Abstract
This data article aimed to investigate the quality of drinking water of Qorveh and Dehgolan Counties in Kurdistan province based on the water quality index (WQI) and agricultural quality index based on RSC, PI, KR, MH, Na, SAR and SSP indices. Also, Piper diagram was used to determine hydro chemical features of the groundwater area. The calculation of WQI for groundwater samples indicated that 36% of the samples could be considered as excellent water and 64% of the samples were classified as good water category. The results of the calculated indices for agricultural water quality indicate that water quality in all collected samples are in a good and excellent category. The Piper classification showed that dominant type of groundwater hydro chemical faces of region was calcium bicarbonate (Ca-HCO3−).
Keywords: Groundwater, WQI, Irrigation, Kurdistan, Iran
Specifications Table
Subject area | Chemistry |
---|---|
More specific subject area | Water quality |
Type of data | Tables, Figures |
How data was acquired | All water samples were analyzed according to the Standard Methods for Examination of Water and Wastewater and using titration method permanent hardness, magnesium and calcium were measured. |
Data format | Raw, Analyzed |
Experimental factors | All water samples in polyethylene bottles were stored in a dark place at room temperature until the metals analysis |
Experimental features | The mentioned parameters above, in abstract section, were analyzed according to the standards for water and wastewater. |
Data source location | Qorveh&Dehgolan, Kurdistan province, Iran |
Data accessibility | Data are included in this article |
Value of data
-
•
Based on limited surveys in Qorveh-Dehgolan, the data can contribute to an understanding of the quality of groundwater in the region and to provide further studies on the quality of water for drinking and agriculture purposes.
-
•
The water quality indexes (WQI) show useful information on the quality of drinking water. Therefore, these data could be useful for communities or cities that have similar drinking water quality.
-
•
The data of the calculated water quality index (WQI) can be helpful for irrigation purposes.
-
•
Piper diagram can be used to determine hydro chemical features of the groundwater.
1. Data
Concentration of studied physicochemical parameters in the groundwater of Iran, Kurdistan province, and water sampling situations are summarized in Table 1 and Fig. 1. Based on the data of the WQI index calculation, water quality can be classified into five classes, as shown in Table 1, Table 2, Table 3. Also, the classification of groundwater samples for use of irrigation in EC, SAR, RSC, KR, SSP, PI, MH, Na%, TH and, as well as The calculated results are presented for these indices in Table 5, Table 6, Table 7, respectively. To obtain the correlation of scale variables we used Spearman correlation coefficient, which is shown in Table 8. Finally, the Piper diagram shows that the hydro chemical type of water is Ca-HCO3− (Fig. 3) and also, water quality index (WQI) classification for individual samples has been shown in (Table 4).
Table 1.
Well number | Type of water source | UTM |
pH | EC | TDS | TH | Ca2+ | Mg2+ | Na+ | K+ | SO42− | HCO3− | Cl− | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Y | X | μmhos/cm | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | ||||
W1 | Deep well | 35.168068 | 47.498878 | 7.85 | 480 | 307 | 228 | 69 | 13.431 | 15.18 | 0.39 | 11.04 | 273.28 | 8.165 | |
