Skip to main content
Current Neuropharmacology logoLink to Current Neuropharmacology
. 2018 Aug;16(7):1004–1017. doi: 10.2174/1570159X15666171109124520

Rational Basis for Nutraceuticals in the Treatment of Glaucoma

Morrone Luigi Antonio 1,*, Rombolà Laura 1, Adornetto Annagrazia 1, Corasaniti Maria Tiziana 2, Russo Rossella 1
PMCID: PMC6120110  PMID: 29119928

Abstract

Background:

Glaucoma, the second leading cause of blindness worldwide, is a chronic optic neuropathy characterized by progressive retinal ganglion cell (RGC) axons degeneration and death.

Primary open-angle glaucoma (OAG), the most common type, is often associated with increased intraocular pressure (IOP), however other factors have been recognized to partecipate to the patogenesis of the optic neuropathy. IOP-independent mechanisms that contribute to the glaucoma-related neurodegeneration include oxidative stress, excitotoxicity, neuroinflammation, and impaired ocular blood flow. The involvement of several and diverse factors is one of the reasons for the progression of glaucoma observed even under efficient IOP control with the currently available drugs.

Methods:

Current research and online content related to the potential of nutritional supplements for limiting retinal damage and improving RGC survival is reviewed.

Conclusion:

Results: Recent studies have suggested a link between dietary factors and glaucoma risk. Particularly, some nutrients have proven capable of lowering IOP, increase circulation to the optic nerve, modulate excitotoxicity and promote RGC survival. However, the lack of clinical trials limit their current therapeutic use. The appropriate use of nutraceuticals that may be able to modify the risk of glaucoma may provide insight into glaucoma pathogenesis and decrease the need for, and therefore the side effects from, conventional therapies.

Conclusion:

The effects of nutrients with anti-oxidant and neuroprotective properties are of great interest and nutraceuticals may offer some therapeutic potential although a further rigorous evaluation of nutraceuticals in the treatment of glaucoma is needed to determine their safety and efficacy.

Keywords: Glaucoma, retinal ganglion cells, neurodegeneration, oxidative stress, nutraceuticals, neuroprotection

1. Introduction

Glaucoma is a neurodegenerative disease characterized by retinal ganglion cells (RGC) death, typical visual field defect and eventual blindness [1]. Elevated intraocular pressure (IOP), aging, genetic, epigenetic and environmental factors are among a number of recognized risk factors for glaucoma [2, 3]. Glaucoma is thus a progressive optic neuropathy with complex pathophysiology and RGC loss in glaucoma remains incompletely understood [4]. Several mechanisms have been suggested to play a role in RCG damage including oxidative stress, excitotoxicity and neuroinflammation [5-7]. Particularly, excitotoxicity through the overactivation of N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptors [8, 9] has been proposed as one of the determinants involved in RGC damage [5]. Furthermore, several studies demonstrate that mitochondrial perturbations are among the very first changes occurring within RGCs during glaucoma [7, 10-12] suggesting that oxidative stress is also a key mechanism of excitotoxic, glutamate induced RGC loss [8, 13, 14]. Several studies have shown that free radical species can cause RGC death by inhibition of key enzymes of the tricarboxylic acid cycle, the mitochondrial electron transport chain, and mitochondrial calcium homeostasis, leading to defective energy metabolism [15, 16]. Interestingly, increased levels of oxidative stress markers were observed in aqueous humor of patients with primary open-angle glaucoma (POAG) [17, 18] and with primary angle closure glaucoma (PACG) [19]. Accordingly, a recent meta-analysis by Benoist d’Azy and Colleagues reported that oxidative stress increased in glaucoma patients, both in serum and aqueous humor [20]. In addition to its detrimental effect on the optic nerve, oxidative stress has also been suggested to damage the trabecular meshwork (TM) [21-23] resulting in an increase in the IOP. Incidentally, recent experimental data revealed that autophagy modulation occurs in RGC under glaucoma-related stressing conditions supporting the hypothesis that dysfunctional autophagy might participate to the process leading to RGC death [24]. Despite accumulating evidence of pressure-independent causes of glaucomatous optic neuropathy has led to the recognition that lowering IOP alone may often be insufficient for the long-term preservation of visual function [25], most of the current treatment modalities are based on lowering the IOP and a need exists for novel therapies able to save RGCs from injury or to repair damaged neurons. Interestingly, several studies have suggested a link between dietary factors, now named “nutraceuticals” [26, 27] and glaucoma risk [28, 29]. Deficiencies of specific nutrients have been found in patients with glaucoma and supplementation may play a role in treatment [28]. Interestingly, some nutraceuticals have shown their ability to lower IOP [30-32], increase circulation to the optic nerve [28], modulate excitotoxicity and promote RGC survival [14, 33-36]. In this respect, a prospective study for ten years revealed an association between low intake of antioxidant nutrients and a higher risk of open angle glaucoma [37]. On the contrary, Kang and Colleagues reported no strong associations between antioxidants intake and primary open-angle glaucoma (OAG) risk [38]. Likewise, more recently, a two-year follow-up of oral antioxidants supplementation in OAG did not demonstrate beneficial short-term effects [39]. This apparent discrepancy could be explained by considering the sample size estimate and the different features of clinical trials. In fact, although some nutraceuticals have been described as neuroprotective, the lack of clinical trials examining their benefits for glaucoma limits their current therapeutic use [1, 40] suggesting that well designed clinical trials are needed to assess their efficacy and tolerability in glaucoma treatment. Therefore, appropriate use of nutraceuticals with anti-oxidant and neuroprotective properties may be able to modify the risk of glaucoma, provide insight into glaucoma pathogenesis and decrease the need for, and therefore the side effects from, conventional therapies.

This review discusses the most current knowledge on the neuroprotective effects of a number of nutraceuticals in RGC damage and their potential benefit in glaucoma treatment.

2. Vitamins

Considering the key role played by oxidative stress in RGC damage, antioxidant vitamins have been suggested as potential neuroprotective agents [41, 42]. However, although their deficiency may be linked to symptoms of optic-nerve dysfunction, the association between serum vitamin levels and glaucoma prevalence in humans remains controversial. For example, in 2003, the Nurses’ Health Study and Health Professionals Follow-up Study reported no strong association between the risk of primary open-angle glaucoma and vitamin C, vitamin E, and vitamin A consumption [38]. Accordingly, a recent meta-analysis by Li and Colleagues reported that normal-tension glaucoma (NTG) risk is not associated with serum vitamin B6, vitamin B12, or folic acid levels [43]. Moreover, another meta-analysis reported no association between serum vitamin B6, vitamin B12, or vitamin D levels and the different types of glaucoma [44]. On the contrary, the Rotterdam Study, a prospective study on a glaucoma cohort of 3500 Individuals, revealed an association between low intake of antioxidant nutrients, including retinol equivalents and vitamin B1, and a higher risk of open angle glaucoma [37]. Yuki and Colleagues investigated the levels of antioxidants as vitamins A, C, E, folic acid in the serum of Japanese patients with normal-tension glaucoma compared with normal controls. Interestingly, they found lower serum levels of vitamin C in glaucoma patients [45]. Furthermore, Asregadoo reported a statistically significant lower thiamine blood level in 38 glaucoma patients than in 12 controls [46]. Moreover, Turgut and Colleagues reported that plasma levels of vitamin B6 increase in NTG or POAG patients [47]. Conversely no statistical differences were observed in serum vitamin B12 and folate levels among control subjects and glaucoma groups. In addition, the plasma level of homocysteine was found to be increased only in patients with pseudoexfoliative glaucoma (PXG) [47]. Similar results were observed by Cumurcu and Colleagues [48] and Xu and Colleagues [49]. Moreove, Kang and Colleagues investigated the association between B vitamins (folate, vitamin B6, and vitamin B12) intake and exfoliation glaucoma (EG) or suspected EG (SEG) risk and reported that higher folate, but not vitamin B6 and vitamin B12 intake, was associated with a lower risk for EG/SEG [50]. Wang and Colleagues also investigated, in a cross-sectional study included 2912 participants, the potential association between glaucoma prevalence and supplemental intake, as well as serum levels of vitamins A, C and E. The authors reported no association between vitamins with glaucoma prevalence, however supplementary consumption of vitamin C was found to be associated with decreased odds of glaucoma [51]. Interestingly, Xu and Colleagues reported tha vitamin C shows a dose-dependent effect against oxidative insult by modulation of iron homeostasis and intracellular ROS formation and, in addition, elicits the activation of the autophagic lysosomal pathway in TM cells [52]. Moreover, Lee and Colleagues reported a correlation of aqueous humor ascorbate concentration with intraocular pressure as well as outflow facility in hereditary buphthalmic rabbits [53] but found no correlation in OAG patients [54]. Vitamin C has also been found, in vitro, to stimulate synthesis of hyaluronic acid in trabecular meshwork from glaucomatous eyes [55] and to reduce the viscosity of hyaluronic acid and increase outflow through the trabeculum [56]. More recently, Goncalves and Colleagues reported vitamin D insufficiency is associated with POAG [57]. Interestingly, topical administration of 1α,25-dihydroxyvitamin D(3) or its analog, 2-methylene-19-nor-(20S)-1α,25-dihydroxyvitamin D(3) (2MD), markedly reduced IOP in non-human primates [58]. However, Krefting and Colleagues reported that the administration of vitamin D3 to healty volunteers with low levels of 25(OH)D does not affect IOP [59]. In 2010, Ko and Colleagues reported that vitamin E deficiency increased RGC loss in a rat model of glaucoma [60]. Particularly, the Authors found that vitamin E deficiency alone for ten weeks did not increase RGC death. However, when vitamin E deficiency was combined with IOP elevation for five weeks, there was a significant increase in RGC death and higher levels of retinal lipid peroxidation. Interestingly, vitamin E deficiency did not change the activities of superoxide dismutase (SOD) and catalase in the rat retina after IOP elevation [60]. Moreover, Yu and Colleagues demonstrated that vitamin E is able to reduce the transforming growth factor-beta2 (TGFb2)-induced cellular changes in cultured human trabecular meshwork cells, suggesting that increasing the antioxidative capacity may help to lower the incidence of characteristic glaucomatous changes in TM [61]. Interestingly, more recently, Williams and Colleagues, demonstrated that oral administration of vitamin B3 (nicotinamide) a precursor of nicotinamide adenine dinucleotide (NAD) or Nmnat1(nicotinamide/nicotinic acid mononucleotide adenylyltransferase 1) gene therapy reduces mitochondrial vulnerability and prevents glaucoma in aged mice [11].

3. Coenzyme Q

Coenzyme Q is an essential cofactor of the electron transport chain, a membrane stabilizer, and a cofactor in the production of adenosine triphosphate (ATP) by oxidative phosphorylation [36, 62]. Coenzyme Q is endowed with potent antioxidant properties that have been shown to mediate its neuroprotection [63-65]. Interestingly, several studies demonstrated that the compound protects retinal cells against oxidative stress in vitro and in vivo, as well as prevents retinal damage induced by acute IOP elevation or excitotoxicity in vivo [14, 62, 66, 67]. In this respect, Nucci and Colleagues reported that intraocular administration of coenzyme Q affords neuroprotection in the retina of rats subjected to ischemia/reperfusion preventing glutamate increase observed by microdialysis and this was accompanied by minimization of cell death [66]. Accordingly, Lee and Colleagues reported that the compound also inhibits glutamate excitotoxicity and oxidative stress-mediated mitochondrial alteration in glaucomatous DBA/2J mice [36]. Particularly, coenzyme Q promoted RGC survival, preserved the axons in the optic nerve head and inhibited astroglial activation [36]. Moreover, it prevented the upregulation of NMDA receptor subunit 1 and 2A, SOD2 and heme oxygenase-1 (HO1), and also prevented the apoptotic cell death by decreasing Bax and increasing pBad expression. Lee and Colleagues also reported that coenzyme Q preserved mitochondrial DNA content and mitochondrial transcription factor A/ oxidative phosphorylation complex IV protein expression in the retina [36]. Furthermore, Noh and Colleagues demonstrated that coenzyme Q protects optic nerve head (ONH) astrocytes against oxidative stress-mediated mitochondrial dysfunction or alteration in glaucoma and other optic neuropathies [68]. Particularly, coenzyme Q decreased SOD2 immunoreactivity in the ONH astrocytes exposed to H2O2 and promotes mitofilin and peroxisome-proliferator activated receptor-γ coactivator-1 (PGC-1α). Interestingly, Nakajima and Colleagues reported that in cultured retinal ganglion cells (RGC-5), a combination of coenzyme Q and trolox, a water-soluble vitamin E analogue, prevented cell damage more effectively than either agent alone [62]. Accordingly, Parisi and Colleagues reported that administration of coenzyme Q associated with vitamin E in open-angle glaucoma patients shows a beneficial effect on the inner retinal function with consequent enhancement of the visual cortical responses [69]. Concerning the mechanism underlying neuroprotection afforded in glaucoma models by coenzyme Q it is conceivable that a free radical scavenging mechanism is only one of the determinants. In fact, neuroprotection afforded by the compound was far greater than that provided by treatment with vitamin E [66]. The Authors hypothesized that coenzyme Q reduces the detrimental action of ischemia/reperfusion on mitochondrial energy metabolism and, consequently, on the function of glutamate transporters, thus limiting accumulation of extracellular glutamate and preventing apoptotic death of RGC [66]. More recently, in agreement with the latter result, Lulli and Colleagues reported that coenzyme Q increases RGC viability and inhibits apoptosis in response to different apoptotic stimuli such as glutamate, chemical hypoxia and serum withdrawal by preventing mitochondrial depolarization [67]. The opening of the mitochondrial permeability transition pore (PTP) followed by extrusion of apoptogenic molecules to the cytoplasm [70] is recognized as the main trigger of apoptosis. Incidentally, coenzyme Q has been shown to inhibit apoptosis by maintaining PTP in the closed conformation via a mechanism independent from free radical scavenging [71].

4. Flavonoids

Flavonoids are a large family of phytonutrient compounds widely distributed in fruits and vegetables as well as in chocolate and red wine [72-74]. These compounds have been shown to demonstrate anti-inflammatory and neuroprotective effects that may reduce damage from oxidative stress [75, 76]. Flavonoids exert beneficial effects on multiple disease states, including cancer, cardiovascular disease, and neurodegenerative disorders [73, 77-79]. Interestingly, several studies in vivo and in vitro also reported the beneficial effects of flavonoids in ocular diseases [80-84], however, a recent meta-analysis showed no statistically significant effect of flavonoids on lowering intraocular pressure [85]. Nakayama and Colleagues [86] investigated the neuroprotective potential of three types of flavonoid compounds—kaempferol 3-O-rutinoside (nicotiflorin), quercetin 3-O-rutinoside (rutin), and quercetin 3-Orhamnoside (quercitrin)—using rat primary-isolated RGCs cultured under three kinds of stress conditions: hypoxia, excessive glutamate levels, and oxidative stress. Under these conditions all compounds significantly increased the RGC survival rate but nicotiflorin and rutin were more active than quercitrin [86]. Moreover, rutin significantly inhibited the induction of caspase-3 under both hypoxia and excessive glutamate stress, as well as blocking the induction of calpain during oxidative stress [86]. Interestingly, resveratrol, a naturally occurring polyphenol found in berries, nuts, and red wine, can enhance stress resistance and exerts antiinflammatory, anti-oxidant, and anti-apoptotic effects [87-89]. In this respect, Luna and Colleagues investigated the effects of chronic administration of resveratrol on the expression of markers for inflammation, oxidative damage, and cellular senescence in primary TM cells subjected to chronic oxidative stress [90]. Interestingly, resveratrol treatment prevented increased production of intracellular ROS, IL1α, IL6, IL8, and ELAM-1 [90]. Moreover, it reduced expression of the senescence markers sa-β-gal, lipofuscin, and accumulation of carbonylated proteins. In addition, the compound, exerted antiapoptotic effects that were not associated with a decrease in cell proliferation [90]. Moreover, Chen and Colleagues investigated the role of peroxisome proliferator activated receptor-γ co-activator 1α (PGC-1α) in resveratrol-triggered mitochondrial biogenesis for preventing apoptosis in a retinal ganglion cell line RGC-5 [91]. The Authors reported that resveratrol promoted the protein expression of SIRT1, facilitated PGC-1α translocation from the cytoplasm to the nucleus and up-regulated NRF1 and TFAM [91]. More recently, Lindsey and Colleagues, using an optic nerve crush model, reported that long-term dietary resveratrol treatment delays RGC dendrite remodeling and loss after optic nerve injury and alters the expression of the unfolded protein response BiP, CHOP, and XBP [92]. A number of studies also investigated the potential effects of epigallocatechin-3-gallate (EGCG), the major catechin found in green tea. For example, Zhang and Colleagues reported that EGCG attenuates damaging influences to the retina caused by ischemia/reperfusion and significantly reduced the apoptosis induced by H2O2 in cultured RGCs [82]. In addition, Xie and Colleagues reported a neuroprotective effect of EGCG in an optic nerve crush model in rats [93]. Moreover, Peng and Colleagues demonstrated that administration of EGCG prior to axotomy promotes RGC survival in rats [94]. The neuroprotective capacity of EGCG appears to act through nitric oxide, anti-apoptotic, and cell survival signaling pathways [94]. More recently, Jin and Colleagues reported that key bioactive compounds in green tea leaves (EGCG, theanine and caffeine), attenuate the injury of retinal ganglion RGC-5 induced by H2O2 and ultraviolet radiation [95]. Interestingly, the Authors reported that caffeine and theanine both protected RGC-5 cells from injury as well as enhanced their recovery, while EGCG only protected the cells from injury and did not help them to recover [95].

