion chemical data have been drawn on Piper trilinear diagram (Piper 1944) in Fig.3. The distribution map of water quality index has been shown in Fig. 2

Fig. 2.

Fig. 2

Spatial distribution map of water quality index.

3. Drinking water quality index (DWQI)

The value of physio-chemical parameters has been determined to calculate the WQI formula. Also, it should be noted that assign of these parameters has been according to the relative importance of parameters in the overall quality of water for drinking objectives. The relative weight was calculated via the below equation [1].

Wi=Wii=1nWi (1)

In this equation, the relative weight of each parameter is Wi, and n refers to the number of parameters. Table 1 shows the weight (wi) and relative weight (Wi) of each chemical parameter. For each parameter, the quality rating scale is calculated by dividing its concentration in each water sample to its respective standards (released by World Health Organization 2011) and finally multiplied the results by 100.

qi=(CiSi)×100 (2)

where, qi shows the quality rating, Ci refer the concentration of each chemical parameter in each sample (mg/L) and Si is the standard limit for each chemical parameter (mg/L) based on the guidelines of the WHO (2011). In the final of WQI calculating, the SIi was first assigned for each parameter and then the sum of Si values gave the water quality index for each sample [1].

SIi=Wi×qi (3)
WQI=i=1nSIi (4)

where, SIi represents the sub-index of parameter, qi refers to the rating based on concentration of its parameter, and n is the number of parameters

Acknowledgements

The authors want to thank the respected management of Iran׳s water resources for their supports from authors.

Footnotes

Transparency document

Transparency document associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.08.022.

Transparency document. Supplementary material

Transparency document

mmc1.docx (11.5KB, docx)

.