W2 | Semi-deep well | 35.219263 | 47.472425 | 8.08 | 330 | 211 | 138 | 42 | 7.986 | 18.86 | 0.39 | 3.84 | 196.42 | 3.195 | |
W3 | Deep well | 35.226098 | 47.577664 | 8.02 | 370 | 237 | 166 | 50 | 9.922 | 15.18 | 0.39 | 4.8 | 216.55 | 4.615 | |
W4 | Deep well | 35.214918 | 47.608515 | 7.9 | 430 | 275 | 210 | 65 | 11.495 | 10.12 | 0.78 | 5.76 | 246.44 | 7.1 | |
W5 | Deep well | 35.217779 | 47.63454 | 7.78 | 494 | 316 | 172 | 54 | 8.954 | 43.01 | 0.78 | 39.84 | 241.56 | 10.295 | |
W6 | Deep well | 35.156122 | 47.520717 | 7.73 | 526 | 337 | 260 | 78 | 15.73 | 12.19 | 0.39 | 11.04 | 298.9 | 9.585 | |
W7 | Semi-deep well | 35.20883 | 47.685694 | 8.01 | 462 | 296 | 224 | 66 | 14.278 | 6.21 | 0.39 | 12 | 209.84 | 12.78 | |
W8 | Deep well | 35.17943 | 47.557788 | 7.88 | 393 | 252 | 174 | 54 | 9.438 | 20.01 | 0.39 | 10.08 | 237.9 | 6.035 | |
W9 | Deep well | 35.177842 | 47.690503 | 8.02 | 389 | 249 | 166 | 51 | 9.317 | 20.47 | 0.78 | 11.04 | 223.26 | 7.1 | |
W10 | Semi-deep well | 35.256976 | 47.565125 | 7.7 | 454 | 291 | 230 | 74 | 10.89 | 8.74 | 0.39 | 10.08 | 272.67 | 5.325 | |
W11 | Deep well | 35.172975 | 47.622313 | 8 | 415 | 266 | 186 | 56 | 11.132 | 17.94 | 0.78 | 10.08 | 235.46 | 8.52 | |
W12 | Semi-deep well | 35.295814 | 47.365098 | 8 | 395 | 253 | 202 | 66 | 8.954 | 3.91 | 0.39 | 10.08 | 229.36 | 4.615 | |
W13 | Deep well | 35.295077 | 47.29673 | 7.9 | 410 | 262 | 190 | 61 | 9.075 | 14.49 | 0.39 | 11.04 | 231.8 | 6.39 | |
W14 | Deep well | 35.341614 | 47.364265 | 7.86 | 483 | 309 | 246 | 78 | 12.342 | 10.12 | 0.39 | 5.76 | 286.7 | 6.035 | |
W15 | Deep well | 35.298951 | 47.420618 | 7.9 | 272 | 171 | 132 | 41 | 7.139 | 5.29 | 0.39 | 3.84 | 152.5 | 3.55 | |
W16 | Semi-deep well | 35.248597 | 47.408867 | 8.1 | 449 | 287 | 116 | 37 | 5.687 | 54.05 | 0.39 | 11.04 | 222.04 | 20.59 | |
W17 | Deep well | 35.352906 | 47.303318 | 7.96 | 461 | 295 | 192 | 60 | 10.164 | 27.14 | 0.78 | 11.04 | 268.4 | 8.165 | |
W18 | Deep well | 35.344516 | 47.452034 | 8.15 | 311 | 199 | 140 | 41 | 9.075 | 11.5 | 0.78 | 10.08 | 170.8 | 5.68 | |
W19 | Deep well | 35.376907 | 47.289813 | 7.91 | 650 | 416 | 292 | 71 | 27.709 | 34.04 | 1.56 | 39.84 | 353.8 | 15.62 | |
W20 | Deep well | 35.373085 | 47.229557 | 8.1 | 450 | 288 | 218 | 67 | 12.221 | 10.12 | 0.78 | 10.08 | 234.85 | 9.585 | |
W21 | Deep well | 35.14605 | 47.85312 | 8.02 | 320 | 205 | 146 | 43 | 9.317 | 13.8 | 0.39 | 4.8 | 195.2 | 4.615 | |
W22 | Deep well | 35.137667 | 47.876034 | 8.55 | 314 | 201 | 130 | 38 | 8.47 | 18.17 | 0.39 | 5.76 | 140.3 | 5.325 | |
W23 | Deep well | 35.157183 | 47.914739 | 7.9 | 326 | 209 | 154 | 48 | 8.228 | 6.9 | 0.39 | 3.84 | 169.58 | 4.615 | |
W24 | Deep well | 35.168433 | 47.853804 | 7.75 | 524 | 335 | 158 | 53 | 6.171 | 49.91 | 0.78 | 44.16 | 247.66 | 8.875 | |
W25 | Deep well | 35.164491 | 47.751927 | 7.88 | 410 | 262 | 204 | 64 | 10.648 | 8.05 | 0.39 | 10.08 | 228.75 | 7.1 | |
W26 | Deep well | 35.201912 | 47.997529 | 7.91 | 447 | 286 | 170 | 53 | 9.075 | 32.89 | 0.78 | 14.88 | 248.88 | 12.07 | |
W27 | Deep well | 35.189449 | 47.732478 | 7.8 | 382 | 244 | 154 | 48 | 8.228 | 23.92 | 0.39 | 4.8 | 216.55 | 6.745 | |
W28 | Deep well | 35.134725 | 47.801978 | 7.8 | 438 | 280 | 186 | 57 | 10.527 | 23 | 0.78 | 12 | 251.32 | 5.325 | |
W29 | Deep well | 35.183581 | 47.906559 | 7.7 | 619 | 396 | 286 | 92 | 13.552 | 14.95 | 0.78 | 18.24 | 258.64 | 28.4 | |
W30 | Deep well | 35.167667 | 47.905684 | 7.9 | 374 | 239 | 180 | 54 | 10.89 | 11.27 | 0.39 | 4.8 | 219.6 | 4.26 | |
W31 | Semi-deep well | 35.20112 | 47.820928 | 7.9 | 360 | 230 | 168 | 55 | 7.381 | 8.97 | 0.39 | 4.8 | 192.15 | 5.325 | |