Ginkgo biloba (Ginkgoaceae) is an ancient species of tree similar to plants which were living 270 million years ago. Ginkgo biloba leaves also contain many different flavonoids, including polyphenolic flavanoids which have been proven to exert antioxidative properties by delivering electrons to free radicals [96]. The extract from the leaves of ginkgo biloba, named as ginkgo biloba extract 761 (EGb761), has been shown to be beneficial for cognitive impairment and dementia [97]. Interestingly, a number of studies suggested a helpful effect of ginkgo biloba for the treatment of glaucoma [98-100]. For example, Hirooka and Colleagues reported RGC neuroprotection by ginkgo biloba extract in rats after IOP elevation [101]. In addition, Ma and Colleagues reported that intraperitoneal injections of ginkgo biloba extract given prior to and daily after an experimental and standardized optic nerve crush in rats were associated with a higher survival rate of retinal ganglion cells [102, 103]. However, it has remained unclear how ginkgo biloba may help RGC to survive after the optic nerve crush. In addition, in contrast to previous studies, recently, Guo and Colleagues, reported no significant improvements in visual field defects and contrast sensitivity in Chinese patients with normal tension glaucoma after four weeks of oral treatment with ginkgo biloba extract [104]. Nevertheless, Shim and colleague reported that systemic administration of Bilberry anthocyanins and Ginkgo biloba extract improves visual function in some individuals with NTG [105].

5. Citicoline

Citicoline is a natural constituent of all cells, where it serves as the intermediate in phosphatidylcholine synthesis [106]. Citicoline attenuates free fatty acids release and re-establishes levels of cardiolipin phospholipid component of the inner mitochondrial membrane [107]. Citicoline also increase neurotrasmitters levels in the central nervous system [108] and in retina [109]. Interestingly, a number of studies reported citicoline may induce an improvement of the retinal and of the visual pathway function in patients with glaucoma [110-114]. Neuroprotective properties of citicoline have been shown in various experimental model of glaucoma. For example, in partial crush injury of the rat optic nerve model, citicoline was found effective in rescuing RGC and their axons in vivo against delayed degeneration triggered by optic nerve crush [115]. Particularly, the Authors reported that citicoline increased retinal expression of the apoptotic regulating protein Bcl-2, indicating one of the mechanisms which may be engaged in the neuroprotective effect of the compound [115]. Moreover, after intravitreal injection of kainic acid (KA), citicoline counteracted increased expression of NOS isoforms [116] and decreased ERK1/2 kinase activation [117] caused by KA. Using murine retinal explants Oshitari and Colleagues have shown that citicoline can rescue damaged RGCs through an anti- apoptotic effect probably acting as a BDNF mimic [118, 119]. This effect was correlated with the reduction of the expression of active forms of caspases-9 and -3 [119].

6. Polyunsatured Fatty Acids

Omega 3 (ω-3) and omega 6 (ω-6) are polyunsaturated essential fatty acids (PUFAs). Both fatty acids are concentrated in the phospholipids of cell membranes throughout the human body, but especially in the brain, heart, retina, and testes [120]. Essential fatty acids omega 3 and omega 6 are of special interest due to their reported anti-inflammatory, antithrombotic, hypolipidemic, and vasodilatory capacities [121, 122]. Interestingly, recent studies suggest a key role for PUFAs also in neurodegeneration and neuropsychiatric diseases [123, 124]. Dietary deficiencies in ω-3 polyunsaturated fatty acids are also known to effect retinal function including RGC activity whereas a diet rich in ω-3 PUFA helps to reduce vulnerability of RGCs to dysfunction induced by IOP stress [125]. Nguyen and Colleagues demonstrated that an increased consumption of omega-3 fatty acids leads to decreased IOP through an increased aqueous outflow facility via prostaglandins (PGs) [126]. In fact, PGs, are metabolites of omega-3 fatty acids [127] and reduce IOP by enhancing uveoscleral and trabecular outflow via direct effects on ciliary muscle relaxation and remodeling of extracellular matrix [128]. Cod liver oil that contains vitamin A and both the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) has been demonstrated to lower IOP in experimental animals [129]. Moreover, a number of studies reported that omega-3 fatty acids prevented retinal cell structural degradation and counteracted glial cell activation induced by the elevation of IOP [130]. Accordingly, Nguyen and Colleagues, also reported that dietary ω-3 deficiency and repeat acute IOP insult are additive risk factors for RGC dysfunction [131]. Interestingly, a diet with increased omega-3 and decreased omega-6 could favor an increase in IOP reducing synthesis of PG-F2, leading to a decrease in uveoscleral outflow [132]. Conversely, a diet high in omega 6 and low in omega 3 to be associated with a reduced occurrence of POAG [133]. Therefore, it is important to have an appropriate balance between these fatty acid families [130, 134]. Accordingly, Pérez de Arcelus and Colleagues, in a prospective cohort study found that a diet with a high omega 3:6 ratio intake, thus low in omega 6, was associated with a higher occurrence of glaucoma [134]. Interestingly, Tourtas and Colleagues, reported in cultivated human TM cells, that ω-6 was efficient in preventing H2O2 mediated anti-proliferative effects, but displayed a repressive effect on mitochondrial activity and proliferation [135]. For ω-3, the Authors observed no negative side effects but an effective potential to prevent H2O2 mediated anti-proliferative/-metabolic effects [135]. Nevertheless, Schnebelen and Colleagues demonstrated that a 6-month supplementation with a combination of omega-3 and omega-6 PUFAs is more effective than single supplementations, since the EPA plus DHA plus gamma-linolenic acid dietary combination prevented retinal cell structure and decreased glial cell activation induced by the elevation of IOP in rats [130].

7. Taurine

Taurine (2-aminoethylsuphonic acid) is a “semi-essential” sulfur amino acid structurally similar to the neurotransmitters glycine and gamma aminobutyric acid (GABA) [136, 137]. Taurine is the most abundant free amino acid in mammalian retina after glutamate [138, 139]. The source of taurine is mostly exogenous and meats, seafood and fish are the major sources of this amino acid [140]. Taurine intake from dietary sources is highly dependent on taurine transporter expression in tissues exhibiting a high retinal uptake index (26.6% in serum) [141]. In retinal cells, taurine uptake was demonstrated in photoreceptors, retinal ganglion cells, retinal glial cells and in the retinal pigment epithelium cells [142-145]. Though the exact role of taurine in the retina is not fully understood, several studies have reported that taurine had a protective effect on cells from neuroretina [146] and retinal pigment epithelium [147]. The exact mechanism of this protective effect is still unknown. Taurine is considered to be an antioxidant, but the mechanisms underlying its antioxidant properties have never been clearly characterized, particularly in retinal cells [137].

However, activation of GABAA receptors through taurine binding may decrease neuronal vulnerability to excitotoxic damage [146]. Moreover, Bulley and Shen found that taurine reduces glutamate-induced Ca2+ influx via ionotropic glutamate receptors and voltage-dependent Ca2+ channels in the neurons, and the effect of taurine was selectively inhibited by strychnine and picrotoxin, but not GABA receptor antagonists, although GABA receptors were present in the neurons [136]. Interestingly, taurine supplementation in rats has demonstrated to reduce neuronal and glial cell death in different pathological conditions [148-150]. In cats, taurine supplementation has been found to prevent the progressive degeneration of retinal photoreceptors seen in retinitis pigmentosa [151]. In the retina, decreased taurine uptake was also found to induce retinal degeneration [152-159]. Retinal degeneration has been extensively investigated in taurine free-diet fed cats [152-156, 159] and monkeys [157]. The taurine depletion was also induced in cats and rats by treatments with taurine transport inhibitors, such as β-alanine or guanidoethane sulfonate (GES) [158, 160]. At the level of RGCs, Gaucher and Colleagues observed a significant loss induced by the GES treatment [161]. This retinal ganglion cell degeneration in GES-treated mice was very similar to that obtained in vigabatrin-treated neonatal rats [150], which was already attributed to the taurine depletion. Accordingly, taurine supplementation prevented vigabatrin-induced RGC degeneration [150]. Moreover, Froger and Colleagues demonstrated that taurine can improve RGC survival in culture or in different animal models of RGC degeneration [162]. Particularly, taurine effect on RGC survival was assessed in vitro on primary pure RCG cultures under serum-deprivation conditions, and on NMDA-treated retinal explants from adult rats [162]. In vivo, taurine was administered through the drinking water in two glaucomatous animal models (DBA/2J mice and rats with vein occlusion) and in a model of retinitis pigmentosa with secondary RGC degeneration (P23H rats). Taurine significantly enhanced RGCs survival and partly prevented NMDA-induced RGC excitotoxicity [162]. Moreover, taurine supplementation increased RGC densities both in DBA/2J mice, in rats with vein occlusion and in P23H rats [162]. This study indicates that enriched taurine nutrition can directly promote RGC survival and provides evidence that taurine can positively interfere with retinal degenerative diseases. More recently, Han and Colleagues suggested that taurine neuroprotection may result from inhibition of NADPH oxidases, the primary source of superoxide induced by NMDA receptor activation, probably in a calcium-dependent manner [163].

8. Alpha-lipoic acid

Alpha-lipoic acid (ALA), also known as thioctic acid, is a naturally occurring compound synthesized enzymatically in the mitochondrion but commonly found in dietary components such as vegetables and meats [164]. ALA is a necessary cofactor for mitochondrial α-ketoacid dehydrogenases, and thus serves a critical role in mitochondrial energy metabolism [164, 165]. ALA and its reduced form DHLA, are considered powerful antioxidant agents with a scavenging capacity for many ROS [166, 167] and appears to regenerate other endogenous antioxidants (e.g. vitamins C and E) [164]. In addition, the compounds elicited several cellular actions ranging from metal chelator to a mediator of cell signaling pathways to an insulin mimetic to a hypotriglyceridemic agent, etc. [164, 165]. Although ALA has been mainly studied in diabetic polyneuropathies, it showed beneficial properties for the prevention of vascular disease, hypertension, and inflammation [164, 165]. ALA is currently being tested as a treatment for neurodegeneration and neuropathy in several clinical trials. ALA has been also investigated in glaucoma. For example, Filina and Colleagues reported beneficial properties by ALA in correcting glutathion deficiency, detected in OAG patients by increasing lacrimal SH group level [168]. Particularly, some studies reported that supplementation of lipoic acid can increase glutathione in red blood cells [169] and lacrimal fluid [170] of patients with glaucoma. More recently, using a DBA/2J mouse model of glaucoma, Inman and Colleagues reported that addition of ALA to the diet increased antioxidant gene and protein expression and improved RGC survival without significant IOP changes [35]. Interestingly, Koriyama and Colleagues demonstrated that ALA exerts a neuroprotective effect against oxidative stress in retinal neurons in vitro and in vivo by inducing the expression of heme oxygenase-1 through Kelch-like ECH-associated protein (Keap1) / NF-E2-related factor 2 (Nrf2) signaling [171].

9. Forskolin

Forskolin is a diterpenoid isolated from plant Coleus forskohlii (Lamiaceae). Forskolin can penetrate cell membranes and stimulates the enzyme adenylate cyclase [172] decreasing IOP by reducing aqueous humor inflow in animals [173-176] and humans [173, 177-179] suggesting potential use for glaucoma treatment. Interestingly, oral administration of forskolin in association with rutina or with rutina and vitamins B1 and B2 contributed to IOP control [180] and could act in synergy with topical pharmacological treatments in POAG patients [181]. Interestingly, a number of studies suggested that forskolin promotes neuronal survival by stimulating neurotrophin activity in models of RGC death [182, 183]. Particularly, Intravitreal injection of forskolin with brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) contributed to survival and axonal regeneration of RGCs in adult cats [184]. Recently, Russo and Colleagues reported that forskolin prevents RGC loss induced by ischemia-reperfusion in rats and homotaurine and L-carnosine potentiate forskolin neuroprotection [185]. The treatment with forskolin/ homotaurine/ L-carnosine reduced calpain activation and increased Akt activation and GSK-3β phosphorylation in the retina subjected to ischemia/reperfusion [185]. The observed neuroprotection it was independent from PKA activation and distinct from the hypotensive effects of forskolin. Interestingly, Mutolo and Colleagues reported that a combined administration of forskolin, homotaurine, carnosine, and folic acid in POAG patients with their IOP compensated by topical drugs, induced a significant further decrease of IOP and an improvement of Pattern Electroretinogram (PERG) amplitude [186].

10. Curcumin

Curcumin is a polyphenol isolated from the plant Curcuma Longa (Zingiberaceae) and is the principal curcuminoid of the popular spice turmeric. Curcumin, has been widely used in many countries for centuries both as a spice and as a medicine [187]. In the past decade, several bio-functions of curcumin have been identified, including its anti-inflammatory effects, antitumorigenesis effects, antioxidative activity, and its inhibitory effects on histone aectyltransferases. Concerning its antioxidative activity, several studies have proven that curcumin inhibits oxidative and nitrative DNA damage by inhibiting the stress-induced elevated levels of 8-hydroxydeoxyguanosine (a biomarker of DNA oxidation) and 8-nitroguanine [188, 189]. Curcumin also inhibits oxidative damage by regulating oxygen consumption, ATP content, calcium retention, mitochondrial membrane potential, the activities of mitochondrial respiratory complexes I, II, III, and V, and mitochondrial respiratory capacity [190, 191]. Recently, in a chronic IOP rat model, pretreatment of curcumin protected against RGC loss and was correlated with significantly increased cell viability of BV-2 microglia [192]. In another research, staurosporine-induced ganglion cell death was attenuated by low dosages of curcumin both in vitro and in vivo [193]. Moreover, in an acute IOP model in rat, curcumin pretreatment was able to reverse the decrease of mitofusin 2 (mfn2), a mitochondrial fusion protein, and increase nuclear factor erythroid 2-related factor 2 (Nrf2) in the retinal I/R-induced open-angle glaucoma model in vivo, indicating that the compound could maintain the normal mitochondrial function and alleviate the retinal I/R injury by regulating the antioxidant system [194]. Interestingly, curcumin significantly attenuated NMDA-induced apoptosis in retinal neuronal/glial cultures in vitro by inhibiting the NR1 subunit of the NMDA receptor phosphorylation and NMDAR-mediated Ca2C increase [195]. More recently, the same Authors confirmed the neuroprotective activity of curcumin against NMDA toxicity, possibly related to an increased level of NR2A [196]. Interestingly, using TM cells as in vitro model system, Lin and Wu reported that curcumin treatment protected TM cells against oxidative stress-induced cell death [197]. In addition, curcumin pretreatment significantly inhibited proinflammatory factors, including IL-6, ELAM-1, IL-1α, and IL-8, whereas it decreased activities of senescence marker SA-β-gal, and lowered levels of carbonylated proteins and apoptotic cell numbers [197].

