Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Aug 24;74(Pt 9):1319–1321. doi: 10.1107/S2056989018011647

Crystal structure of 2-hy­droxy-3-(prop-2-yn-1-yl)naphthalene-1,4-dione

Isidório Raquel Geralda a,*, Ottoni Flaviano Melo a, Alves Ricardo José a, Speziali Nivaldo Lúcio b
PMCID: PMC6127683  PMID: 30225125

The naphtho­quinone unit in 2-hy­droxy-3-(prop-2-yn-1-yl)naphthalene-1,4-dione is essentially planar and the linear propargyl group is nearly perpendicular to the naphthalene ring system. In the crystal, O—H⋯O and C—H⋯O hydrogen bonds form an infinite tape structure.

Keywords: crystal structure; naphtho­quinones; 2-hy­droxy-3-(prop-2-yn-1-yl)naphthalene-1,4-dione

Abstract

The naphtho­quinone unit of the title compound, C13H8O3, is essentially planar, with an r.m.s. deviation of 0.013 Å for the non-H atoms. The essentially linear propargyl group is tilted by ca 113° relative to the naphtho­quinone plane. In the crystal, mol­ecules are linked via a pair of O—H⋯O hydrogen bonds, forming an inversion dimer. The dimers are further linked via pairs of C—H⋯O hydrogen bonds into a tape structure along [20Inline graphic]. No π–π stacking is observed in the present case as it could be expected for naphtho­quinone derivatives.

Chemical context  

Lawsone (2-hy­droxy­naphtalene-1,4-dione), 1, shows prom­ising in the synthesis of analogues of atovaquone, 2, an anti­malarial drug (Nixon et al., 2013) also used in immunosuppressed patients affected by pneumonia caused by Pneumocystis carinii (Cirioni et al., 1995; Comley et al., 1995). Recent studies have shown that it can be also useful in the fight against cancer (Fiorillo et al., 2016; Ashton et al., 2016). Thus far unknown, 2-hy­droxy-3-(prop-2-yn-1-yl)naphthalene-1,4-dione (3) was obtained in a two steps one-pot procedure by reacting 1 with propargyl iodide, prepared in situ from propargyl bromide and potassium iodide. It opens the possibility for the synthesis of triazoles at the C3 position of 1 by [2 + 3] alkyne–azide 1,3-dipolar cyclo­addition enabling the preparation of 3-substituted lawsone derivatives with potential pharmacological activity, including atovaquone (2) analogues.graphic file with name e-74-01319-scheme1.jpg

Treatment of 1 with a base leads to the formation of the corresponding enolate that can be O- or C-alkyl­ated depending on the nature of the counter-ion, reaction conditions and nature of the alkyl electrophile (Jordão et al., 2015). When 1 was reacted with propargyl bromide and sodium carbonate in DMF the 2-O-propargyl derivative was obtained in 20% yield (Valença et al., 2017). The 3-C-propargyl deriv­ative had not been described thus far. In view of the importance of acetyl­enic compounds for [2 + 3] alkyne–azide 1,3-dipolar cyclo­addition reactions, known as the click reaction, we decided to investigate the 2-O- versus 3-C-propargylation of 1. The 3-C-propargyl derivative is considered to be an inter­esting inter­mediate for the synthesis of 3-triazolo analogues of atovaquone, 2, and other bioactive 1,4-naphtho­quinones. After evaluating the influence of organic and inorganic bases, protic and aprotic solvents, alkyl­ating agents, temperature and reaction time, we obtained 3 in 28% yield. No product of O-alkyl­ation was observed in the reaction mixture.

Structural commentary  

The molecular structure of the title compound, 3, is shown in Fig. 1. The naphtho­quinone unit is essentially planar, with an r.m.s. deviation of 0.013 Å for the non-H atoms. The C—O bond lengths [C1—O1 = 1.2217 (18) Å, C2—O3 = 1.3412 (18) Å and C4—O2 = 1.2488 (19) Å] confirm the presence of 2-hy­droxy­naphthalene-1,4-dione in the crystalline state and are in agreement with the lengths found by Dekkers et al. (1996). The 1H and 13C NMR spectra and HMBC experiments confirm atoms C1 and C4 as carbonyls, as well as a hy­droxy group at C2. The propargyl group adopts a nearly perpendic­ular position [C3—C11—C12 = 112.70 (14)°] regarding the naphthalene ring system to avoid hindrance with the O2 and O3 atoms. The naphthoquinone ring system is characterized by the torsion angles C4—C3—C11—C12 = −100.96 (19)° and C2—C3—C11—C12 = 79.9 (2)°.

Figure 1.

Figure 1

The mol­ecular structure of the title compound 3. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

In the crystal, O—H⋯O and C—H⋯O hydrogen bonds (O3—H3⋯O1i and C5—H5⋯O2ii; symmetry codes as in Table 1) are responsible for an infinite tape structure running along [20Inline graphic]. All the naphtho­quinone units are arranged in a parallel manner with respect to each other, as shown in Fig. 2. π–π stacking inter­actions are expected for naphtho­quinone derivatives (Meyer et al., 2003). However, this type of inter­action is not observed here, probably because of the C3 propargyl substituent.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1i 0.89 (3) 2.06 (3) 2.8118 (19) 142 (3)
C5—H5⋯O2ii 0.93 2.49 3.231 (2) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

A packing diagram of the title compound.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.39, last update May 2018; Groom et al., 2016) for 2-hy­droxy-naphthalene-1,4-dione revealed 40 structures and approximately 787 structures which possess the naphthalene-1,4-dione moiety. 2-Hy­droxy-3-(3-oxobut­yl)naphthalene-1,4-dione (Nasiri et al., 2006) and 2-hy­droxy-3-(methyl-prop-1-en-1-yl)naphthalene-1,4-dione (Alcantara Emiliano et al., 2016), compounds with structural similarity to the title compound, were also found. These compounds present a group linked to C3 with an angle nearly perpendicular to the naphtho­quinone ring.