W32 | Semi-deep well | 35.156808 | 47.714154 | 7.75 | 622 | 398 | 240 | 73 | 13.915 | 43.01 | 1.17 | 54.72 | 273.28 | 32.305 | |
W33 | Deep well | 35.111437 | 47.95028 | 7.8 | 390 | 250 | 186 | 62 | 7.502 | 10.58 | 0.78 | 7.68 | 221.43 | 5.325 | |
W34 | Deep well | 35.178168 | 47.941868 | 7.83 | 375 | 240 | 190 | 58 | 10.89 | 4.83 | 0.39 | 5.76 | 211.06 | 5.325 | |
W35 | Deep well | 35.211534 | 47.779489 | 8.1 | 362 | 232 | 166 | 50 | 9.922 | 11.5 | 0.78 | 10.08 | 192.76 | 6.39 | |
W36 | Deep well | 35.161974 | 47.95947 | 8.1 | 330 | 211 | 136 | 41 | 8.107 | 19.55 | 1.17 | 10.08 | 172.63 | 7.455 | |
W37 | Semi-deep well | 35.129474 | 47.914836 | 7.95 | 422 | 270 | 184 | 51 | 13.673 | 17.48 | 1.17 | 12 | 213.5 | 11.005 | |
W38 | Deep well | 35.22061 | 47.897434 | 8.1 | 431 | 276 | 200 | 58 | 13.31 | 17.25 | 0.78 | 11.04 | 256.2 | 7.455 | |
W39 | Deep well | 35.230987 | 47.524515 | 8 | 342 | 219 | 170 | 49 | 11.495 | 5.29 | 0.39 | 4.8 | 186.05 | 4.26 | |
W40 | Deep well | 35.248876 | 47.384327 | 8.15 | 340 | 218 | 144 | 44 | 8.228 | 10.58 | 0.78 | 5.76 | 159.82 | 5.68 | |
W41 | Deep well | 35.252743 | 47.353516 | 8.05 | 382 | 244 | 152 | 48 | 7.744 | 19.09 | 0.78 | 39.84 | 140.3 | 14.2 | |
W42 | Deep well | 35.054453 | 47.953708 | 8 | 514 | 329 | 244 | 74 | 14.278 | 15.41 | 0.78 | 13.92 | 283.04 | 10.65 | |
W43 | Deep well | 35.067023 | 47.951234 | 7.95 | 434 | 278 | 218 | 67 | 12.221 | 6.44 | 0.78 | 12 | 237.9 | 8.165 | |
W44 | Deep well | 35.094387 | 47.926746 | 8 | 453 | 290 | 218 | 63 | 14.641 | 14.49 | 0.78 | 15.84 | 263.52 | 8.165 | |
W45 | Deep well | 35.060411 | 47.98421 | 8 | 325 | 208 | 132.5 | 40.4 | 7.623 | 23 | 1.17 | 10.08 | 195.2 | 4.26 | |
W46 | Deep well | 35.073174 | 47.984565 | 8.2 | 524 | 335 | 264 | 82 | 14.278 | 8.74 | 0.78 | 10.08 | 279.38 | 11.005 | |
W47 | Deep well | 35.097664 | 47.94214 | 8 | 396 | 253 | 164 | 49 | 10.043 | 22.08 | 0.78 | 11.04 | 212.28 | 8.165 | |
W48 | Deep well | 35.088025 | 47.962661 | 8.1 | 776 | 504 | 228 | 69 | 13.431 | 74.06 | 1.17 | 123.84 | 185.44 | 69.225 | |
W49 | Deep well | 35.079689 | 47.975834 | 8 | 713 | 463 | 180 | 50 | 13.31 | 89.93 | 3.51 | 84.96 | 285.48 | 20.235 | |
W50 | Deep well | 35.052643 | 47.975729 | 8 | 613 | 392 | 226 | 64 | 15.972 | 43.01 | 2.73 | 87.84 | 212.28 | 19.525 | |
Mean | 7.96 | 437.64 | 280.28 | 189.21 | 57.57 | 10.96 | 20.53 | 0.76 | 18.04 | 227.05 | 10.29 | ||||
Max | 8.55 | 776.00 | 504.00 | 292.00 | 92.00 | 27.71 | 89.93 | 3.51 | 123.84 | 353.80 | 69.23 | ||||
Min | 7.70 | 272.00 | 171.00 | 116.00 | 37.00 | 5.69 | 3.91 | 0.39 | 3.84 | 140.30 | 3.20 | ||||
SD | 0.15 | 106.26 | 68.92 | 41.94 | 12.53 | 3.54 | 17.41 | 0.57 | 23.81 | 43.48 | 10.41 |
Table 2.
Parameter | WHO guideline (mg/L) | Weight (wi) | Relative weights (Wi) |
---|---|---|---|
[K+] | 12 | 2 | 0.056 |
[Na+] | 200 | 4 | 0.111 |
[Mg+] | 50 | 3 | 0.083 |
[Ca2+] | 75 | 3 | 0.083 |
[HCO3] | 120 | 1 | 0.028 |
[Cl−] | 250 | 5 | 0.139 |
[SO4] | 250 | 5 | 0.139 |
[pH] | 8.5 | 3 | 0.083 |
[TDS] | 500 | 5 | 0.139 |
Σ | Σ |
Table 3.
Range | Type of groundwater |
---|---|
< 50 | Excellent water |
50–99.99 | Good water |
100–199.99 | Poor Water |
200–299.99 | Very poor water |
≥ 300 | Unsuitable for drinking/Irrigation purpose |
Table 5.
Indices | Formula |
---|---|
Residual sodium carbonate (RSC) | RSC = (CO32−+HCO3−)+(Ca2++Mg2+) |
Permeability index (PI) | |
Kelly’s ratio (KR) | |
Magnesium hazard(MH) | |
Sodium percentage (Na %) | |
Sodium adsorption ratio (SAR) | |
Soluble sodium percentage (SSP) |
Table 6.