11. ERIGERON BREVISCAPUS

Erigeron breviscapus (vant.) Hand. Mazz. (EBHM) is a widely used Chinese medicinal plant for heart disease [198]. Its major active compounds are scutellarin, 1,5-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and erigoster B [199]. EBHM has been suggested as neuroprotectant in glaucoma. Particularly, some studies have shown that Erigeron breviscapus could improve the activity of cytochrome oxidase in RGCs [200] and optic nerve axoplasmic transport in rat models of acute elevated IOP [201]. Interestingly, in the experimental optic nerve crush model in rats, EBHM treatment increased the survival rate of the RGC and was able to rescue and/or restore the injured RGCs [202]. Moreover, administration of EBHM solution partially protected RGC loss in NMDA-induced retinal neuronal injury in rats [203]. EBHM extract also showed a partial protective effect on the visual field of glaucoma patients with controlled IOP [204]. In addition, Erigeron breviscapus extract treatment improved the impaired visual function (detected by multifocal electroretinogram) of persistently elevated IOP in rats [205]. Although it is not known to which components of EBHM are attributed the specific effects, it has been suggested that the combined activity and a certain interdependency of several active constituents of EBHM extract are responsible for its beneficial effects [206, 207]. For example, Bastianetto and collegues reported that the flavonoid fraction strongly inhibited both the toxicity and the free radical accumulation induced by sodium nitroprusside and/or 3-morpholinosydnonimine [208]. Several studies also showed neuroprotective effect of scutellarin and other ingredients extracted from Erigeron breviscapus against neuronal damage following cerebral ischemia/reperfusion [209-213]. Interestingly, Wang and Colleagues observed that scutellarin inhibited lipopolysaccharide (LPS)-induced production of proinflammatory mediators and suppressed LPS-stimulated inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-α), and IL-1β mRNA expression in rat primary microglia or BV-2 mouse microglial cell line [212]. More recently, Yin and Colleagues, reported that DSX, an active component extracted from Erigeron breviscapus, suppress outward potassium channel currents in rat RGCs, suggesting it may be one of the possible mechanisms underlying Erigeron breviscapus prevents vision loss and RGC damage caused by glaucoma [214].

12. LYCIUM BARBARUM

Lycium barbarum L. belongs to the Solanaceae family (also named Fructus Lycii or called Wolfberry or Goji berries). It has been used for centuries as a traditional medicinal and food supplement in East Asia, however, since the beginning of the 21st century, wolfberries have become increasingly popular in Europe and North America [215, 216]. The active components in wolfberry include L. barbarum polysaccharides (LBP), zeaxanthine, betaine, cerebroside and trace amounts of zinc, iron, and copper [217]. LBP are the primary active components and have been reported to possess a wide array of pharmacological activities [216, 218]. It has been reported that LBP exerts beneficial effects in animal models of ocular diseases. For example, several studies have shown neuroprotective effects of LBP on RGCs in acute model of glaucoma [219, 220]. Particularly, Mi and Colleagues reported that Lycium barbarum polysaccharides protect RGCs and retinal vasculature in a mouse model of acute ocular hypertension and provide neuroprotection by down-regulating receptors for advanced glycation end products (RAGE), endothelin-1 (ET-1), amyloid-beta peptide and advanced glycation end products (AGE) in the retina, as well as their related signaling pathways [219]. He and Colleagues demonstrated that LBPs elicit retino- and neuro-protective effects via the activation of nuclear factor erythroid 2-related factor (Nrf2) and upregulation of expression of heme oxygenase-1 (HO1) [220]. Lycium barbarum have shown neuroprotective effect also in chronic ocular hypertension model of glaucoma [221-223] and MCAO-induced ischemic retina [218]. Particularly, Chan and Colleagues suggested that the neuroprotective effect of LBPs in chronic ocular hypertension (COH) rats is partly due to modulating the activation of microglia [221], whereas Chiu and Colleagues suggested that the prosurvival effect of LBPs on rat RGCs in COH may be mediated by an increase in the upregulation of βB2 crystalline, a neuroprotective agent [223]. In addition, Li and Colleagues reported that LBP reduces secondary degeneration of RGCs after partial optic nerve transection suggesting that this effect may be linked to the inhibition of oxidative stress and the JNK/c-jun pathway in the retina [224].

CONCLUSION

Glaucoma it is not always under the control of currently available drugs, thus a need exists for novel therapies able to save retinal ganglion cells from injury or to repair damaged neurons. Nutraceuticals may offer some therapeutic potential in glaucoma management, however the lack of well designed clinical trials examining their benefits for glaucoma limits their current therapeutic use. The finding of appropriate use of nutraceuticals that may be able to modify the risk of glaucoma may provide insight into glaucoma pathogenesis and decrease the need for, and therefore the side effects from, conventional therapies.

CONSENT FOR PUBLICATION

Not applicable.

ACKNOWLEDGEMENTS

All the authors contributed substantially to the design, performance, analysis, or reporting of the work equally.