References

  • 1.Abbasnia A., Alimohammadi M., Mahvi A.H., Nabizadeh R., Yousefi M., Mohammadi A.A., Pasalari H., Mirzabeigi H.M. Assessment of groundwater quality and evaluation of scaling and corrosiveness potential of drinking water samples in villages of Chabahar city, Sistan and Baluchistan province in Iran. Data Brief. 2018;16:182–192. doi: 10.1016/j.dib.2017.11.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Abbasnia A., Radfard M., Mahvi A.H., Mahvi A.H., Yousefi M., Soleimani H. Groundwater quality assessment for irrigation purposes based on irrigation water quality index and its zoning with GIS in the villages of Chabahar, Sistan and Baluchistan, Iran. Data Brief. 2018;19:623–631. doi: 10.1016/j.dib.2018.05.061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Abbasnia A., Yousefi N., Mahvi A.H., Nabizadeh R., Radfard M., Yousefi M., Alimohammadi M. Evaluation of groundwater quality using water quality index and its suitability for assessing water for drinking and irrigation purposes; case study of Sistan and Baluchistan province (Iran) Hum. Ecol. Risk Assess.: Int. J. 2018 [Google Scholar]
  • 4.Radfard M., Yunesian M., Nabizadeh Nodehi R., Biglari H., Hadi M., Yosefi N., Yousefi M., Abbasnia A., Mahvi A.H. Drinking water quality and Arsenic health risk assessment in Sistan-and-Baluchestan, Southeastern province Iran. Hum. Ecol. Risk Assess.: Int. J. 2018 [Google Scholar]
  • 5.Mirzabeygi M., Yousefi N., Abbasnia A., Youzi H., Alikhani M., Mahvi A.H. Evaluation of groundwater quality and assessment of scaling potential and corrosiveness of water supply networks, Iran. J. Water Supply: Res. Technol.-AQUA. 2017;jws2(67):1–10. [Google Scholar]
  • 6.Takdastana A., Mirzabeygi (Radfard) M., Yousefi M., Abbasnia A., Khodadadia R., Mahvi A.H., Jalili Naghan D. Neuro-fuzzy inference system Prediction of stability indices and Sodium absorption ratio in Lordegan rural drinking water resources in west Iran. Data Breif. 2018;18:255–261. doi: 10.1016/j.dib.2018.02.075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Soleimani H., Abbasnia A., Yousefi M., Mohammadi A.A., Khorasgani F.C. Data on assessment of groundwater quality for drinking and irrigation in rural area Sarpol-e Zahab city, Kermanshah province, Iran. Data Brief. 2018;17:148–156. doi: 10.1016/j.dib.2017.12.061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Asghari F.B., Mohammadi A.A., Dehghani M.H. Data on assessment of groundwater quality with application of ArcGIS in Zanjan, Iran. Data Brief. 2018;18:375–379. doi: 10.1016/j.dib.2018.03.059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Asghari F.B., Jaafari J., Yousefi M., Mohammadi A.A., Dehghanzadeh R. Evaluation of water corrosion, scaling extent and heterotrophic plate count bacteria in asbestos and polyethylene pipes in drinking water distribution system. Hum. Ecol. Risk Assess.: Int. J. 2018;24:1138–1149. [Google Scholar]
  • 10.Yousefi M., Dehghani M.H., Nasab S.M., Taghavimanesh V., Nazmara S., Mohammadi A.A. Data on trend changes of drinking groundwater resources quality: a case study in Abhar. Data Brief. 2018;17:424–430. doi: 10.1016/j.dib.2018.01.032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Yousefi M., Yaseri M., Nabizadeh R., Hooshmand E., Jalilzadeh M., Mahvi A.H., Mohammadi A.A. Association of hypertension, body mass index and waist circumference with fluoride intake; water drinking in residents of fluoride endemic areas, Iran. Biol. Trace Elem. Res. 2018 doi: 10.1007/s12011-018-1269-2. [DOI] [PubMed] [Google Scholar]
  • 12.Mohammadi A.A., Najafi Saleh H., Mahvi A.H., Alimohammadi M., Nabizadeh R., Yousefi M. Data on corrosion and scaling potential of drinking water resources using stability indices in Jolfa, East Azerbaijan, Iran. Data Brief. 2018;16:724–731. doi: 10.1016/j.dib.2017.11.099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Yousefi M., Najafi Saleh H., Mohammad A.A., Mahvi A.H., Ghadrpoori M., Suleimani H. Data on water quality index for the groundwater in rural area Neyshabur County, Razavi province, Iran. Data Brief. 2017;15:901–907. doi: 10.1016/j.dib.2017.10.052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Kazemi Moghadam V., Yousefi M., Khosravi A., Yaseri M., Mahvi A.H., Hadei M., Mohammadi A.A., Robati Z., Mokamel A. High concentration of fluoride can be increased risk of abortion. Biol. Trace Elem. Res. 2018 doi: 10.1007/s12011-018-1250-0. [DOI] [PubMed] [Google Scholar]
  • 15.Asghari F.B., Mohammadi A.A., Aboosaedi Z., Yaseri M., Yousefi M. Data on fluoride concentration levels in cold and warm season in rural area of Shout (West Azerbaijan, Iran) Data Brief. 2017;15:528–531. doi: 10.1016/j.dib.2017.10.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Mohammadi A.A., Yousefi M., Mahvi A.H. Fluoride concentration level in rural area in Poldasht city and daily fluoride intake based on drinking water consumption with temperature. Data Brief. 2017;13:312–315. doi: 10.1016/j.dib.2017.05.045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Mirzabeygi M., Yousefi M., Soleimani H., MohammadiAA, Mahvi A.H., Abbasnia A. The concentration data of fluoride and health risk assessment in drinking water in the Ardakan city of Yazd province, Iran. Data Brief. 2018;18:40–46. doi: 10.1016/j.dib.2018.02.069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Yousefi M., Mohammadi A.A., Yaseri M., Mahvi A.H. Epidemiology of drinking water fluoride and its contribution to fertility, infertility, and abortion: an ecological study in West Azerbaijan Province, Poldasht County, Iran. Fluoride. 2017;50:343–353. [Google Scholar]
  • 19.Neisi A., Mirzabeygi M., Zeyduni G., Hamzezadeh A., Jalili D., Abbasnia A. Data on fluoride concentration levels in cold and warm season in City area of Sistan and Baluchistan Province, Iran. Data Brief. 2018;18(2018):713–718. doi: 10.1016/j.dib.2018.03.060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Yousefi M., Arami S.M., Takallo H., Hosseini M., Radfard M., Soleimani H., Mohammadi A.A. Modification of pumice with HCl and NaOH enhancing its fluoride adsorption capacity: kinetic and isotherm studies. Hum. Ecol. Risk Assess.: Int. J. 2018 [Google Scholar]
  • 21.Yousefi M., Najafi Saleh H., Yaseri M., Mahvi A.H., Soleimani H., Saeedi Z., Zohdi S., Mohammadi A.A. Data on microbiological quality assessment of rural drinking water supplies in Poldasht County. Data Brief. 2018;17:763–769. doi: 10.1016/j.dib.2018.02.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Yousefi M., Ghoochani M., Mahvi A.H. Health risk assessment to fluoride in drinking water of rural residents living in the Poldasht city, Northwest of Iran. Ecotoxicol. Environ. Saf. 2018;148:426–430. doi: 10.1016/j.ecoenv.2017.10.057. [DOI] [PubMed] [Google Scholar]
  • 23.Mohammadi A.A., Yousefi M., Yaseri M., Jalilzadeh M., Mahvi A.H. Skeletal fluorosis in relation to drinking water in rural areas of West Azerbaijan, Iran. Sci. Rep. 2017;7:17300. doi: 10.1038/s41598-017-17328-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Mirzabeygi M., Abbasnia A., Yunesian M., Nodehi R.N., Yousefi N., Hadi M. Heavy metal contamination and health risk assessment in drinking water of Sistan and Baluchistan, Southeastern Iran. Hum. Ecol. Risk Assess.: Int. J. 2017;23:1893–1905. [Google Scholar]
  • 25.Saleh H.N., Dehghani M.H., Nabizadeh R., Mahvi A.H., Hossein F., Ghaderpoori M. Data on the acid black 1 dye adsorbtion from aqueous solutions by low-cost adsorbent-Cerastoderma lamarcki shell collected from the northern coast of Caspian Sea. Data Brief. 2018;17:774–780. doi: 10.1016/j.dib.2018.01.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Dehghani M.H., Haghighat G.A., Yousefi M. Data on fluoride concentration in drinking water resources in Iran: a case study of Fars province; Larestan region. Data Brief. 2018;19:842–846. doi: 10.1016/j.dib.2018.05.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Mirzaei N., Ghaffari H.R., Karimyan K., Mohammadi Moghadam F., Javid A., Sharafi K. Survey of effective parameters (water sources, seasonal variation and residual chlorine) on presence of thermotolerant coliforms bacteria in different drinking water resources. Int. J. Pharm. Technol. 2015;7(3):9680–9689. [Google Scholar]
  • 28.Jafari K., Mohammadi A.A., Heidari Z., Asghari F.B., Radfard M., Yousefi M. Data on microbiological quality assessment of rural drinking water supplies in Tiran County, Isfahan province, Iran. Data Brief. 2018;18:1122–1126. doi: 10.1016/j.dib.2018.04.004. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Transparency document

mmc1.docx (11.5KB, docx)

Articles from Data in Brief are provided here courtesy of Elsevier

RESOURCES