Well number | RSC | PI | KR | MH | Na% | SAR | SSP |
---|---|---|---|---|---|---|---|
w1 | − 0.1 | 52.67608 | 0.140693 | 25.32468 | 12.5 | 0.427669 | 12.33397 |
w2 | − 4.3 | 30.43871 | 0.095517 | 19.59064 | 8.880995 | 0.432681 | 8.718861 |
w3 | 0.26 | 64.87732 | 0.208589 | 23.31288 | 17.46835 | 0.532617 | 17.25888 |
w4 | − 0.3 | 52.28866 | 0.103865 | 22.70531 | 9.606987 | 0.298871 | 9.40919 |
w5 | − 0.22 | 53.89116 | 0.126829 | 19.5122 | 11.44708 | 0.363184 | 11.25541 |
w6 | − 0.28 | 47.56944 | 0.103448 | 27.20307 | 9.532062 | 0.334252 | 9.375 |
w7 | − 1 | 44.05674 | 0.057269 | 28.4141 | 5.613306 | 0.172568 | 5.416667 |
w8 | 0.46 | 66.4299 | 0.263158 | 22.51462 | 21.01617 | 0.688247 | 20.83333 |
w9 | 0.32 | 65.4821 | 0.260479 | 23.65269 | 21.04019 | 0.673226 | 20.66508 |
w10 | − 0.14 | 50.14377 | 0.082969 | 19.21397 | 7.847082 | 0.251111 | 7.66129 |
w11 | 0.18 | 61.05971 | 0.208556 | 23.79679 | 17.62115 | 0.570392 | 17.25664 |
w12 | − 0.34 | 49.39279 | 0.041463 | 19.5122 | 4.205607 | 0.118733 | 3.981265 |
w13 | 0.38 | 71.50413 | 0.534286 | 22.85714 | 35.06494 | 1.413587 | 34.82309 |
w14 | − 0.34 | 52.14724 | 0.126728 | 22.81106 | 11.42857 | 0.373364 | 11.24744 |
w15 | − 0.18 | 60.77683 | 0.108844 | 20.06803 | 10.36585 | 0.263932 | 9.815951 |
w16 | 1.39 | 91.91092 | 1.066964 | 21.875 | 51.72414 | 2.258338 | 51.61987 |
w17 | 0.5 | 64.45005 | 0.3 | 23.07692 | 23.37917 | 0.837854 | 23.07692 |
w18 | 0.19 | 65.51562 | 0.191489 | 29.07801 | 16.56805 | 0.454762 | 16.07143 |
w19 | 0.32 | 68.52513 | 0.212766 | 27.30496 | 17.78426 | 0.505291 | 17.54386 |
w20 | − 0.51 | 48.93188 | 0.09589 | 22.37443 | 9.128631 | 0.28381 | 8.75 |
w21 | 0.14 | 52.71506 | 0.286787 | 30.93093 | 22.91667 | 1.046674 | 22.28705 |
w22 | 0.41 | 76.95 | 0.480315 | 31.10236 | 32.62599 | 1.082575 | 32.44681 |
w23 | − 0.3 | 57.58688 | 0.092357 | 25.15924 | 8.72093 | 0.231445 | 8.45481 |
w24 | 0.78 | 74.75866 | 0.62 | 24.28571 | 38.48858 | 1.640366 | 38.2716 |
w25 | − 0.07 | 58.96209 | 0.094771 | 23.20261 | 8.928571 | 0.234451 | 8.656716 |
w26 | 0.62 | 71.06918 | 0.411243 | 23.07692 | 29.43633 | 1.069231 | 29.14046 |
w27 | 0.02 | 61.54112 | 0.190058 | 22.51462 | 16.17647 | 0.497067 | 15.97052 |
w28 | − 0.3 | 53.45452 | 0.174009 | 28.4141 | 14.98127 | 0.524341 | 14.82176 |
w29 | − 1.86 | 40.33636 | 0.129738 | 20.55394 | 11.71171 | 0.480555 | 11.48387 |
w30 | 0.18 | 61.19696 | 0.156069 | 24.85549 | 13.71571 | 0.410554 | 13.5 |
w31 | − 0.18 | 57.48031 | 0.114035 | 19.59064 | 10.4712 | 0.29824 | 10.23622 |
w32 | − 0.58 | 56.58115 | 0.346304 | 27.0428 | 26.04317 | 1.110333 | 25.72254 |
w33 | − 0.02 | 57.06826 | 0.121622 | 20.27027 | 11.05769 | 0.330847 | 10.84337 |
w34 | − 0.34 | 51.38 | 0.052356 | 24.08377 | 5.210918 | 0.144715 | 4.975124 |
w35 | − 0.03 | 59.85215 | 0.157576 | 25.75758 | 14.0625 | 0.404819 | 13.61257 |
w36 | 0.44 | 77.45903 | 0.418699 | 20.73171 | 30.31161 | 0.92872 | 29.51289 |