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

REFERENCES

  • 1.Song W., Huang P., Zhang C. Neuroprotective therapies for glaucoma. Drug Des. Devel. Ther. 2015;9:1469–1479. doi: 10.2147/DDDT.S80594. [http://dx.doi.org/10.2147/DDDT.S80594]. [PMID: 25792807]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Gauthier A.C., Liu J. Epigenetics and signaling pathways in glaucoma. BioMed Res. Int. 2017;2017:5712341. doi: 10.1155/2017/5712341. [http://dx.doi.org/10.1155/2017/5712341]. [PMID: 28210622]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Von Thun Und Hohenstein-Blaul N., Kunst S., Pfeiffer N., Grus F.H. Biomarkers for glaucoma: from the lab to the clinic. Eye (Lond.) 2017;31(2):225–231. doi: 10.1038/eye.2016.300. [http://dx.doi.org/10.1038/eye.2016. 300]. [PMID: 28085137]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Levkovitch-Verbin H. 2015. [Google Scholar]
  • 5.Russo R., Berliocchi L., Adornetto A., Varano G.P., Cavaliere F., Nucci C., Rotiroti D., Morrone L.A., Bagetta G., Corasaniti M.T. Calpain-mediated cleavage of Beclin-1 and autophagy deregulation following retinal ischemic injury in vivo. Cell Death Dis. 2011;2:e144. doi: 10.1038/cddis.2011.29. [http://dx.doi.org/10.1038/cddis.2011.29]. [PMID: 21490676]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Russo R., Varano G.P., Adornetto A., Nucci C., Corasaniti M.T., Bagetta G., Morrone L.A. Retinal ganglion cell death in glaucoma: Exploring the role of neuroinflammation. Eur. J. Pharmacol. 2016;787:134–142. doi: 10.1016/j.ejphar.2016.03.064. [http://dx.doi.org/10.1016/j.ejphar. 2016.03.064]. [PMID: 27044433]. [DOI] [PubMed] [Google Scholar]
  • 7.Chrysostomou V., Rezania F., Trounce I.A., Crowston J.G. Oxidative stress and mitochondrial dysfunction in glaucoma. Curr. Opin. Pharmacol. 2013;13(1):12–15. doi: 10.1016/j.coph.2012.09.008. [http://dx.doi.org/10.1016/ j.coph.2012.09.008]. [PMID: 23069478]. [DOI] [PubMed] [Google Scholar]
  • 8.Nucci C., Tartaglione R., Rombolà L., Morrone L.A., Fazzi E., Bagetta G. Neurochemical evidence to implicate elevated glutamate in the mechanisms of high intraocular pressure (IOP)-induced retinal ganglion cell death in rat. Neurotoxicology. 2005;26(5):935–941. doi: 10.1016/j.neuro.2005.06.002. [http://dx.doi.org/10.1016/j.neuro.2005.06.002]. [PMID: 16126273]. [DOI] [PubMed] [Google Scholar]
  • 9.Russo R., Rotiroti D., Tassorelli C., Nucci C., Bagetta G., Bucci M.G., Corasaniti M.T., Morrone L.A. Identification of novel pharmacological targets to minimize excitotoxic retinal damage. Int. Rev. Neurobiol. 2009;85:407–423. doi: 10.1016/S0074-7742(09)85028-9. [http://dx.doi.org/10. 1016/S0074-7742(09)85028-9]. [PMID: 19607984]. [DOI] [PubMed] [Google Scholar]
  • 10.Lee S., Van Bergen N.J., Kong G.Y., Chrysostomou V., Waugh H.S., O’Neill E.C., Crowston J.G., Trounce I.A. Mitochondrial dysfunction in glaucoma and emerging bioenergetic therapies. Exp. Eye Res. 2011;93(2):204–212. doi: 10.1016/j.exer.2010.07.015. [http://dx.doi.org/10.1016/j.exer. 2010.07.015]. [PMID: 20691180]. [DOI] [PubMed] [Google Scholar]
  • 11.Williams P.A., Harder J.M., Foxworth N.E., Cochran K.E., Philip V.M., Porciatti V., Smithies O., John S.W.M. Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science. 2017;355(6326):756–760. doi: 10.1126/science.aal0092. [http://dx.doi.org/10.1126/science.aal0092]. [PMID: 28209901]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Williams P.A., Harder J.M., Foxworth N.E., Cardozo B.H., Cochran K.E., John S.W.M. Nicotinamide and WLDS act together to prevent neuro-degeneration in glaucoma. Front. Neurosci. 2017;25:11–232. doi: 10.3389/fnins.2017.00232. [http://dx.doi.org/10.3389/fnins.2017.00232]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Luo X., Heidinger V., Picaud S., Lambrou G., Dreyfus H., Sahel J., Hicks D. Selective excitotoxic degeneration of adult pig retinal ganglion cells in vitro. Invest. Ophthalmol. Vis. Sci. 2001;42(5):1096–1106. [PMID: 11274091]. [PubMed] [Google Scholar]
  • 14.Russo R., Cavaliere F., Rombolà L., Gliozzi M., Cerulli A., Nucci C., Fazzi E., Bagetta G., Corasaniti M.T., Morrone L.A. Rational basis for the development of coenzyme Q10 as a neurotherapeutic agent for retinal protection. 2008. [DOI] [PubMed] [Google Scholar]
  • 15.Tezel G. Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences. Prog. Retin. Eye Res. 2006;25(5):490–513. doi: 10.1016/j.preteyeres.2006.07.003. [http://dx.doi.org/10.1016/j.preteyeres.2006.07.003]. [PMID: 16962364]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Pinazo-Durán M.D., Gallego-Pinazo R., García-Medina J.J., Zanón-Moreno V., Nucci C., Dolz-Marco R., Martínez-Castillo S., Galbis-Estrada C., Marco-Ramírez C., López-Gálvez M.I., Galarreta D.J., Díaz-Llópis M. Oxidative stress and its downstream signaling in aging eyes. Clin. Interv. Aging. 2014;9:637–652. doi: 10.2147/CIA.S52662. [http://dx.doi.org/10.2147/CIA.S52662]. [PMID: 24748782]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Ferreira S.M., Lerner S.F., Brunzini R., Evelson P.A., Llesuy S.F. Oxidative stress markers in aqueous humor of glaucoma patients. Am. J. Ophthalmol. 2004;137(1):62–69. doi: 10.1016/s0002-9394(03)00788-8. [http://dx.doi.org/10.1016/S0002-9394(03)00788-8]. [PMID: 14700645]. [DOI] [PubMed] [Google Scholar]
  • 18.Ghanem A.A., Arafa L.F., El-Baz A. Oxidative stress markers in patients with primary open-angle glaucoma. Curr. Eye Res. 2010;35(4):295–301. doi: 10.3109/02713680903548970. [http://dx.doi.org/10.3109/02713680903548970]. [PMID: 20373896]. [DOI] [PubMed] [Google Scholar]
  • 19.Goyal A., Srivastava A., Sihota R., Kaur J. Evaluation of oxidative stress markers in aqueous humor of primary open angle glaucoma and primary angle closure glaucoma patients. Curr. Eye Res. 2014;39(8):823–829. doi: 10.3109/02713683.2011.556299. [http://dx.doi.org/10.3109/02713683.2011. 556299]. [PMID: 24912005]. [DOI] [PubMed] [Google Scholar]
  • 20.Benoist d’Azy C., Pereira B., Chiambaretta F., Dutheil F. Oxidative and anti-oxidative stress markers in chronic glaucoma: A systematic review and meta-analysis. PLoS One. 2016;11(12):e0166915. doi: 10.1371/journal.pone.0166915. [http://dx.doi.org/10.1371/journal.pone.0166915]. [PMID: 27907028]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Saccà S.C., Pascotto A., Camicione P., Capris P., Izzotti A. Oxidative DNA damage in the human trabecular meshwork: clinical correlation in patients with primary open-angle glaucoma. Arch. Ophthalmol. 2005;123(4):458–463. doi: 10.1001/archopht.123.4.458. [http://dx.doi.org/10.1001/archopht.123.4.458]. [PMID: 15824217]. [DOI] [PubMed] [Google Scholar]
  • 22.Li G., Luna C., Liton P.B., Navarro I., Epstein D.L., Gonzalez P. Sustained stress response after oxidative stress in trabecular meshwork cells. Mol. Vis. 2007;13:2282–2288. [PMID: 18199969]. [PMC free article] [PubMed] [Google Scholar]
  • 23.Xu L., Zhang Y., Guo R., Shen W., Qi Y., Wang Q., Guo Z., Qi C., Yin H., Wang J. HES1 promotes extracellular matrix protein expression and inhibits proliferation and migration in human trabecular meshwork cells under oxidative stress. Oncotarget. 2017;8(13):21818–21833. doi: 10.18632/oncotarget.15631. [http://dx.doi.org/10.18632/oncotarget. 15631]. [PMID: 28423527]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Russo R., Berliocchi L., Adornetto A., Amantea D., Nucci C., Tassorelli C., Morrone L.A., Bagetta G., Corasaniti M.T. In search of new targets for retinal neuroprotection: is there a role for autophagy? Curr. Opin. Pharmacol. 2013;13(1):72–77. doi: 10.1016/j.coph.2012.09.004. [http://dx. doi.org/10.1016/j.coph.2012.09.004]. [PMID: 23036350]. [DOI] [PubMed] [Google Scholar]
  • 25.Jutley G., Luk S.M., Dehabadi M.H., Cordeiro M.F. Management of glaucoma as a neurodegenerative disease. Neurodegener. Dis. Manag. 2017;7(2):157–172. doi: 10.2217/nmt-2017-0004. [http://dx.doi.org/10.2217/nmt-2017-0004]. [PMID: 28540772]. [DOI] [PubMed] [Google Scholar]
  • 26.Kasbia G.S. Functional foods and nutraceuticals in the management of obesity. Nutr. Food Sci. 2005;35:344–352. [http://dx. doi.org/10.1108/00346650510625557]. [Google Scholar]
  • 27.Kaur A., Gupta V., Christopher A.F., Malik M.A., Bansal P. Nutraceuticals in prevention of cataract - An evidence based approach. Saudi J. Ophthalmol. 2017;31(1):30–37. doi: 10.1016/j.sjopt.2016.12.001. [http://dx.doi. org/10.1016/j.sjopt.2016.12.001]. [PMID: 28337060]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Head K.A. Natural therapies for ocular disorders, part two: cataracts and glaucoma. Altern. Med. Rev. 2001;6(2):141–166. [PMID: 11302779]. [PubMed] [Google Scholar]
  • 29.Bussel I.I., Aref A.A. Dietary factors and the risk of glaucoma: a review. Ther. Adv. Chronic Dis. 2014;5(4):188–194. doi: 10.1177/2040622314530181. [http://dx. doi.org/10.1177/2040622314530181]. [PMID: 24982753]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Horng C.T., Tsai M.L., Chien S.T., Kao W.T., Tsai M.K., Chang T.H., Chen F.A. The activity of lowering intraocular pressure of cassiae seed extract in a DBA/2J mouse glaucoma model. J. Ocul. Pharmacol. Ther. 2013;29(1):48–54. doi: 10.1089/jop.2011.0214. [http://dx.doi.org/10.1089/jop.2011.0214]. [PMID: 23039184]. [DOI] [PubMed] [Google Scholar]
  • 31.Mutolo M.G., Albanese G., Rusciano D., Pescosolido N. Oral administration of forskolin, homotaurine, carnosine, and folic acid in patients with primary open angle glaucoma: Changes in intraocular pressure, pattern electroretinogram amplitude, and foveal sENSITIVITY. J. Ocul. Pharmacol. Ther. 2016;32(3):178–183. doi: 10.1089/jop.2015.0121. [http://dx.doi.org/10.1089/jop.2015.0121]. [PMID: 26771282]. [DOI] [PubMed] [Google Scholar]
  • 32.Şimşek T., Altınışık U., Erşan İ., Şahin H., Altınışık B., Erbaş M., Pala Ç. Prevention of intraocular pressure elevation with oleuropein rich diet in rabbits, during the general anaesthesia. Springerplus. 2016;5(1):952. doi: 10.1186/s40064-016-2402-3. [http://dx.doi.org/10.1186/s40064-016-2402-3]. [PMID: 27386396]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Aruoma O.I., Moncaster J.A., Walsh D.T., Gentleman S.M. ; Ke B., Liang Y.F., Higa T., Jen L.S. The antioxidant cocktail, effective microorganism X (EM-X), protects retinal neurons in rats against N-methyl-D-aspartate excitotoxicity in vivo. Free Radic. Res. 2003;37(1):91–97. doi: 10.1080/1071576021000036605. [http://dx.doi.org/10.1080/1071576021000036605]. [PMID: 12653222]. [DOI] [PubMed] [Google Scholar]
  • 34.Yu X., Xu Z., Mi M., Xu H., Zhu J., Wei N., Chen K., Zhang Q., Zeng K., Wang J., Chen F., Tang Y. Dietary taurine supplementation ameliorates diabetic retinopathy via anti-excitotoxicity of glutamate in streptozotocin-induced Sprague-Dawley rats. Neurochem. Res. 2008;33(3):500–507. doi: 10.1007/s11064-007-9465-z. [http://dx.doi.org/10.1007/s11064-007-9465-z]. [PMID: 17762918]. [DOI] [PubMed] [Google Scholar]
  • 35.Inman D.M., Lambert W.S., Calkins D.J., Horner P.J. α-Lipoic acid antioxidant treatment limits glaucoma-related retinal ganglion cell death and dysfunction. PLoS One. 2013;8(6):e65389. doi: 10.1371/journal.pone.0065389. [http://dx.doi.org/10.1371/journal.pone.0065389]. [PMID: 23755225]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Lee D., Shim M.S., Kim K.Y., Noh Y.H., Kim H., Kim S.Y., Weinreb R.N., Ju W.K. Coenzyme Q10 inhibits glutamate excitotoxicity and oxidative stress-mediated mitochondrial alteration in a mouse model of glaucoma. Invest. Ophthalmol. Vis. Sci. 2014;55(2):993–1005. doi: 10.1167/iovs.13-12564. [http://dx.doi.org/10.1167/iovs.13-12564]. [PMID: 24458150]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Ramdas W., Wolfs R., Kiefte-de Jong J., Hofman A., de Jong P., Vingerling J., Jansonius N. Nutrient intake and risk of open-angle glaucoma: the Rotter-dam Study. 2012. [DOI] [PMC free article] [PubMed]
  • 38.Kang J.H., Pasquale L.R., Willett W., Rosner B., Egan K.M., Faberowski N., Hankinson S.E. Antioxidant intake and primary open-angle glaucoma: a prospective study. Am. J. Epidemiol. 2003;158(4):337–346. doi: 10.1093/aje/kwg167. [http://dx.doi.org/10.1093/aje/kwg167]. [PMID: 12915499]. [DOI] [PubMed] [Google Scholar]
  • 39.Garcia-Medina J.J., Garcia-Medina M., Garrido-Fernandez P., Galvan-Espinosa J., Garcia-Maturana C., Zanon-Moreno V., Pinazo-Duran M.D. A two-year follow-up of oral antioxidant supplementation in primary open-angle glaucoma: an open-label, randomized, controlled trial. Acta Ophthalmol. 2015;93(6):546–554. doi: 10.1111/aos.12629. [http://dx.doi.org/10.1111/aos.12629]. [PMID: 25545196]. [DOI] [PubMed] [Google Scholar]
  • 40.Ritch R. Natural compounds: evidence for a protective role in eye disease. Can. J. Ophthalmol. 2007;42(3):425–438. [http://dx.doi. org/10.3129/i07-044]. [PMID: 17508040]. [PubMed] [Google Scholar]
  • 41.Veach J. Functional dichotomy: glutathione and vitamin E in homeostasis relevant to primary open-angle glaucoma. Br. J. Nutr. 2004;91(6):809–829. doi: 10.1079/BJN20041113. [http://dx.doi.org/10.1079/BJN20041113]. [PMID: 15182385]. [DOI] [PubMed] [Google Scholar]
  • 42.West A.L., Oren G.A., Moroi S.E. Evidence for the use of nutritional supplements and herbal medicines in common eye diseases. Am. J. Ophthalmol. 2006;141(1):157–166. doi: 10.1016/j.ajo.2005.07.033. [http://dx.doi.org/10.1016/j.ajo.2005.07.033]. [PMID: 16386992]. [DOI] [PubMed] [Google Scholar]
  • 43.Li J., Xu F., Zeng R., Gong H., Lan Y. Plasma homocysteine, serum folic acid, serum vitamin B12, serum vitamin B6, MTHFR, and risk of normal-tension glaucoma. J. Glaucoma. 2016;25(2):e94–e98. doi: 10.1097/IJG.0000000000000269. [http://dx.doi.org/10.1097/IJG.0000000000000269]. [PMID: 26171850]. [DOI] [PubMed] [Google Scholar]
  • 44.Li S., Li D., Shao M., Cao W., Sun X. Lack of Association between Serum Vitamin B6, Vitamin B12, and Vitamin D Levels with Different Types of Glaucoma: A Systematic Review and Meta-Analysis. Nutrients. 2017;9(6):E636. doi: 10.3390/nu9060636. [http://dx.doi. org/10.3390/nu9060636]. [PMID: 28635642]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Yuki K., Murat D., Kimura I., Ohtake Y., Tsubota K. Reduced-serum vitamin C and increased uric acid levels in normal-tension glaucoma. Graefes Arch. Clin. Exp. Ophthalmol. 2010;248(2):243–248. doi: 10.1007/s00417-009-1183-6. [http://dx.doi.org/10.1007/s00417-009-1183-6]. [PMID: 19763599]. [DOI] [PubMed] [Google Scholar]