w37 | − 0.18 | 58.25647 | 0.193122 | 31.21693 | 16.55629 | 0.530997 | 16.18625 |
w38 | − 0.42 | 52.36534 | 0.117073 | 26.82927 | 10.86957 | 0.335247 | 10.48035 |
w39 | − 0.32 | 54.00683 | 0.073099 | 26.90058 | 7.065217 | 0.19118 | 6.811989 |
w40 | − 0.15 | 61.79381 | 0.162069 | 27.58621 | 14.45428 | 0.390314 | 13.94659 |
w41 | − 0.7 | 55.80651 | 0.176301 | 26.30058 | 15.40342 | 0.463774 | 14.98771 |
w42 | − 0.46 | 49.87868 | 0.127615 | 24.68619 | 11.6451 | 0.394576 | 11.31725 |
w43 | − 0.34 | 49.66664 | 0.06338 | 24.88263 | 6.373626 | 0.185001 | 5.960265 |
w44 | 0.38 | 60.41969 | 0.201005 | 25.8794 | 17.08333 | 0.567105 | 16.7364 |
w45 | 0.66 | 80.72443 | 0.42562 | 23.55372 | 30.45977 | 0.936364 | 29.85507 |
w46 | 0.7 | 78.02725 | 0.773006 | 32.51534 | 43.7931 | 1.973816 | 43.59862 |
w47 | 0.13 | 65.07177 | 0.282209 | 24.84663 | 22.38095 | 0.7206 | 22.00957 |
w48 | − 1.34 | 58.65971 | 0.503861 | 24.71042 | 33.75959 | 1.621775 | 33.50449 |
w49 | 1.22 | 80.83319 | 1.068306 | 15.30055 | 52.21932 | 2.890355 | 51.65125 |
w50 | 0.82 | 79.43416 | 0.914201 | 27.51479 | 48.2389 | 2.376923 | 47.75889 |
Table 7.
Parameters | Range | Water class | Samples (%) |
---|---|---|---|
EC | < 250 | Excellent | 0 |
250–750 | Good | 98 | |
750–2250 | Permissible | 2 | |
> 2250 | Doubtful | 0 | |
SAR | 0–10 | Excellent | 100 |
10–18 | Good | 0 | |
18–26 | Doubtful | 0 | |
> 26 | Unsuitable | 0 | |
RSC | < 1.25 | Good | 98 |
1.25–2.5 | Doubtful | 2 | |
> 2.5 | Unsuitable | 0 | |
KR | < 1 | Suitable | 96 |
1–2 | Marginal suitable | 4 | |
> 2 | Unsuitable | 0 | |
SSP | < 50 | Good | 96 |
> 50 | Unsuitable | 4 | |
PI | > 75 | Class-I | 8 |
25–75 | Class-II | 92 | |
< 25 | Class-III | 0 | |
MH | < 50 | Suitable | 100 |
> 50 | Harmful and Unsuitable | 0 | |
Na% | < 20 | Excellent | 60 |
20–40 | Good | 32 | |
40–60 | Permissible | 8 | |
60–80 | Doubtful | 0 | |
>80 | Unsuitable | 0 | |
T.H | < 75 | Soft | 0 |
75–150 | Moderately hard | 18 | |
150–300 | Hard | 82 | |
> 300 | Very hard | 0 |
Table 8.
pH | Na | K | Ca | Mg | SO | Cl | TDS | EC | HCO3 | TH | |
---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | ||||||||||
Na | 0.008 | 1 | |||||||||
K | 0.077 | 0.681** | 1 | ||||||||
Ca | − 0.437** | − 0.097 | 0.032 | 1 | |||||||
Mg | − 0.102 | 0.11 | 0.383** | 0.615** | 1 | ||||||
SO4 | − 0.013 | 0.82** | 0.71** | 0.182 | 0.325* | 1 | |||||
Cl | 0.004 | 0.658** | 0.373** | 0.328* | 0.308* | 0.816** | 1 | ||||
TDS | − 0.241 | 0.69** | 0.594** | 0.629** | 0.629** | 0.798** | 0.774** | 1 | |||
EC | − 0.247 | 0.685** | 0.591** | 0.635** | 0.634** | 0.793** | 0.77** | 1 | 1 | ||
HCO3 | − 0.473** | 0.198 | 0.217 | 0.698** | 0.66** | 0.118 | 0.095 | 0.619** | 0.625** | 1 | |
TH | − 0.362** | − 0.034 | 0.157 | 0.961** | 0.808** | 0.25 | 0.353* | 0.69** | 0.696** | 0.752** | 1 |
Correlation is significant at the 0.01 level (2-tailed).
Correlation is significant at the 0.05 level (2-tailed)
Table 4.