  • 46.Asregadoo E.R. Blood levels of thiamine and ascorbic acid in chronic open-angle glaucoma. Ann. Ophthalmol. 1979;11(7):1095–1100. [PMID: 485004]. [PubMed] [Google Scholar]
  • 47.Turgut B., Kaya M., Arslan S., Demir T., Güler M., Kaya M.K. Levels of circulating homocysteine, vitamin B6, vitamin B12, and folate in different types of open-angle glaucoma. Clin. Interv. Aging. 2010;5:133–139. doi: 10.2147/cia.s9918. [http://dx.doi.org/10.2147/CIA.S9918]. [PMID: 20458351]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Cumurcu T., Sahin S., Aydin E. Serum homocysteine, vitamin B 12 and folic acid levels in different types of glaucoma. BMC Ophthalmol. 2006;23:6–6. doi: 10.1186/1471-2415-6-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Xu F., Zhao X., Zeng S.M., Li L., Zhong H.B., Li M. Homocysteine, B vitamins, methylenetetrahydrofolate reductase gene, and risk of primary open-angle glaucoma: a meta-analysis. Ophthalmology. 2012;119(12):2493–2499. doi: 10.1016/j.ophtha.2012.06.025. [http://dx.doi.org/10. 1016/j.ophtha.2012.06.025]. [PMID: 22902176]. [DOI] [PubMed] [Google Scholar]
  • 50.Kang J.H., Loomis S.J., Wiggs J.L., Willett W.C., Pasquale L.R. A prospective study of folate, vitamin B6, and vitamin B12 intake in relation to exfoliation glaucoma or suspected exfoliation glaucoma. JAMA Ophthalmol. 2014;132(5):549–559. doi: 10.1001/jamaophthalmol.2014.100. [http://dx.doi.org/10.1001/jamaophthalmol.2014.100]. [PMID: 24699833]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Wang S.Y., Singh K., Lin S.C. Glaucoma and vitamins A, C, and E supplement intake and serum levels in a population-based sample of the United States. Eye (Lond.) 2013;27(4):487–494. doi: 10.1038/eye.2013.10. [http://dx.doi.org/10.1038/eye.2013.10]. [PMID: 23429409]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Xu P., Lin Y., Porter K., Liton P.B. Ascorbic acid modulation of iron homeostasis and lysosomal function in trabecular meshwork cells. J. Ocul. Pharmacol. Ther. 2014;30(2-3):246–253. doi: 10.1089/jop.2013.0183. [http://dx.doi.org/10.1089/jop.2013.0183]. [PMID: 24552277]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Lee P.F., Fox R., Henrick I., Lam W.K. Correlation of aqueous humor ascorbate with intraocular pressure and outflow facility in hereditary buphthalmic rabbits. Invest. Ophthalmol. Vis. Sci. 1978;17(8):799–802. [PMID: 567210]. [PubMed] [Google Scholar]
  • 54.Lee P., Lam K.W., Lai M. Aqueous humor ascorbate concentration and open-angle glaucoma. Arch. Ophthalmol. 1977;95(2):308–310. doi: 10.1001/archopht.1977.04450020109018. [http://dx.doi.org/10.1001/archopht.1977.04450020109018]. [PMID: 836213]. [DOI] [PubMed] [Google Scholar]
  • 55.Schachtschabel D.O., Binninger E. Stimulatory effects of ascorbic acid on hyaluronic acid synthesis of in vitro cultured normal and glaucomatous trabecular meshwork cells of the human eye. Z. Gerontol. 1993;26(4):243–246. [PMID: 8212793]. [PubMed] [Google Scholar]
  • 56.Liu K.M., Swann D., Lee P., Lam K.W. Inhibition of oxidative degradation of hyaluronic acid by uric acid. Curr. Eye Res. 1984;3(8):1049–1053. doi: 10.3109/02713688409011751. [http://dx.doi.org/10.3109/02713688409011751]. [PMID: 6488856]. [DOI] [PubMed] [Google Scholar]
  • 57.Goncalves A., Milea D., Gohier P., Jallet G., Leruez S., Baskaran M., Aung T., Annweiler C. Serum vitamin D status is associated with the presence but not the severity of primary open angle glaucoma. Maturitas. 2015;81(4):470–474. doi: 10.1016/j.maturitas.2015.05.008. [http://dx.doi.org/10.1016/j.maturitas.2015.05.008]. [PMID: 26059919]. [DOI] [PubMed] [Google Scholar]
  • 58.Kutuzova G.D., Gabelt B.T., Kiland J.A., Hennes-Beann E.A., Kaufman P.L., DeLuca H.F. 1α,25-Dihydroxyvitamin D(3) and its analog, 2-methylene-19-nor-(20S)-1α,25-dihydroxyvitamin D(3) (2MD), suppress intraocular pressure in non-human primates. Arch. Biochem. Biophys. 2012;518(1):53–60. doi: 10.1016/j.abb.2011.10.022. [http://dx.doi.org/10. 1016/j.abb.2011.10.022]. [PMID: 22198282]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Krefting E.A., Jorde R., Christoffersen T., Grimnes G. Vitamin D and intraocular pressure--results from a case-control and an intervention study. Acta Ophthalmol. 2014;92(4):345–349. doi: 10.1111/aos.12125. [http://dx.doi.org/10.1111/aos.12125]. [PMID: 23575211]. [DOI] [PubMed] [Google Scholar]
  • 60.Ko M.L., Peng P.H., Hsu S.Y., Chen C.F. Dietary deficiency of vitamin E aggravates retinal ganglion cell death in experimental glaucoma of rats. Curr. Eye Res. 2010;35(9):842–849. doi: 10.3109/02713683.2010.489728. [http://dx. doi.org/10.3109/02713683.2010.489728]. [PMID: 20795867]. [DOI] [PubMed] [Google Scholar]
  • 61.Yu A.L., Moriniere J., Welge-Lussen U. Vitamin E reduces TGF-beta2-induced changes in human trabecular meshwork cells. Curr. Eye Res. 2013;38(9):952–958. doi: 10.3109/02713683.2013.793360. [http://dx.doi.org/10.3109/02713683.2013.793360]. [PMID: 23659542]. [DOI] [PubMed] [Google Scholar]
  • 62.Nakajima Y., Inokuchi Y., Nishi M., Shimazawa M., Otsubo K., Hara H. Coenzyme Q10 protects retinal cells against oxidative stress in vitro and in vivo. Brain Res. 2008;1226:226–233. doi: 10.1016/j.brainres.2008.06.026. [http://dx.doi.org/10.1016/j.brainres.2008.06.026]. [PMID: 18598676]. [DOI] [PubMed] [Google Scholar]
  • 63.Beal M.F. Coenzyme Q10 administration and its potential for treatment of neurodegenerative diseases. Biofactors. 1999;9(2-4):261–266. doi: 10.1002/biof.5520090222. [http://dx.doi.org/10.1002/biof.5520090222]. [PMID: 10416039]. [DOI] [PubMed] [Google Scholar]
  • 64.Beal M.F., Shults C.W. Effects of Coenzyme Q10 in Huntington’s disease and early Parkinson’s disease. Biofactors. 2003;18(1-4):153–161. doi: 10.1002/biof.5520180218. [http://dx.doi.org/10.1002/biof.5520180218]. [PMID: 14695931]. [DOI] [PubMed] [Google Scholar]
  • 65.Bessero A.C., Clarke P.G. Neuroprotection for optic nerve disorders. Curr. Opin. Neurol. 2010;23(1):10–15. doi: 10.1097/WCO.0b013e3283344461. [http://dx.doi.org/10.1097/WCO.0b013e3283344461]. [PMID: 19915465]. [DOI] [PubMed] [Google Scholar]
  • 66.Nucci C., Tartaglione R., Cerulli A., Mancino R., Spanò A., Cavaliere F., Rombolà L., Bagetta G., Corasaniti M.T., Morrone L.A. Retinal damage caused by high intraocular pressure-induced transient ischemia is prevented by coenzyme Q10 in rat. Int. Rev. Neurobiol. 2007;82:397–406. doi: 10.1016/S0074-7742(07)82022-8. [http://dx.doi.org/10.1016/S0074-7742(07)82022-8]. [PMID: 17678974]. [DOI] [PubMed] [Google Scholar]
  • 67.Lulli M., Witort E., Papucci L., Torre E., Schipani C., Bergamini C., Dal Monte M., Capaccioli S. Coenzyme Q10 instilled as eye drops on the cornea reaches the retina and protects retinal layers from apoptosis in a mouse model of kainate-induced retinal damage. Invest. Ophthalmol. Vis. Sci. 2012;53(13):8295–8302. doi: 10.1167/iovs.12-10374. [http://dx.doi.org/10.1167/iovs.12-10374]. [PMID: 23154463]. [DOI] [PubMed] [Google Scholar]
  • 68.Noh Y.H., Kim K.Y., Shim M.S., Choi S.H., Choi S., Ellisman M.H., Weinreb R.N., Perkins G.A., Ju W.K. Inhibition of oxidative stress by coenzyme Q10 increases mitochondrial mass and improves bioenergetic function in optic nerve head astrocytes. Cell Death Dis. 2013;4:e820. doi: 10.1038/cddis.2013.341. [http://dx.doi.org/10.1038/cddis.2013. 341]. [PMID: 24091663]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Parisi V., Centofanti M., Gandolfi S., Marangoni D., Rossetti L., Tanga L., Tardini M., Traina S., Ungaro N., Vetrugno M., Falsini B. Effects of coenzyme Q10 in conjunction with vitamin E on retinal-evoked and cortical-evoked responses in patients with open-angle glaucoma. J. Glaucoma. 2014;23(6):391–404. doi: 10.1097/IJG.0b013e318279b836. [http://dx.doi.org/10.1097/IJG.0b013e318279b836]. [PMID: 25079307]. [DOI] [PubMed] [Google Scholar]
  • 70.Rasola A., Bernardi P. The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. Apoptosis. 2007;12(5):815–833. doi: 10.1007/s10495-007-0723-y. [http://dx.doi.org/10.1007/s10495-007-0723-y]. [PMID: 17294078]. [DOI] [PubMed] [Google Scholar]
  • 71.Papucci L., Schiavone N., Witort E., Donnini M., Lapucci A., Tempestini A., Formigli L., Zecchi-Orlandini S., Orlandini G., Carella G., Brancato R., Capaccioli S. Coenzyme q10 prevents apoptosis by inhibiting mitochondrial depolarization independently of its free radical scavenging property. J. Biol. Chem. 2003;278(30):28220–28228. doi: 10.1074/jbc.M302297200. [http://dx.doi.org/10.1074/jbc.M302297200]. [PMID: 12736273]. [DOI] [PubMed] [Google Scholar]
  • 72.Heim K.E., Tagliaferro A.R., Bobilya D.J. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002;13(10):572–584. doi: 10.1016/s0955-2863(02)00208-5. [http://dx.doi.org/10.1016/S0955-2863(02)00208-5]. [PMID: 12550068]. [DOI] [PubMed] [Google Scholar]
  • 73.Ross J.A., Kasum C.M. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 2002;22:19–34. doi: 10.1146/annurev.nutr.22.111401.144957. [http://dx.doi.org/10.1146/annurev.nutr.22.111401.144957]. [PMID: 12055336]. [DOI] [PubMed] [Google Scholar]
  • 74.Milea D., Aung T. Flavonoids and glaucoma: revisiting therapies from the past. Graefes Arch. Clin. Exp. Ophthalmol. 2015;253(11):1839–1840. doi: 10.1007/s00417-015-3167-z. [http://dx.doi.org/10.1007/s00417-015-3167-z]. [PMID: 26344732]. [DOI] [PubMed] [Google Scholar]
  • 75.Ishige K., Schubert D., Sagara Y. Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic. Biol. Med. 2001;30(4):433–446. doi: 10.1016/s0891-5849(00)00498-6. [http://dx.doi.org/10.1016/S0891-5849(00)00498-6]. [PMID: 11182299]. [DOI] [PubMed] [Google Scholar]
  • 76.Milbury P.E. Flavonoid intake and eye health. J. Nutr. Gerontol. Geriatr. 2012;31(3):254–268. doi: 10.1080/21551197.2012.698221. [http://dx.doi.org/10.1080/21551197.2012.698221]. [PMID: 22888841]. [DOI] [PubMed] [Google Scholar]
  • 77.Middleton E., Jr Effect of plant flavonoids on immune and inflammatory cell function. Adv. Exp. Med. Biol. 1998;439:175–182. doi: 10.1007/978-1-4615-5335-9_13. [http://dx.doi.org/10.1007/978-1-4615-5335-9_13]. [PMID: 9781303]. [DOI] [PubMed] [Google Scholar]
  • 78.Middleton E., Jr, Kandaswami C., Theoharides T.C. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 2000;52(4):673–751. [PMID: 11121513]. [PubMed] [Google Scholar]
  • 79.Kozłowska A., Szostak-Wegierek D. Flavonoids--food sources and health benefits. Rocz. Panstw. Zakl. Hig. 2014;65(2):79–85. [PMID: 25272572]. [PubMed] [Google Scholar]
  • 80.Maher P., Hanneken A. Flavonoids protect retinal ganglion cells from oxidative stress-induced death. Invest. Ophthalmol. Vis. Sci. 2005;46(12):4796–4803. doi: 10.1167/iovs.05-0397. [http://dx.doi.org/10.1167/iovs.05-0397]. [PMID: 16303981]. [DOI] [PubMed] [Google Scholar]
  • 81.Maher P., Hanneken A. Flavonoids protect retinal ganglion cells from ischemia in vitro. Exp. Eye Res. 2008;86(2):366–374. doi: 10.1016/j.exer.2007.11.009. [http://dx.doi.org/10.1016/j.exer.2007.11.009]. [PMID: 18160067]. [DOI] [PubMed] [Google Scholar]
  • 82.Zhang B., Safa R., Rusciano D., Osborne N.N. Epigallocatechin gallate, an active ingredient from green tea, attenuates damaging influences to the retina caused by ischemia/reperfusion. Brain Res. 2007;1159:40–53. doi: 10.1016/j.brainres.2007.05.029. [http://dx.doi.org/10.1016/j.brainres.2007.05. 029]. [PMID: 17573045]. [DOI] [PubMed] [Google Scholar]
  • 83.Jung S.H., Kang K.D., Ji D., Fawcett R.J., Safa R., Kamalden T.A., Osborne N.N. The flavonoid baicalin counteracts ischemic and oxidative insults to retinal cells and lipid peroxidation to brain membranes. Neurochem. Int. 2008;53(6-8):325–337. doi: 10.1016/j.neuint.2008.09.004. [http://dx. doi.org/10.1016/j.neuint.2008.09.004]. [PMID: 18835309]. [DOI] [PubMed] [Google Scholar]
  • 84.Matsunaga N., Imai S., Inokuchi Y., Shimazawa M., Yokota S., Araki Y., Hara H. Bilberry and its main constituents have neuroprotective effects against retinal neuronal damage in vitro and in vivo. Mol. Nutr. Food Res. 2009;53(7):869–877. doi: 10.1002/mnfr.200800394. [http://dx.doi. org/10.1002/mnfr.200800394]. [PMID: 19415665]. [DOI] [PubMed] [Google Scholar]
  • 85.Patel S., Mathan J.J., Vaghefi E., Braakhuis A.J. The effect of flavonoids on visual function in patients with glaucoma or ocular hypertension: a systematic review and meta-analysis. Graefes Arch. Clin. Exp. Ophthalmol. 2015;253(11):1841–1850. doi: 10.1007/s00417-015-3168-y. [http://dx.doi. org/10.1007/s00417-015-3168-y]. [PMID: 26340868]. [DOI] [PubMed] [Google Scholar]
  • 86.Nakayama M., Aihara M., Chen Y.N., Araie M., Tomita-Yokotani K., Iwashina T. Neuroprotective effects of flavonoids on hypoxia-, glutamate-, and oxidative stress-induced retinal ganglion cell death. Mol. Vis. 2011;17:1784–1793. [PMID: 21753864]. [PMC free article] [PubMed] [Google Scholar]
  • 87.Baur J.A., Sinclair D.A. Therapeutic potential of resveratrol: the in vivo evidence. Nat. Rev. Drug Discov. 2006;5(6):493–506. doi: 10.1038/nrd2060. [http://dx.doi.org/10.1038/nrd2060]. [PMID: 16732220]. [DOI] [PubMed] [Google Scholar]
  • 88.Cucciolla V., Borriello A., Oliva A., Galletti P., Zappia V., Della R.F. Resveratrol: from basic science to the clinic. Cell Cycle. 2007;6(20):2495–2510. doi: 10.4161/cc.6.20.4815. [http://dx.doi.org/10.4161/cc.6.20.4815]. [PMID: 17726376]. [DOI] [PubMed] [Google Scholar]
  • 89.Holme A.L., Pervaiz S. Resveratrol in cell fate decisions. J. Bioenerg. Biomembr. 2007;39(1):59–63. doi: 10.1007/s10863-006-9053-y. [http://dx.doi.org/10.1007/s10863-006-9053-y]. [PMID: 17308975]. [DOI] [PubMed] [Google Scholar]
  • 90.Luna C., Li G., Liton P.B., Qiu J., Epstein D.L., Challa P., Gonzalez P. Resveratrol prevents the expression of glaucoma markers induced by chronic oxidative stress in trabecular meshwork cells. Food Chem. Toxicol. 2009;47(1):198–204. doi: 10.1016/j.fct.2008.10.029. [http://dx.doi. org/10.1016/j.fct.2008.10.029]. [PMID: 19027816]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Chen S., Fan Q., Li A., Liao D., Ge J., Laties A.M., Zhang X. Dynamic mobilization of PGC-1α mediates mitochondrial biogenesis for the protection of RGC-5 cells by resveratrol during serum deprivation. Apoptosis. 2013;18(7):786–799. doi: 10.1007/s10495-013-0837-3. [http://dx.doi.org/10.1007/s10495-013-0837-3]. [PMID: 23525928]. [DOI] [PubMed] [Google Scholar]