Well number | DWQI | Water quality rating |
---|---|---|
W1 | 61.07 | Good |
W2 | 43.43 | Excellent |
W3 | 48.57 | Excellent |
W4 | 56.80 | Good |
W5 | 55.46 | Good |
W6 | 66.89 | Good |
W7 | 59.70 | Good |
W8 | 50.83 | Good |
W9 | 49.89 | Excellent |
W10 | 60.24 | Good |
W11 | 53.46 | Good |
W12 | 54.54 | Good |
W13 | 53.51 | Good |
W14 | 63.56 | Good |
W15 | 39.95 | Excellent |
W16 | 46.04 | Excellent |
W17 | 56.13 | Good |
W18 | 43.36 | Excellent |
W19 | 77.52 | Good |
W20 | 59.02 | Good |
W21 | 44.13 | Excellent |
W22 | 42.34 | Excellent |
W23 | 44.90 | Excellent |
W24 | 54.58 | Good |
W25 | 55.22 | Good |
W26 | 52.89 | Good |
W27 | 47.29 | Excellent |
W28 | 53.97 | Good |
W29 | 74.58 | Good |
W30 | 50.40 | Good |
W31 | 48.23 | Excellent |
W32 | 70.75 | Good |
W33 | 52.13 | Good |
W34 | 51.61 | Good |
W35 | 48.66 | Excellent |
W36 | 43.84 | Excellent |
W37 | 53.27 | Good |
W38 | 56.07 | Good |
W39 | 47.72 | Excellent |
W40 | 44.47 | Excellent |
W41 | 48.65 | Excellent |
W42 | 65.02 | Good |
W43 | 58.25 | Good |
W44 | 59.28 | Good |
W45 | 43.20 | Excellent |
W46 | 68.19 | Good |
W47 | 49.73 | Excellent |
W48 | 78.90 | Good |
W49 | 68.04 | Good |
W50 | 69.54 | Good |
2. Experimental design, materials and methods
2.1. Study area
Our study area includes two counties: Qorveh county, and Dehgolan county. Qorveh and Dehgolan counties in Kurdistan province are located in west of Iran. Qorveh is located between the latitudes 35.1679°N and longitudes 47.8038°E, encompassing an area of about 4338.7 km2 and the average altitude of the city is 1900 m above sea level. Dehgolan is located between the latitudes 35.2798 °N and longitudes 47.4221°E. also. The area of this county is 2050 km2 and the average altitude of the city is 1800 m above sea level.
2.2. Sample collection and analytical procedures
For the purpose of this data article, a total of 50 rural drinking water sources were collected in Qorveh-Dehgolan area in Kurdistan province, for 12 months (2015–2016). Water samples were analyzed according to physical and chemical parameters. The study area, as well as sampling locations, have been shown in Fig. 1. In this study, 10 chemical parameters including calcium (Ca2+), sodium (Na+), potassium (K+), magnesium (Mg+2), bicarbonate (HCO3−), sulfate (SO4 2−), chloride (Cl−), pH, TDS and electrical conductivity (EC) were used to evaluate the groundwater quality for drinking and agricultural purposes. Samples were collected in polyethylene bottles (1 L) and then the collected samples were kept in an ice box and then transferred to a fridge where they were stored at 4 °C until delivery to the laboratory. All water samples were analyzed according to the Standard Methods for Examination of Water and Wastewater and using titration method permanent hardness, magnesium and calcium were measured [14], [15], [16], [17], [18], [19], [20]. The concentration of hydrogen ion (pH) and electrical conductivity was also analyzed with pH meter (model wtw, Esimetrwb) and turbidity meter (model Hach 50161/co 150 model P2100Hach, USA), respectively [21], [22], [23], [24], [25], [26], [27], [28]. On the other hand, Values of, SO42− and Cl− were obtained using spectrophotometer technique. In this study, various indices and ratios such as Sodium Absorption Ratio (SAR), Soluble Sodium Percentage (SSP), Residual Sodium Carbonate (RSC), Permeability Index (PI), Total Hardness (TH), Magnesium hazard (MH), Kelly׳s Ratio (KR), Pollution Index (PI), and Sodium percentage (Na %) were also determined that showed in Table 5. Then, to calculate WQI, the weight for physical and chemical parameters were determined with respect to the relative importance of the overall water quality for drinking water purposes.
All data of this study were statistically analyzed, and using a SPSS (IBM Corp. Released 2016. IBM SPSS Statistics for Windows, Version 24.0. Armonk, NY: IBM Corp), a correlation matrix was run. In order to describe groundwater quality and also possible pathways of geochemical changes, major ion chemical data have been drawn on Piper trilinear diagram (Piper 1944) in Fig.3. The distribution map of water quality index has been shown in Fig. 2
3. Drinking water quality index (DWQI)
The value of physio-chemical parameters has been determined to calculate the WQI formula. Also, it should be noted that assign of these parameters has been according to the relative importance of parameters in the overall quality of water for drinking objectives. The relative weight was calculated via the below equation [1].
(1) |
In this equation, the relative weight of each parameter is Wi, and n refers to the number of parameters. Table 1 shows the weight (wi) and relative weight (Wi) of each chemical parameter. For each parameter, the quality rating scale is calculated by dividing its concentration in each water sample to its respective standards (released by World Health Organization 2011) and finally multiplied the results by 100.