  • 92.Lindsey J.D., Duong-Polk K.X., Hammond D., Leung C.K., Weinreb R.N. Protection of injured retinal ganglion cell dendrites and unfolded protein response resolution after long-term dietary resveratrol. Neurobiol. Aging. 2015;36(5):1969–1981. doi: 10.1016/j.neurobiolaging.2014.12.021. [http://dx. doi.org/10.1016/j.neurobiolaging.2014.12.021]. [PMID: 25772060]. [DOI] [PubMed] [Google Scholar]
  • 93.Xie J., Jiang L., Zhang T., Jin Y., Yang D., Chen F. Neuroprotective effects of Epigallocatechin-3-gallate (EGCG) in optic nerve crush model in rats. Neurosci. Lett. 2010;479(1):26–30. doi: 10.1016/j.neulet.2010.05.020. [http://dx.doi.org/10.1016/j.neulet.2010.05.020]. [PMID: 20471452]. [DOI] [PubMed] [Google Scholar]
  • 94.Peng P.H., Chiou L.F., Chao H.M., Lin S., Chen C.F., Liu J.H., Ko M.L. Effects of epigallocatechin-3-gallate on rat retinal ganglion cells after optic nerve axotomy. Exp. Eye Res. 2010;90(4):528–534. doi: 10.1016/j.exer.2010.01.007. [http://dx.doi.org/10.1016/j.exer.2010.01.007]. [PMID: 20114044]. [DOI] [PubMed] [Google Scholar]
  • 95.Jin J., Ying H., Huang M., Du Q. Bioactive compounds in green tea leaves attenuate the injury of retinal ganglion RGC-5 cells induced by H2O2 and ultraviolet radiation. Pak. J. Pharm. Sci. 2015;28(6) Suppl.:2267–2272. [PMID: 26687755]. [PubMed] [Google Scholar]
  • 96.Ou H.C., Lee W.J., Lee I.T., Chiu T.H., Tsai K.L., Lin C.Y., Sheu W.H. Ginkgo biloba extract attenuates oxLDL-induced oxidative functional damages in endothelial cells. J. Appl. Physiol. 2009;106(5):1674–1685. doi: 10.1152/japplphysiol.91415.2008. [http://dx.doi.org/10.1152/japplphysiol. 91415.2008]. [PMID: 19228986]. [DOI] [PubMed] [Google Scholar]
  • 97.Birks J., Grimley E.J. Ginkgo biloba for cognitive impairment and dementia. Cochrane Database Syst. Rev. 2009;2009(1):CD003120. doi: 10.1002/14651858.CD003120. [PMID: 19160216]. [DOI] [PubMed] [Google Scholar]
  • 98.Ritch R. Potential role for Ginkgo biloba extract in the treatment of glaucoma. Med. Hypotheses. 2000;54(2):221–235. doi: 10.1054/mehy.1999.0025. [http://dx. doi.org/10.1054/mehy.1999.0025]. [PMID: 10790757]. [DOI] [PubMed] [Google Scholar]
  • 99.Quaranta L., Bettelli S., Uva M.G., Semeraro F., Turano R., Gandolfo E. Effect of Ginkgo biloba extract on preexisting visual field damage in normal tension glaucoma. Ophthalmology. 2003;110(2):359–362. doi: 10.1016/S0161-6420(02)01745-1. [http://dx.doi.org/10.1016/S0161-6420(02)01745-1]. [PMID: 12578781]. [DOI] [PubMed] [Google Scholar]
  • 100.Wimpissinger B., Berisha F., Garhoefer G., Polak K., Schmetterer L. Influence of Ginkgo biloba on ocular blood flow. Acta Ophthalmol. Scand. 2007;85(4):445–449. doi: 10.1111/j.1600-0420.2007.00887.x. [http://dx.doi.org/10. 1111/j.1600-0420.2007.00887.x]. [PMID: 17324220]. [DOI] [PubMed] [Google Scholar]
  • 101.Hirooka K., Tokuda M., Miyamoto O., Itano T., Baba T., Shiraga F. The Ginkgo biloba extract (EGb 761) provides a neuroprotective effect on retinal ganglion cells in a rat model of chronic glaucoma. Curr. Eye Res. 2004;28(3):153–157. doi: 10.1076/ceyr.28.3.153.26246. [http://dx.doi. org/10.1076/ceyr.28.3.153.26246]. [PMID: 14977516]. [DOI] [PubMed] [Google Scholar]
  • 102.Ma K., Xu L., Zhan H., Zhang S., Pu M., Jonas J.B. Dosage dependence of the effect of Ginkgo biloba on the rat retinal ganglion cell survival after optic nerve crush. Eye (Lond.) 2009;23(7):1598–1604. doi: 10.1038/eye.2008.286. [http://dx.doi.org/10.1038/eye.2008.286]. [PMID: 18820658]. [DOI] [PubMed] [Google Scholar]
  • 103.Ma K., Xu L., Zhang H., Zhang S., Pu M., Jonas J.B. The effect of ginkgo biloba on the rat retinal ganglion cell survival in the optic nerve crush model. Acta Ophthalmol. 2010;88(5):553–557. doi: 10.1111/j.1755-3768.2008.01486.x. [http://dx.doi.org/10.1111/j.1755-3768.2008.01486.x]. [PMID: 19681765]. [DOI] [PubMed] [Google Scholar]
  • 104.Guo X., Kong X., Huang R., Jin L., Ding X., He M., Liu X., Patel M.C., Congdon N.G. Effect of Ginkgo biloba on visual field and contrast sensitivity in Chinese patients with normal tension glaucoma: a randomized, crossover clinical trial. Invest. Ophthalmol. Vis. Sci. 2014;55(1):110–116. doi: 10.1167/iovs.13-13168. [http://dx.doi.org/10.1167/iovs.13-13168]. [PMID: 24282229]. [DOI] [PubMed] [Google Scholar]
  • 105.Shim S.H., Kim J.M., Choi C.Y., Kim C.Y., Park K.H. Ginkgo biloba extract and bilberry anthocyanins improve visual function in patients with normal tension glaucoma. J. Med. Food. 2012;15(9):818–823. doi: 10.1089/jmf.2012.2241. [http://dx.doi.org/10.1089/jmf.2012.2241]. [PMID: 22870951]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Grieb P., Rejdak R. Pharmacodynamics of citicoline relevant to the treatment of glaucoma. J. Neurosci. Res. 2002;67(2):143–148. doi: 10.1002/jnr.10129. [http://dx.doi.org/10.1002/jnr.10129]. [PMID: 11782957]. [DOI] [PubMed] [Google Scholar]
  • 107.Roberti G., Tanga L., Michelessi M., Quaranta L., Parisi V., Manni G., Oddone F. Cytidine 5′-Diphosphocholine (Citicoline) in Glaucoma: Rationale of Its Use, Current Evidence and Future Perspectives. Int. J. Mol. Sci. 2015;16(12):28401–28417. doi: 10.3390/ijms161226099. [http://dx.doi.org/10.3390/ijms161226099]. [PMID: 26633368]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Martinet M., Fonlupt P., Pacheco H. Effects of cytidine-5′ diphosphocholine on norepinephrine, dopamine and serotonin synthesis in various regions of the rat brain. Arch. Int. Pharmacodyn. Ther. 1979;239(1):52–61. [PMID: 485720]. [PubMed] [Google Scholar]
  • 109.Rejdak R., Toczołowski J., Solski J., Duma D., Grieb P. Citicoline treatment increases retinal dopamine content in rabbits. Ophthalmic Res. 2002;34(3):146–149. doi: 10.1159/000063658. [http://dx.doi.org/10.1159/000063658]. [PMID: 12097797]. [DOI] [PubMed] [Google Scholar]
  • 110.Pecori Giraldi J., Virno M., Covelli G., Grechi G., De Gregorio F. Therapeutic value of citicoline in the treatment of glaucoma computerized and automated perimetric investigation. Int. Ophthalmol. 1989;13(1-2):109–112. doi: 10.1007/BF02028649. [http://dx.doi.org/10.1007/BF02028649]. [PMID: 2744938]. [DOI] [PubMed] [Google Scholar]
  • 111.Virno M., Pecori-Giraldi J., Liguori A., De Gregorio F. The protective effect of citicoline on the progression of the perimetric defects in glaucomatous patients (perimetric study with a 10-year follow-up). Acta Ophthalmol. Scand. Suppl. 2000;232(232):56–57. doi: 10.1111/j.1600-0420.2000.tb01107.x. [http://dx.doi.org/10.1111/j.1600-0420.2000.tb01107.x]. [PMID: 11235540]. [DOI] [PubMed] [Google Scholar]
  • 112.Parisi V., Manni G., Colacino G., Bucci M.G. Cytidine-5′-diphosphocholine (citicoline) improves retinal and cortical responses in patients with glaucoma. Ophthalmology. 1999;106(6):1126–1134. doi: 10.1016/S0161-6420(99)90269-5. [http://dx.doi.org/10.1016/S0161-6420(99)90269-5]. [PMID: 10366081]. [DOI] [PubMed] [Google Scholar]
  • 113.Parisi V. Electrophysiological assessment of glaucomatous visual dysfunction during treatment with cytidine-5′-diphosphocholine (citicoline): a study of 8 years of follow-up. Doc. Ophthalmol. 2005;110(1):91–102. doi: 10.1007/s10633-005-7348-7. [http://dx.doi.org/10.1007/s10633-005-7348-7]. [PMID: 16249960]. [DOI] [PubMed] [Google Scholar]
  • 114.Parisi V., Centofanti M., Ziccardi L., Tanga L., Michelessi M., Roberti G., Manni G. Treatment with citicoline eye drops enhances retinal function and neural conduction along the visual pathways in open angle glaucoma. Graefes Arch. Clin. Exp. Ophthalmol. 2015;253(8):1327–1340. doi: 10.1007/s00417-015-3044-9. [http://dx.doi.org/10.1007/s00417-015-3044-9]. [PMID: 26004075]. [DOI] [PubMed] [Google Scholar]
  • 115.Schuettauf F., Rejdak R., Thaler S., Bolz S., Lehaci C., Mankowska A., Zarnowski T., Junemann A., Zagorski Z., Zrenner E., Grieb P. Citicoline and lithium rescue retinal ganglion cells following partial optic nerve crush in the rat. Exp. Eye Res. 2006;83(5):1128–1134. doi: 10.1016/j.exer.2006.05.021. [http://dx.doi.org/10.1016/j.exer.2006. 05.021]. [PMID: 16876158]. [DOI] [PubMed] [Google Scholar]
  • 116.Han Y.S., Chung I.Y., Park J.M., Yu J.M. Neuroprotective effect of citicoline on retinal cell damage induced by kainic acid in rats. Korean J. Ophthalmol. 2005;19(3):219–226. doi: 10.3341/kjo.2005.19.3.219. [http://dx.doi. org/10.3341/kjo.2005.19.3.219]. [PMID: 16209285]. [DOI] [PubMed] [Google Scholar]
  • 117.Park C.H., Kim Y.S., Cheon E.W., Noh H.S., Cho C.H., Chung I.Y., Yoo J.M., Kang S.S., Choi W.S., Cho G.J. Action of citicoline on rat retinal expression of extracellular-signal-regulated kinase (ERK1/2). Brain Res. 2006;1081(1):203–210. doi: 10.1016/j.brainres.2005.12.128. [http://dx. doi.org/10.1016/j.brainres.2005.12.128]. [PMID: 16696125]. [DOI] [PubMed] [Google Scholar]
  • 118.Oshitari T., Fujimoto N., Adachi-Usami E. Citicoline has a protective effect on damaged retinal ganglion cells in mouse culture retina. Neuroreport. 2002;13(16):2109–2111. doi: 10.1097/00001756-200211150-00023. [http://dx.doi. org/10.1097/00001756-200211150-00023]. [PMID: 12438935]. [DOI] [PubMed] [Google Scholar]
  • 119.Oshitari T., Yoshida-Hata N., Yamamoto S. Effect of neurotrophic factors on neuronal apoptosis and neurite regeneration in cultured rat retinas exposed to high glucose. Brain Res. 2010;1346:43–51. doi: 10.1016/j.brainres.2010.05.073. [http://dx.doi.org/10.1016/j.brainres.2010.05.073]. [PMID: 20573599]. [DOI] [PubMed] [Google Scholar]
  • 120.Huang W.B., Fan Q., Zhang X.L. Cod liver oil: a potential protective supplement for human glaucoma. Int. J. Ophthalmol. 2011;4(6):648–651. doi: 10.3980/j.issn.2222-3959.2011.06.15. [PMID: 22553738]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Den Ruijter H.M., Berecki G., Opthof T., Verkerk A.O., Zock P.L., Coronel R. Pro- and antiarrhythmic properties of a diet rich in fish oil. Cardiovasc. Res. 2007;73(2):316–325. doi: 10.1016/j.cardiores.2006.06.014. [http://dx.doi. org/10.1016/j.cardiores.2006.06.014]. [PMID: 16859661]. [DOI] [PubMed] [Google Scholar]
  • 122.Wall R., Ross R.P., Fitzgerald G.F., Stanton C. Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr. Rev. 2010;68(5):280–289. doi: 10.1111/j.1753-4887.2010.00287.x. [http://dx.doi.org/10.1111/j.1753-4887.2010.00287.x]. [PMID: 20500789]. [DOI] [PubMed] [Google Scholar]
  • 123.Morgese M.G., Trabace L. Maternal malnutrition in the etiopathogenesis of psychiatric diseases: Role of polyunsaturated fatty acids. Brain Sci. 2016;6(3):E24. doi: 10.3390/brainsci6030024. [http://dx.doi.org/10.3390/brainsci6030024]. [PMID: 27472366]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Morgese M.G., Tucci P., Mhillaj E., Bove M., Schiavone S., Trabace L., Cuomo V. Lifelong nutritional omega-3 deficiency evokes depressive-like state through soluble beta amyloid. Mol. Neurobiol. 2017;54(3):2079–2089. doi: 10.1007/s12035-016-9809-2. [http://dx.doi.org/10.1007/s12035-016-9809-2]. [PMID: 26924315]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125.Nguyen C.T., Vingrys A.J., Bui B.V. Dietary omega-3 fatty acids and ganglion cell function. Invest. Ophthalmol. Vis. Sci. 2008;49(8):3586–3594. doi: 10.1167/iovs.08-1735. [http://dx.doi.org/10.1167/iovs.08-1735]. [PMID: 18469188]. [DOI] [PubMed] [Google Scholar]
  • 126.Nguyen C.T., Bui B.V., Sinclair A.J., Vingrys A.J. Dietary omega 3 fatty acids decrease intraocular pressure with age by increasing aqueous outflow. Invest. Ophthalmol. Vis. Sci. 2007;48(2):756–762. doi: 10.1167/iovs.06-0585. [http://dx.doi.org/10.1167/iovs.06-0585]. [PMID: 17251475]. [DOI] [PubMed] [Google Scholar]
  • 127.Lands W.E.M. Biochemistry and physiology of n-3 fatty acids. FASEB J. 1992;6(8):2530–2536. doi: 10.1096/fasebj.6.8.1592205. [http://dx.doi.org/10.1096/fasebj.6.8.1592205]. [PMID: 1592205]. [DOI] [PubMed] [Google Scholar]
  • 128.Schwartz K., Budenz D. Current management of glaucoma. Curr. Opin. Ophthalmol. 2004;15(2):119–126. doi: 10.1097/00055735-200404000-00011. [http://dx.doi.org/10. 1097/00055735-200404000-00011]. [PMID: 15021223]. [DOI] [PubMed] [Google Scholar]
  • 129.Mancino M., Ohia E., Kulkarni P. A comparative study between cod liver oil and liquid lard intake on intraocular pressure on rabbits. Prostaglandins Leukot. Essent. Fatty Acids. 1992;45(3):239–243. doi: 10.1016/0952-3278(92)90120-8. [http://dx.doi.org/10.1016/0952-3278(92)90120-8]. [PMID: 1589451]. [DOI] [PubMed] [Google Scholar]
  • 130.Schnebelen C., Pasquis B., Salinas-Navarro M., Joffre C., Creuzot-Garcher C.P., Vidal-Sanz M., Bron A.M., Bretillon L., Acar N. A dietary combination of omega-3 and omega-6 polyunsaturated fatty acids is more efficient than single supplementations in the prevention of retinal damage induced by elevation of intraocular pressure in rats. Graefes Arch. Clin. Exp. Ophthalmol. 2009;247(9):1191–1203. doi: 10.1007/s00417-009-1094-6. [http://dx.doi.org/10.1007/s00417-009-1094-6]. [PMID: 19437028]. [DOI] [PubMed] [Google Scholar]
  • 131.Nguyen C.T., Vingrys A.J., Bui B.V. Dietary ω-3 deficiency and IOP insult are additive risk factors for ganglion cell dysfunction. J. Glaucoma. 2013;22(4):269–277. doi: 10.1097/IJG.0b013e318237cac7. [http://dx.doi.org/10.1097/IJG. 0b013e318237cac7]. [PMID: 23221900]. [DOI] [PubMed] [Google Scholar]
  • 132.Desmettre T., Rouland J.F. Hypothesis on the role of nutritional factors in ocular hypertension and glaucoma. J. Fr. Ophtalmol. 2005;28(3):312–316. doi: 10.1016/s0181-5512(05)81060-5. [http://dx.doi.org/10.1016/S0181-5512(05) 81060-5]. [PMID: 15883498]. [DOI] [PubMed] [Google Scholar]
  • 133.Kang J.H., Pasquale L.R., Willett W.C., Rosner B.A., Egan K.M., Faberowski N., Hankinson S.E. Dietary fat consumption and primary open-angle glaucoma. Am. J. Clin. Nutr. 2004;79(5):755–764. doi: 10.1093/ajcn/79.5.755. [http://dx.doi.org/10.1093/ajcn/79.5.755]. [PMID: 15113712]. [DOI] [PubMed] [Google Scholar]
  • 134.Pérez de Arcelus M., Toledo E., Martínez-González M.Á., Sayón-Orea C., Gea A., Moreno-Montañés J. Omega 3:6 ratio intake and incidence of glaucoma: the SUN cohort. Clin. Nutr. 2014;33(6):1041–1045. doi: 10.1016/j.clnu.2013.11.005. [http://dx.doi.org/10.1016/j.clnu.2013.11.005]. [PMID: 24290344]. [DOI] [PubMed] [Google Scholar]