(2) |
where, qi shows the quality rating, Ci refer the concentration of each chemical parameter in each sample (mg/L) and Si is the standard limit for each chemical parameter (mg/L) based on the guidelines of the WHO (2011). In the final of WQI calculating, the SIi was first assigned for each parameter and then the sum of Si values gave the water quality index for each sample [1].
(3) |
(4) |
where, SIi represents the sub-index of parameter, qi refers to the rating based on concentration of its parameter, and n is the number of parameters
Acknowledgements
The authors want to thank the respected management of Iran׳s water resources for their supports from authors.
Footnotes
Transparency document associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.08.022.
Transparency document. Supplementary material
.
References
- 1.Abbasnia A., Alimohammadi M., Mahvi A.H., Nabizadeh R., Yousefi M., Mohammadi A.A., Pasalari H., Mirzabeigi H.M. Assessment of groundwater quality and evaluation of scaling and corrosiveness potential of drinking water samples in villages of Chabahar city, Sistan and Baluchistan province in Iran. Data Brief. 2018;16:182–192. doi: 10.1016/j.dib.2017.11.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Abbasnia A., Radfard M., Mahvi A.H., Mahvi A.H., Yousefi M., Soleimani H. Groundwater quality assessment for irrigation purposes based on irrigation water quality index and its zoning with GIS in the villages of Chabahar, Sistan and Baluchistan, Iran. Data Brief. 2018;19:623–631. doi: 10.1016/j.dib.2018.05.061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Abbasnia A., Yousefi N., Mahvi A.H., Nabizadeh R., Radfard M., Yousefi M., Alimohammadi M. Evaluation of groundwater quality using water quality index and its suitability for assessing water for drinking and irrigation purposes; case study of Sistan and Baluchistan province (Iran) Hum. Ecol. Risk Assess.: Int. J. 2018 [Google Scholar]
- 4.Radfard M., Yunesian M., Nabizadeh Nodehi R., Biglari H., Hadi M., Yosefi N., Yousefi M., Abbasnia A., Mahvi A.H. Drinking water quality and Arsenic health risk assessment in Sistan-and-Baluchestan, Southeastern province Iran. Hum. Ecol. Risk Assess.: Int. J. 2018 [Google Scholar]
- 5.Mirzabeygi M., Yousefi N., Abbasnia A., Youzi H., Alikhani M., Mahvi A.H. Evaluation of groundwater quality and assessment of scaling potential and corrosiveness of water supply networks, Iran. J. Water Supply: Res. Technol.-AQUA. 2017;jws2(67):1–10. [Google Scholar]
- 6.Takdastana A., Mirzabeygi (Radfard) M., Yousefi M., Abbasnia A., Khodadadia R., Mahvi A.H., Jalili Naghan D. Neuro-fuzzy inference system Prediction of stability indices and Sodium absorption ratio in Lordegan rural drinking water resources in west Iran. Data Breif. 2018;18:255–261. doi: 10.1016/j.dib.2018.02.075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Soleimani H., Abbasnia A., Yousefi M., Mohammadi A.A., Khorasgani F.C. Data on assessment of groundwater quality for drinking and irrigation in rural area Sarpol-e Zahab city, Kermanshah province, Iran. Data Brief. 2018;17:148–156. doi: 10.1016/j.dib.2017.12.061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Asghari F.B., Mohammadi A.A., Dehghani M.H. Data on assessment of groundwater quality with application of ArcGIS in Zanjan, Iran. Data Brief. 2018;18:375–379. doi: 10.1016/j.dib.2018.03.059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Asghari F.B., Jaafari J., Yousefi M., Mohammadi A.A., Dehghanzadeh R. Evaluation of water corrosion, scaling extent and heterotrophic plate count bacteria in asbestos and polyethylene pipes in drinking water distribution system. Hum. Ecol. Risk Assess.: Int. J. 2018;24:1138–1149. [Google Scholar]
- 10.Yousefi M., Dehghani M.H., Nasab S.M., Taghavimanesh V., Nazmara S., Mohammadi A.A. Data on trend changes of drinking groundwater resources quality: a case study in Abhar. Data Brief. 2018;17:424–430. doi: 10.1016/j.dib.2018.01.032. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Yousefi M., Yaseri M., Nabizadeh R., Hooshmand E., Jalilzadeh M., Mahvi A.H., Mohammadi A.A. Association of hypertension, body mass index and waist circumference with fluoride intake; water drinking in residents of fluoride endemic areas, Iran. Biol. Trace Elem. Res. 2018 doi: 10.1007/s12011-018-1269-2. [DOI] [PubMed] [Google Scholar]