  • 135.Tourtas T., Birke M.T., Kruse F.E., Welge-Lüssen U.C., Birke K. Preventive effects of omega-3 and omega-6 Fatty acids on peroxide mediated oxidative stress responses in primary human trabecular meshwork cells. PLoS One. 2012;7(2):e31340. doi: 10.1371/journal.pone.0031340. [http://dx. doi.org/10.1371/journal.pone.0031340]. [PMID: 22319624]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136.Bulley S., Shen W. Reciprocal regulation between taurine and glutamate response via Ca2+-dependent pathways in retinal third-order neurons. J. Biomed. Sci. 2010;17(Suppl. 1):S5. doi: 10.1186/1423-0127-17-S1-S5. [http://dx. doi.org/10.1186/1423-0127-17-S1-S5]. [PMID: 20804625]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Froger N., Moutsimilli L., Cadetti L., Jammoul F., Wang Q.P., Fan Y., Gaucher D., Rosolen S.G., Neveux N., Cynober L., Sahel J.A., Picaud S. Taurine: the comeback of a neutraceutical in the prevention of retinal degenerations. Prog. Retin. Eye Res. 2014;41:44–63. doi: 10.1016/j.preteyeres.2014.03.001. [http://dx.doi.org/10.1016/j.preteyeres.2014.03. 001]. [PMID: 24721186]. [DOI] [PubMed] [Google Scholar]
  • 138.Macaione S., Ruggeri P., De Luca F., Tucci G. Free amino acids in developing rat retina. J. Neurochem. 1974;22:887–891. doi: 10.1111/j.1471-4159.1974.tb04313.x. [DOI] [PubMed] [Google Scholar]
  • 139.Sturman J.A. Taurine in development. J. Nutr. 1988;118(10):1169–1176. doi: 10.1093/jn/118.10.1169. [http://dx.doi.org/10.1093/jn/118.10.1169]. [PMID: 3054019]. [DOI] [PubMed] [Google Scholar]
  • 140.Zhao X.H. Dietary protein, amino acids and their relation to health. Asia Pac. J. Clin. Nutr. 1994;3:131–134. [Google Scholar]
  • 141.Törnquist P., Alm A. Carrier-mediated transport of amino acids through the blood-retinal and the blood-brain barriers. Graefes Arch. Clin. Exp. Ophthalmol. 1986;224(1):21–25. doi: 10.1007/BF02144127. [http://dx.doi. org/10.1007/BF02144127]. [PMID: 3943730]. [DOI] [PubMed] [Google Scholar]
  • 142.Lake N., Marshall J., Voaden M.J. The entry of taurine into the neural retina and pigment epithelium of the frog. Brain Res. 1977;128(3):497–503. doi: 10.1016/0006-8993(77)90174-3. [http://dx.doi.org/10.1016/0006-8993(77)90174-3]. [PMID: 301767]. [DOI] [PubMed] [Google Scholar]
  • 143.Voaden M.J., Lake N., Marshall J., Morjaria B. Studies on the distribution of taurine and other neuroactive amino acids in the retina. Exp. Eye Res. 1977;25(3):249–257. doi: 10.1016/0014-4835(77)90091-4. [http://dx.doi.org/10. 1016/0014-4835(77)90091-4]. [PMID: 590367]. [DOI] [PubMed] [Google Scholar]
  • 144.Pow D.V., Sullivan R., Reye P., Hermanussen S. Localization of taurine transporters, taurine, and (3)H taurine accumulation in the rat retina, pituitary, and brain. Glia. 2002;37(2):153–168. doi: 10.1002/glia.10026. [http://dx.doi.org/10.1002/glia.10026]. [PMID: 11754213]. [DOI] [PubMed] [Google Scholar]
  • 145.Hillenkamp J., Hussain A.A., Jackson T.L., Cunningham J.R., Marshall J. Taurine uptake by human retinal pigment epithelium: implications for the transport of small solutes between the choroid and the outer retina. Invest. Ophthalmol. Vis. Sci. 2004;45(12):4529–4534. doi: 10.1167/iovs.04-0919. [http://dx.doi.org/10.1167/iovs.04-0919]. [PMID: 15557464]. [DOI] [PubMed] [Google Scholar]
  • 146.Louzada P.R., Paula Lima A.C., Mendonca-Silva D.L., Noël F., De Mello F.G., Ferreira S.T. Taurine prevents the neurotoxicity of beta-amyloid and glutamate receptor agonists: activation of GABA receptors and possible implications for Alzheimer’s disease and other neurological disorders. FASEB J. 2004;18(3):511–518. doi: 10.1096/fj.03-0739com. [http://dx.doi.org/10.1096/fj.03-0739com]. [PMID: 15003996]. [DOI] [PubMed] [Google Scholar]
  • 147.Udawatte C., Qian H., Mangini N.J., Kennedy B.G., Ripps H. Taurine suppresses the spread of cell death in electrically coupled RPE cells. Mol. Vis. 2008;14:1940–1950. [PMID: 18958305]. [PMC free article] [PubMed] [Google Scholar]
  • 148.Zeng K., Xu H., Mi M., Zhang Q., Zhang Y., Chen K., Chen F., Zhu J., Yu X. Dietary taurine supplementation prevents glial alterations in retina of diabetic rats. Neurochem. Res. 2009;34(2):244–254. doi: 10.1007/s11064-008-9763-0. [http://dx.doi.org/10.1007/s11064-008-9763-0]. [PMID: 18563560]. [DOI] [PubMed] [Google Scholar]
  • 149.Jammoul F., Wang Q., Nabbout R., Coriat C., Duboc A., Simonutti M., Dubus E., Craft C.M., Ye W., Collins S.D., Dulac O., Chiron C., Sahel J.A., Picaud S. Taurine deficiency is a cause of vigabatrin-induced retinal phototoxicity. Ann. Neurol. 2009;65(1):98–107. doi: 10.1002/ana.21526. [http://dx.doi.org/10.1002/ana.21526]. [PMID: 19194884]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Jammoul F., Dégardin J., Pain D., Gondouin P., Simonutti M., Dubus E., Caplette R., Fouquet S., Craft C.M., Sahel J.A., Picaud S. Taurine deficiency damages photoreceptors and retinal ganglion cells in vigabatrin-treated neonatal rats. Mol. Cell. Neurosci. 2010;43(4):414–421. doi: 10.1016/j.mcn.2010.01.008. [http://dx.doi.org/10.1016/j.mcn.2010. 01.008]. [PMID: 20132888]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151.Berson E.L., Hayes K.C., Rabin A.R., Schmidt S.Y., Watson G. Retinal degeneration in cats fed casein. II. Supplementation with methionine, cysteine, or taurine. Invest. Ophthalmol. 1976;15(1):52–58. [PMID: 1245382]. [PubMed] [Google Scholar]
  • 152.Hayes K.C., Carey R.E., Schmidt S.Y. Retinal degeneration associated with taurine deficiency in the cat. Science. 1975;188(4191):949–951. doi: 10.1126/science.1138364. [http://dx.doi.org/10.1126/science.1138364]. [PMID: 1138364]. [DOI] [PubMed] [Google Scholar]
  • 153.Schmidt S.Y., Berson E.L., Hayes K.C. Retinal degeneration in the taurine-deficient cat. Trans. Sect. Ophthalmol. Am. Acad. Ophthalmol. Otolaryngol. 1976;81(4 Pt 1):OP687–OP693. [PMID: 960391]. [PubMed] [Google Scholar]
  • 154.Anderson P.A., Baker D.H., Corbin J.E., Helper L.C. Biochemical lesions associated with taurine deficiency in the cat. J. Anim. Sci. 1979;49(5):1227–1234. doi: 10.2527/jas1979.4951227x. [http://dx.doi.org/10.2527/jas1979. 4951227x]. [PMID: 541289]. [DOI] [PubMed] [Google Scholar]
  • 155.Barnett K.C., Burger I.H. Taurine deficiency retinopathy in the cat. J. Small Anim. Pract. 1980;21(10):521–534. doi: 10.1111/j.1748-5827.1980.tb01354.x. [http://dx.doi. org/10.1111/j.1748-5827.1980.tb01354.x]. [PMID: 7464066]. [DOI] [PubMed] [Google Scholar]
  • 156.Lake N., Malik N. Retinal morphology in rats treated with a taurine transport antagonist. Exp. Eye Res. 1987;44(3):331–346. doi: 10.1016/s0014-4835(87)80169-0. [http://dx.doi.org/10.1016/S0014-4835(87)80169-0]. [PMID: 3595755]. [DOI] [PubMed] [Google Scholar]
  • 157.Imaki H., Jacobson S.G., Kemp C.M., Knighton R.W., Neuringer M., Sturman J. Retinal morphology and visual pigment levels in 6- and 12-month-old rhesus monkeys fed a taurine-free human infant formula. J. Neurosci. Res. 1993;36(3):290–304. doi: 10.1002/jnr.490360307. [http://dx.doi.org/10.1002/jnr.490360307]. [PMID: 8271309]. [DOI] [PubMed] [Google Scholar]
  • 158.Imaki H., Messing J., Sturman J.A. Extensive taurine depletion and retinal degeneration in cats treated with beta-alanine for 40 weeks. Adv. Exp. Med. Biol. 1998;442:449–460. doi: 10.1007/978-1-4899-0117-0_55. [http://dx. doi.org/10.1007/978-1-4899-0117-0_55]. [PMID: 9635062]. [DOI] [PubMed] [Google Scholar]
  • 159.Leon A., Levick W.R., Sarossy M.G. Lesion topography and new histological features in feline taurine deficiency retinopathy. Exp. Eye Res. 1995;61(6):731–741. doi: 10.1016/s0014-4835(05)80024-7. [http://dx.doi.org/10.1016/S0014-4835(05)80024-7]. [PMID: 8846845]. [DOI] [PubMed] [Google Scholar]
  • 160.Pasantes-Morales H., Quesada O., Cárabez A., Huxtable R.J. Effects of the taurine transport antagonist, guanidinoethane sulfonate, and beta-alanine on the morphology of rat retina. J. Neurosci. Res. 1983;9(2):135–143. doi: 10.1002/jnr.490090205. [http://dx.doi.org/10.1002/jnr. 490090205]. [PMID: 6405048]. [DOI] [PubMed] [Google Scholar]
  • 161.Gaucher D., Arnault E., Husson Z., Froger N., Dubus E., Gondouin P., Dherbécourt D., Degardin J., Simonutti M., Fouquet S., Benahmed M.A., Elbayed K., Namer I.J., Massin P., Sahel J.A., Picaud S. Taurine deficiency damages retinal neurones: cone photoreceptors and retinal ganglion cells. Amino Acids. 2012;43(5):1979–1993. doi: 10.1007/s00726-012-1273-3. [http://dx.doi.org/10.1007/s00726-012-1273-3]. [PMID: 22476345]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 162.Froger N., Cadetti L., Lorach H., Martins J., Bemelmans A.P., Dubus E., Degardin J., Pain D., Forster V., Chicaud L., Ivkovic I., Simonutti M., Fouquet S., Jammoul F., Léveillard T., Benosman R., Sahel J.A., Picaud S. Taurine provides neuroprotection against retinal ganglion cell degeneration. PLoS One. 2012;7(10):e42017. doi: 10.1371/journal.pone.0042017. [http://dx.doi.org/10.1371/journal.pone.0042017]. [PMID: 23115615]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 163.Han Z., Gao L.Y., Lin Y.H., Chang L., Wu H.Y., Luo C.X., Zhu D.Y. Neuroprotection of taurine against reactive oxygen species is associated with inhibiting NADPH oxidases. Eur. J. Pharmacol. 2016;777:129–135. doi: 10.1016/j.ejphar.2016.03.006. [http://dx.doi.org/10.1016/j.ejphar. 2016.03.006]. [PMID: 26945820]. [DOI] [PubMed] [Google Scholar]
  • 164.Gomes M.B., Negrato C.A. Alpha-lipoic acid as a pleiotropic compound with potential therapeutic use in diabetes and other chronic diseases. Diabetol. Metab. Syndr. 2014;6(1):80. doi: 10.1186/1758-5996-6-80. [http://dx.doi.org/10.1186/1758-5996-6-80]. [PMID: 25104975]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 165.Shay K.P., Moreau R.F., Smith E.J., Smith A.R., Hagen T.M. Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potential. Biochim. Biophys. Acta. 2009;1790(10):1149–1160. doi: 10.1016/j.bbagen.2009.07.026. [http://dx.doi.org/10.1016/j.bbagen.2009.07.026]. [PMID: 19664690]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 166.Scott B.C., Aruoma O.I., Evans P.J., O’Neill C., Van der Vliet A., Cross C.E., Tritschler H., Halliwell B. Lipoic and dihydrolipoic acids as antioxidants. A critical evaluation. Free Radic. Res. 1994;20(2):119–133. doi: 10.3109/10715769409147509. [http://dx.doi.org/10.3109/10715769409147509]. [PMID: 7516789]. [DOI] [PubMed] [Google Scholar]
  • 167.Packer L., Witt E.H., Tritschler H.J. alpha-Lipoic acid as a biological antioxidant. Free Radic. Biol. Med. 1995;19(2):227–250. doi: 10.1016/0891-5849(95)00017-r. [http://dx.doi.org/10.1016/0891-5849(95)00017-R]. [PMID: 7649494]. [DOI] [PubMed] [Google Scholar]
  • 168.Filina A.A., Davydova N.G., Endrikhovskiĭ S.N., Shamshinova A.M. Lipoic acid as a means of metabolic therapy of open-angle glaucoma. Vestn. Oftalmol. 1995;111(4):6–8. [PMID: 8604540]. [PubMed] [Google Scholar]
  • 169.Bunin A.Ia., Filina A.A., Erichev V.P. Vestn. Oftalmol. 1992;108(4-6):13–15. [A glutathione deficiency in open-angle glaucoma and the approaches to its correction]. [PMID: 1295181]. [PubMed] [Google Scholar]
  • 170.Filina A.A., Davydova N.G., Kolomoĭtseva E.M. The effect of lipoic acid on the components of the glutathione system in the lacrimal fluid of patients with open-angle glaucoma. Vestn. Oftalmol. 1993;109(5):5–7. [PMID: 7906064]. [PubMed] [Google Scholar]
  • 171.Koriyama Y., Nakayama Y., Matsugo S., Sugitani K., Ogai K., Takadera T., Kato S. Anti-inflammatory effects of lipoic acid through inhibition of GSK-3β in lipopolysaccharide-induced BV-2 microglial cells. Neurosci. Res. 2013;77(1-2):87–96. doi: 10.1016/j.neures.2013.07.001. [http://dx. doi.org/10.1016/j.neures.2013.07.001]. [PMID: 23892131]. [DOI] [PubMed] [Google Scholar]
  • 172.Metzger H., Lindner E. The positive inotropic-acting forskolin, a potent adenylate cyclase activator. Arzneimittelforschung. 1981;31(8):1248–1250. [PMID: 7197529]. [PubMed] [Google Scholar]
  • 173.Caprioli J., Sears M. Forskolin lowers intraocular pressure in rabbits, monkeys, and man. Lancet. 1983;1(8331):958–960. doi: 10.1016/s0140-6736(83)92084-6. [http://dx.doi.org/10.1016/S0140-6736(83)92084-6]. [PMID: 6132271]. [DOI] [PubMed] [Google Scholar]
  • 174.Caprioli J., Sears M. Combined effect of forskolin and acetazolamide on intraocular pressure and aqueous flow in rabbit eyes. Exp. Eye Res. 1984;39(1):47–50. doi: 10.1016/0014-4835(84)90113-1. [http://dx.doi.org/10.1016/0014-4835(84)90113-1]. [PMID: 6541150]. [DOI] [PubMed] [Google Scholar]
  • 175.Caprioli J., Sears M., Bausher L., Gregory D., Mead A. Forskolin lowers intraocular pressure by reducing aqueous inflow. Invest. Ophthalmol. Vis. Sci. 1984;25(3):268–277. [PMID: 6538189]. [PubMed] [Google Scholar]
  • 176.Zeng S., Shen B., Wen L., Hu B., Peng D., Chen X., Zhou W. Experimental studies of the effect of Forskolin on the lowering of intraocular pressure. Yan Ke Xue Bao. 1995;11(3):173–176. [PMID: 8758848]. [PubMed] [Google Scholar]
  • 177.Burstein N.L., Sears M.L., Mead A. Aqueous flow in human eyes is reduced by forskolin, a potent adenylate cyclase activator. Exp. Eye Res. 1984;39(6):745–749. doi: 10.1016/0014-4835(84)90073-3. [http://dx.doi.org/10.1016/0014-4835(84)90073-3]. [PMID: 6542866]. [DOI] [PubMed] [Google Scholar]
  • 178.Seto C., Eguchi S., Araie M., Matsumoto S., Takase M. Acute effects of topical forskolin on aqueous humor dynamics in man. Jpn. J. Ophthalmol. 1986;30(3):238–244. [PMID: 3784136]. [PubMed] [Google Scholar]
  • 179.Meyer B.H., Stulting A.A., Müller F.O., Luus H.G., Badian M. The effects of forskolin eye drops on intra-ocular pressure. S. Afr. Med. J. 1987;71(9):570–571. [PMID: 3554560]. [PubMed] [Google Scholar]
  • 180.Vetrugno M., Uva M.G., Russo V., Iester M., Ciancaglini M., Brusini P., Centofanti M., Rossetti L.M. Oral administration of forskolin and rutin contributes to intraocular pressure control in primary open angle glaucoma patients under maximum tolerated medical therapy. J. Ocul. Pharmacol. Ther. 2012;28(5):536–541. doi: 10.1089/jop.2012.0021. [http://dx.doi.org/10.1089/jop.2012.0021]. [PMID: 22731245]. [DOI] [PubMed] [Google Scholar]
  • 181.Pescosolido N., Librando A. Oral administration of an association of forskolin, rutin and vitamins B1 and B2 potentiates the hypotonising effects of pharmacological treatments in POAG patients. Clin. Ter. 2010;161(3):e81–e85. [PMID: 20589347]. [PubMed] [Google Scholar]
  • 182.Meyer-Franke A., Kaplan M.R., Pfrieger F.W., Barres B.A. Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron. 1995;15(4):805–819. doi: 10.1016/0896-6273(95)90172-8. [http://dx.doi.org/10.1016/0896-6273(95)90172-8]. [PMID: 7576630]. [DOI] [PubMed] [Google Scholar]
  • 183.Watanabe M., Tokita Y., Kato M., Fukuda Y. Intravitreal injections of neurotrophic factors and forskolin enhance survival and axonal regeneration of axotomized beta ganglion cells in cat retina. Neuroscience. 2003;116(3):733–742. doi: 10.1016/s0306-4522(02)00562-6. [http://dx.doi.org/10.1016/S0306-4522(02)00562-6]. [PMID: 12573715]. [DOI] [PubMed] [Google Scholar]
  • 184.Watanabe M., Fukuda Y. Survival and axonal regeneration of retinal ganglion cells in adult cats. Prog. Retin. Eye Res. 2002;21(6):529–553. doi: 10.1016/s1350-9462(02)00037-x. [http://dx.doi.org/10.1016/S1350-9462(02)00037-X]. [PMID: 12433376]. [DOI] [PubMed] [Google Scholar]
  • 185.Russo R., Adornetto A., Cavaliere F., Varano G.P., Rusciano D., Morrone L.A., Corasaniti M.T., Bagetta G., Nucci C. Intravitreal injection of forskolin, homotaurine, and L-carnosine affords neuroprotection to retinal ganglion cells following retinal ischemic injury. Mol. Vis. 2015;21:718–729. [PMID: 26167113]. [PMC free article] [PubMed] [Google Scholar]
  • 186.Mutolo M.G., Albanese G., Rusciano D., Pescosolido N. Oral administration of forskolin, homotaurine, carnosine, and folic acid in patients with primary open angle glaucoma: Changes in intraocular pressure, pattern electroretinogram amplitude, and foveal sensitivity. J. Ocul. Pharmacol. Ther. 2016;32(3):178–183. doi: 10.1089/jop.2015.0121. [http://dx.doi.org/10.1089/jop.2015.0121]. [PMID: 26771282]. [DOI] [PubMed] [Google Scholar]
  • 187.Wang L.L., Sun Y., Huang K., Zheng L. Curcumin, a potential therapeutic candidate for retinal diseases. Mol. Nutr. Food Res. 2013;57(9):1557–1568. doi: 10.1002/mnfr.201200718. [http://dx.doi.org/10.1002/mnfr.201200718]. [PMID: 23417969]. [DOI] [PubMed] [Google Scholar]
  • 188.Zinov’eva V.N., Ostrovskiĭ O.V. Free radical oxidation of DNA and its biomarker oxidized guanosine(8-oxodG). Vopr. Med. Khim. 2002;48(5):419–431. [PMID: 12498082]. [PubMed] [Google Scholar]
  • 189.Pinlaor S., Yongvanit P., Prakobwong S., Kaewsamut B., Khoontawad J., Pinlaor P., Hiraku Y. Curcumin reduces oxidative and nitrative DNA damage through balancing of oxidant-antioxidant status in hamsters infected with Opisthorchis viverrini. Mol. Nutr. Food Res. 2009;53(10):1316–1328. doi: 10.1002/mnfr.200800567. [http://dx.doi. org/10.1002/mnfr.200800567]. [PMID: 19753608]. [DOI] [PubMed] [Google Scholar]
  • 190.Molina-Jijón E., Tapia E., Zazueta C., El Hafidi M., Zatarain-Barrón Z.L., Hernández-Pando R., Medina-Campos O.N., Zarco-Márquez G., Torres I., Pedraza-Chaverri J. Curcumin prevents Cr(VI)-induced renal oxidant damage by a mitochondrial pathway. Free Radic. Biol. Med. 2011;51(8):1543–1557. doi: 10.1016/j.freeradbiomed.2011.07.018. [http://dx.doi. org/10.1016/j.freeradbiomed.2011.07.018]. [PMID: 21839166]. [DOI] [PubMed] [Google Scholar]
  • 191.González-Salazar A., Molina-Jijón E., Correa F., Zarco-Márquez G., Calderón-Oliver M., Tapia E., Zazueta C., Pedraza-Chaverri J. Curcumin protects from cardiac reperfusion damage by attenuation of oxidant stress and mitochondrial dysfunction. Cardiovasc. Toxicol. 2011;11(4):357–364. doi: 10.1007/s12012-011-9128-9. [http://dx.doi.org/10.1007/s12012-011-9128-9]. [PMID: 21769543]. [DOI] [PubMed] [Google Scholar]
  • 192.Yue Y.K., Mo B., Zhao J., Yu Y.J., Liu L., Yue C.L., Liu W. Neuroprotective effect of curcumin against oxidative damage in BV-2 microglia and high intraocular pressure animal model. J. Ocul. Pharmacol. Ther. 2014;30(8):657–664. doi: 10.1089/jop.2014.0022. [http://dx.doi. org/10.1089/jop.2014.0022]. [PMID: 24963995]. [DOI] [PubMed] [Google Scholar]
  • 193.Burugula B., Ganesh B.S., Chintala S.K. Curcumin attenuates staurosporine-mediated death of retinal ganglion cells. Invest. Ophthalmol. Vis. Sci. 2011;52(7):4263–4273. doi: 10.1167/iovs.10-7103. [http://dx.doi.org/10. 1167/iovs.10-7103]. [PMID: 21498608]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 194.Wang L., Li C., Guo H., Kern T.S., Huang K., Zheng L. Curcumin inhibits neuronal and vascular degeneration in retina after ischemia and reperfusion injury. PLoS One. 2011;6(8):e23194. doi: 10.1371/journal.pone.0023194. [http://dx.doi.org/10.1371/journal.pone.0023194]. [PMID: 21858029]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 195.Matteucci A., Frank C., Domenici M.R., Balduzzi M., Paradisi S., Carnovale-Scalzo G., Scorcia G., Malchiodi-Albedi F. Curcumin treatment protects rat retinal neurons against excitotoxicity: effect on N-methyl-D: -aspartate-induced intracellular Ca(2+) increase. Exp. Brain Res. 2005;167(4):641–648. doi: 10.1007/s00221-005-0068-0. [http://dx.doi. org/10.1007/s00221-005-0068-0]. [PMID: 16078027]. [DOI] [PubMed] [Google Scholar]
  • 196.Matteucci A., Cammarota R., Paradisi S., Varano M., Balduzzi M., Leo L., Bellenchi G.C., De Nuccio C., Carnovale-Scalzo G., Scorcia G., Frank C., Mallozzi C., Di Stasi A.M., Visentin S., Malchiodi-Albedi F. Curcumin protects against NMDA-induced toxicity: a possible role for NR2A subunit. Invest. Ophthalmol. Vis. Sci. 2011;52(2):1070–1077. doi: 10.1167/iovs.10-5966. [http://dx.doi.org/10.1167/iovs.10-5966]. [PMID: 20861489]. [DOI] [PubMed] [Google Scholar]
  • 197.Lin C., Wu X. Curcumin Protects Trabecular Meshwork Cells From Oxidative Stress. Invest. Ophthalmol. Vis. Sci. 2016;57(10):4327–4332. doi: 10.1167/iovs.16-19883. [http://dx.doi.org/10.1167/iovs.16-19883]. [PMID: 27556215]. [DOI] [PubMed] [Google Scholar]
  • 198.Gao M., Gu M., Liu C.Z. Two-step purification of scutellarin from Erigeron breviscapus (vant.) Hand. Mazz. by high-speed counter-current chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2006;838(2):139–143. doi: 10.1016/j.jchromb.2006.04.030. [http://dx.doi. org/10.1016/j.jchromb.2006.04.030]. [PMID: 16790369]. [DOI] [PubMed] [Google Scholar]
  • 199.Li X., Peng L.Y., Zhang S.D., Zhao Q.S., Yi T.S. The relationships between chemical and genetic differentiation and environmental factors across the distribution of Erigeron breviscapus (Asteraceae). PLoS One. 2013;8(11):e74490. doi: 10.1371/journal.pone.0074490. [http://dx.doi.org/10. 1371/journal.pone.0074490]. [PMID: 24260095]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 200.Jia L., Liu Z., Luo X. The effect of qing guang kang on the metabolism of retinal ganglionic cells in rats after artificial acute high intraocular pressure. Zhonghua Yan Ke Za Zhi. 1995;31(2):129–132. [PMID: 7656722]. [PubMed] [Google Scholar]
  • 201.Zhu Y., Jiang Y., Liu Z., Luo X., Wu Z. 2000.
  • 202.Jiang B., Jiang Y.Q. The neuroprotective effect of erigeron breviscapus (vant) hand-mazz on retinal ganglion cells after optic nerve crush injury. Zhonghua Yan Ke Za Zhi. 2003;39(8):481–484. [PMID: 14642169]. [PubMed] [Google Scholar]
  • 203.Shi J., Jiag Y., Liu X. Neuroprotective effect of erigeron breviscapus (vant) hand-mazz on NMDA-induced retinal neuron injury in the rats. Yan Ke Xue Bao. 2004;20(2):113–117. [PMID: 15301110]. [PubMed] [Google Scholar]
  • 204.Zhong Y., Xiang M., Ye W., Cheng Y., Jiang Y. Visual field protective effect of Erigeron breviscapus (vant.) Hand. Mazz. extract on glaucoma with controlled intraocular pressure: a randomized, double-blind, clinical trial. Drugs R D. 2010;10(2):75–82. doi: 10.2165/11539090-000000000-00000. [http://dx.doi.org/10.2165/11539090-000000000-00000]. [PMID: 20698715]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 205.Lu X.J., Zhang F.W., Cheng L., Liu A.Q., Duan J.G. Effect on multifocal electroretinogram in persistently elevated intraocular pressure by erigeron breviscapus extract. Int. J. Ophthalmol. 2011;4(4):349–352. doi: 10.3980/j.issn.2222-3959.2011.04.04. [PMID: 22553678]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 206.Chu Q., Wu T., Fu L., Ye J. Simultaneous determination of active ingredients in Erigeron breviscapus (Vant.) Hand-Mazz. by capillary electrophoresis with electrochemical detection. J. Pharm. Biomed. Anal. 2005;37(3):535–541. doi: 10.1016/j.jpba.2004.11.018. [http://dx.doi.org/10.1016/j. jpba.2004.11.018]. [PMID: 15740914]. [DOI] [PubMed] [Google Scholar]
  • 207.Velpandian T. Closed gateways--can neuroprotectants shield the retina in glaucoma? Drugs R D. 2010;10(2):93–96. doi: 10.2165/11539310-000000000-00000. [http://dx. doi.org/10.2165/11539310-000000000-00000]. [PMID: 20698718]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 208.Bastianetto S., Zheng W.H., Quirion R. The Ginkgo biloba extract (EGb 761) protects and rescues hippocampal cells against nitric oxide-induced toxicity: involvement of its flavonoid constituents and protein kinase C. J. Neurochem. 2000;74(6):2268–2277. doi: 10.1046/j.1471-4159.2000.0742268.x. [http://dx.doi.org/10.1046/j.1471-4159.2000.0742268.x]. [PMID: 10820186]. [DOI] [PubMed] [Google Scholar]
  • 209.Hu X.M., Zhou M.M., Hu X.M., Zeng F.D. Neuroprotective effects of scutellarin on rat neuronal damage induced by cerebral ischemia/reperfusion. Acta Pharmacol. Sin. 2005;26(12):1454–1459. doi: 10.1111/j.1745-7254.2005.00239.x. [http://dx.doi.org/10.1111/j.1745-7254.2005.00239.x]. [PMID: 16297343]. [DOI] [PubMed] [Google Scholar]
  • 210.Lin L.L., Liu A.J., Liu J.G., Yu X.H., Qin L.P., Su D.F. Protective effects of scutellarin and breviscapine on brain and heart ischemia in rats. J. Cardiovasc. Pharmacol. 2007;50(3):327–332. doi: 10.1097/FJC.0b013e3180cbd0e7. [http://dx.doi.org/10.1097/FJC.0b013e3180cbd0e7]. [PMID: 17878763]. [DOI] [PubMed] [Google Scholar]
  • 211.Guo H., Hu L.M., Wang S.X., Wang Y.L., Shi F., Li H., Liu Y., Kang L.Y., Gao X.M. Neuroprotective effects of scutellarin against hypoxic-ischemic-induced cerebral injury via augmentation of antioxidant defense capacity. Chin. J. Physiol. 2011;54(6):399–405. doi: 10.4077/CJP.2011.AMM059. [PMID: 22229507]. [DOI] [PubMed] [Google Scholar]
  • 212.Wang S., Wang H., Guo H., Kang L., Gao X., Hu L. Neuroprotection of Scutellarin is mediated by inhibition of microglial inflammatory activation. Neuroscience. 2011;185:150–160. doi: 10.1016/j.neuroscience.2011.04.005. [http://dx.doi.org/10.1016/j.neuroscience.2011.04.005]. [PMID: 21524691]. [DOI] [PubMed] [Google Scholar]
  • 213.Wang S.X., Guo H., Hu L.M., Liu Y.N., Wang Y.F., Kang L.Y., Gao X.M. Caffeic acid ester fraction from Erigeron breviscapus inhibits microglial activation and provides neuroprotection. Chin. J. Integr. Med. 2012;18(6):437–444. doi: 10.1007/s11655-012-1114-y. [http://dx.doi.org/10.1007/s11655-012-1114-y]. [PMID: 22821656]. [DOI] [PubMed] [Google Scholar]
  • 214.Yin S., Wang Z.F., Duan J.G., Ji L., Lu X.J. Extraction (DSX) from Erigeron breviscapus modulates outward potassium currents in rat retinal ganglion cells. Int. J. Ophthalmol. 2015;8(6):1101–1106. doi: 10.3980/j.issn.2222-3959.2015.06.04. [PMID: 26682155]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 215.Potterat O. Goji (Lycium barbarum and L. chinense): Phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Planta Med. 2010;76(1):7–19. doi: 10.1055/s-0029-1186218. [http://dx. doi.org/10.1055/s-0029-1186218]. [PMID: 19844860]. [DOI] [PubMed] [Google Scholar]
  • 216.Cheng J., Zhou Z.W., Sheng H.P., He L.J., Fan X.W., He Z.X., Sun T., Zhang X., Zhao R.J., Gu L., Cao C., Zhou S.F. An evidence-based update on the pharmacological activities and possible molecular targets of Lycium barbarum polysaccharides. Drug Des. Devel. Ther. 2014;9:33–78. doi: 10.2147/DDDT.S72892. [PMID: 25552899]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 217.Chiu K., Zhou Y., Yeung S.C., Lok C.K., Chan O.O., Chang R.C., So K.F., Chiu J.F. Up-regulation of crystallins is involved in the neuroprotective effect of wolfberry on survival of retinal ganglion cells in rat ocular hypertension model. J. Cell. Biochem. 2010;110(2):311–320. doi: 10.1002/jcb.22539. [PMID: 20336662]. [DOI] [PubMed] [Google Scholar]
  • 218.Li S.Y., Yang D., Yeung C.M., Yu W.Y., Chang R.C., So K.F., Wong D., Lo A.C. Lycium barbarum polysaccharides reduce neuronal damage, blood-retinal barrier disruption and oxidative stress in retinal ischemia/reperfusion injury. PLoS One. 2011;6(1):e16380. doi: 10.1371/journal.pone.0016380. [http://dx.doi.org/10.1371/journal.pone.0016380]. [PMID: 21298100]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 219.Mi X.S., Feng Q., Lo A.C., Chang R.C., Lin B., Chung S.K., So K.F. Protection of retinal ganglion cells and retinal vasculature by Lycium barbarum polysaccharides in a mouse model of acute ocular hypertension. PLoS One. 2012;7(10):e45469. doi: 10.1371/journal.pone.0045469. [http://dx.doi. org/10.1371/journal.pone.0045469]. [PMID: 23094016]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 220.He M., Pan H., Chang R.C., So K.F., Brecha N.C., Pu M. Activation of the Nrf2/HO-1 antioxidant pathway contributes to the protective effects of Lycium barbarum polysaccharides in the rodent retina after ischemia-reperfusion-induced damage. PLoS One. 2014;9(1):e84800. doi: 10.1371/journal.pone.0084800. [http://dx.doi.org/10.1371/journal.pone.0084800]. [PMID: 24400114]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 221.Chan H.C., Chang R.C., Koon-Ching Ip A., Chiu K., Yuen W.H., Zee S.Y., So K.F. Neuroprotective effects of Lycium barbarum Lynn on protecting retinal ganglion cells in an ocular hypertension model of glaucoma. Exp. Neurol. 2007;203(1):269–273. doi: 10.1016/j.expneurol.2006.05.031. [http://dx.doi.org/10.1016/j.expneurol.2006.05.031]. [PMID: 17045262]. [DOI] [PubMed] [Google Scholar]
  • 222.Chiu K., Chan H.C., Yeung S.C., Yuen W.H., Zee S.Y., Chang R.C., So K.F. Erratum: Modulation of microglia by Wolfberry on the survival of retinal ganglion cells in a rat ocular hypertension model. J. Ocul. Biol. Dis. Infor. 2009;2(3):127–136. doi: 10.1007/s12177-009-9035-5. [http://dx. doi.org/10.1007/s12177-009-9035-5]. [PMID: 20046845]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 223.Chiu K., Zhou Y., Yeung S.C., Lok C.K.M., Chan O.O., Chang R.C., So K.F., Chiu J.F. Up-regulation of crystallins is involved in the neuroprotective effect of wolfberry on survival of retinal ganglion cells in rat ocular hypertension model. J. Cell. Biochem. 2010;110(2):311–320. doi: 10.1002/jcb.22539. [PMID: 20336662]. [DOI] [PubMed] [Google Scholar]
  • 224.Li H., Liang Y., Chiu K., Yuan Q., Lin B., Chang R.C., So K.F. Lycium barbarum (wolfberry) reduces secondary degeneration and oxidative stress, and inhibits JNK pathway in retina after partial optic nerve transection. PLoS One. 2013;8(7):e68881. doi: 10.1371/journal.pone.0068881. [http://dx.doi.org/10.1371/journal.pone.0068881]. [PMID: 23894366]. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Current Neuropharmacology are provided here courtesy of Bentham Science Publishers

RESOURCES