- 12.Mohammadi A.A., Najafi Saleh H., Mahvi A.H., Alimohammadi M., Nabizadeh R., Yousefi M. Data on corrosion and scaling potential of drinking water resources using stability indices in Jolfa, East Azerbaijan, Iran. Data Brief. 2018;16:724–731. doi: 10.1016/j.dib.2017.11.099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Yousefi M., Najafi Saleh H., Mohammad A.A., Mahvi A.H., Ghadrpoori M., Suleimani H. Data on water quality index for the groundwater in rural area Neyshabur County, Razavi province, Iran. Data Brief. 2017;15:901–907. doi: 10.1016/j.dib.2017.10.052. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Kazemi Moghadam V., Yousefi M., Khosravi A., Yaseri M., Mahvi A.H., Hadei M., Mohammadi A.A., Robati Z., Mokamel A. High concentration of fluoride can be increased risk of abortion. Biol. Trace Elem. Res. 2018 doi: 10.1007/s12011-018-1250-0. [DOI] [PubMed] [Google Scholar]
- 15.Asghari F.B., Mohammadi A.A., Aboosaedi Z., Yaseri M., Yousefi M. Data on fluoride concentration levels in cold and warm season in rural area of Shout (West Azerbaijan, Iran) Data Brief. 2017;15:528–531. doi: 10.1016/j.dib.2017.10.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Mohammadi A.A., Yousefi M., Mahvi A.H. Fluoride concentration level in rural area in Poldasht city and daily fluoride intake based on drinking water consumption with temperature. Data Brief. 2017;13:312–315. doi: 10.1016/j.dib.2017.05.045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Mirzabeygi M., Yousefi M., Soleimani H., MohammadiAA, Mahvi A.H., Abbasnia A. The concentration data of fluoride and health risk assessment in drinking water in the Ardakan city of Yazd province, Iran. Data Brief. 2018;18:40–46. doi: 10.1016/j.dib.2018.02.069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Yousefi M., Mohammadi A.A., Yaseri M., Mahvi A.H. Epidemiology of drinking water fluoride and its contribution to fertility, infertility, and abortion: an ecological study in West Azerbaijan Province, Poldasht County, Iran. Fluoride. 2017;50:343–353. [Google Scholar]
- 19.Neisi A., Mirzabeygi M., Zeyduni G., Hamzezadeh A., Jalili D., Abbasnia A. Data on fluoride concentration levels in cold and warm season in City area of Sistan and Baluchistan Province, Iran. Data Brief. 2018;18(2018):713–718. doi: 10.1016/j.dib.2018.03.060. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Yousefi M., Arami S.M., Takallo H., Hosseini M., Radfard M., Soleimani H., Mohammadi A.A. Modification of pumice with HCl and NaOH enhancing its fluoride adsorption capacity: kinetic and isotherm studies. Hum. Ecol. Risk Assess.: Int. J. 2018 [Google Scholar]
- 21.Yousefi M., Najafi Saleh H., Yaseri M., Mahvi A.H., Soleimani H., Saeedi Z., Zohdi S., Mohammadi A.A. Data on microbiological quality assessment of rural drinking water supplies in Poldasht County. Data Brief. 2018;17:763–769. doi: 10.1016/j.dib.2018.02.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Yousefi M., Ghoochani M., Mahvi A.H. Health risk assessment to fluoride in drinking water of rural residents living in the Poldasht city, Northwest of Iran. Ecotoxicol. Environ. Saf. 2018;148:426–430. doi: 10.1016/j.ecoenv.2017.10.057. [DOI] [PubMed] [Google Scholar]
- 23.Mohammadi A.A., Yousefi M., Yaseri M., Jalilzadeh M., Mahvi A.H. Skeletal fluorosis in relation to drinking water in rural areas of West Azerbaijan, Iran. Sci. Rep. 2017;7:17300. doi: 10.1038/s41598-017-17328-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Mirzabeygi M., Abbasnia A., Yunesian M., Nodehi R.N., Yousefi N., Hadi M. Heavy metal contamination and health risk assessment in drinking water of Sistan and Baluchistan, Southeastern Iran. Hum. Ecol. Risk Assess.: Int. J. 2017;23:1893–1905. [Google Scholar]
- 25.Saleh H.N., Dehghani M.H., Nabizadeh R., Mahvi A.H., Hossein F., Ghaderpoori M. Data on the acid black 1 dye adsorbtion from aqueous solutions by low-cost adsorbent-Cerastoderma lamarcki shell collected from the northern coast of Caspian Sea. Data Brief. 2018;17:774–780. doi: 10.1016/j.dib.2018.01.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Dehghani M.H., Haghighat G.A., Yousefi M. Data on fluoride concentration in drinking water resources in Iran: a case study of Fars province; Larestan region. Data Brief. 2018;19:842–846. doi: 10.1016/j.dib.2018.05.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Mirzaei N., Ghaffari H.R., Karimyan K., Mohammadi Moghadam F., Javid A., Sharafi K. Survey of effective parameters (water sources, seasonal variation and residual chlorine) on presence of thermotolerant coliforms bacteria in different drinking water resources. Int. J. Pharm. Technol. 2015;7(3):9680–9689. [Google Scholar]
- 28.Jafari K., Mohammadi A.A., Heidari Z., Asghari F.B., Radfard M., Yousefi M. Data on microbiological quality assessment of rural drinking water supplies in Tiran County, Isfahan province, Iran. Data Brief. 2018;18:1122–1126. doi: 10.1016/j.dib.2018.04.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.