Synthesis and crystallization  

The synthetic scheme is shown in Fig. 3. A mixture of propargyl bromide (0.75 ml, 4.47 mmol) and sodium iodide (1.30 g, 5.33 mmol) in dry acetone (3.5 ml) was stirred for 30 min at room temperature in a closed system. Then, a solution of lawsone (0.1 g, 2.4 mmol) and diiso­propyl­ethyl­amine (0.51 ml, 2.93 mmol) in a 2:1 (v/v) mixture of water/tert-butanol (24 ml) was added and the reaction mixture was stirred for a further 24 h at 353 K. The reaction was quenched with di­chloro­methane (ca 40 ml) and the heterogeneous mixture was transferred to a separatory funnel. The aqueous phase was separated and the organic layer was extracted with 1 mol l−1 hydro­chloric acid (3 × 40 ml) and water (3 × 40 ml). The organic layer was dried over anhydrous sodium sulfate and concentrated to dryness. The crude red solid product (0.45 g) was purified by column chromatography (silica) using a 99.5:0.5 (v/v) mixture of hexa­ne/tert-butanol containing 0.1% of acetic acid as eluent. Pure title compound was obtained in 28% yield (0.143 g, m.p. 396.7–397.2 K). Single crystals suitable for X-ray analysis were obtained by slow evaporation of a hexa­ne/tert-butanol solution (ca 0.5 mg ml−1) at room temperature. The infrared and NMR spectral data and corresponding spectra of 3 are available in the supporting information.

Figure 3.

Figure 3

The synthetic scheme of the title compound, 3; (i) propargyl bromide, sodium iodide and dry acetone, 0.5 h; (ii) diiso­propyl­ethyl­amine and t-BuOH/H2O, 353 K, 24 h.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound H atoms were placed geometrically (C—H = 0.93–0.97 Å) and were refined as riding with U iso(H) = 1.2U eq(C). The O-bound H atom was located in a difference Fourier map and freely refined [O—H = 0.89 (3) Å].

Table 2. Experimental details.

Crystal data
Chemical formula C13H8O3
M r 212.19
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 293
a, b, c (Å) 5.3695 (4), 9.5278 (8), 10.2972 (9)
α, β, γ (°) 96.814 (7), 93.432 (7), 102.977 (7)
V3) 507.68 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.4 × 0.2 × 0.05
 
Data collection
Diffractometer Rigaku Xcalibur Atlas Gemini ultra
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015)
T min, T max 0.720, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7946, 2508, 1563
R int 0.033
(sin θ/λ)max−1) 0.695
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.051, 0.147, 1.05
No. of reflections 2508
No. of parameters 149
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.5

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009 ).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018011647/is5498sup1.cif

e-74-01319-sup1.cif (20.6KB, cif)

Supporting information file. DOI: 10.1107/S2056989018011647/is5498Isup3.cml

The infrared and NMR spectroscopic data and corresponding spectra of <b>3</b>. DOI: 10.1107/S2056989018011647/is5498sup4.pdf

e-74-01319-sup4.pdf (5.4MB, pdf)

CCDC reference: 1862442

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C13H8O3 F(000) = 220
Mr = 212.19 Dx = 1.388 Mg m3
Triclinic, P1 Melting point = 396.8–397.5 K
a = 5.3695 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.5278 (8) Å Cell parameters from 1721 reflections
c = 10.2972 (9) Å θ = 3.2–28.7°
α = 96.814 (7)° µ = 0.10 mm1
β = 93.432 (7)° T = 293 K
γ = 102.977 (7)° Prism, colourless
V = 507.68 (8) Å3 0.4 × 0.2 × 0.05 mm
Z = 2

Data collection

Rigaku Xcalibur Atlas Gemini ultra diffractometer 2508 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source 1563 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.033
Detector resolution: 10.4186 pixels mm-1 θmax = 29.6°, θmin = 2.8°
ω scans h = −7→7
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) k = −12→12
Tmin = 0.720, Tmax = 1.000 l = −13→14
7946 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0639P)2 + 0.058P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
2508 reflections Δρmax = 0.21 e Å3
149 parameters Δρmin = −0.5 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O3 0.6461 (3) 0.33269 (14) 0.01419 (12) 0.0536 (4)
H3 0.796 (5) 0.389 (3) 0.002 (3) 0.104 (10)*
O1 0.9195 (2) 0.59305 (13) 0.12532 (12) 0.0518 (3)
O2 0.0447 (3) 0.36386 (14) 0.31887 (13) 0.0647 (4)
C1 0.7232 (3) 0.54469 (17) 0.17533 (15) 0.0388 (4)
C2 0.5615 (3) 0.39989 (17) 0.11881 (15) 0.0403 (4)
C3 0.3415 (3) 0.33844 (17) 0.16560 (15) 0.0419 (4)
C4 0.2483 (3) 0.41556 (18) 0.27733 (16) 0.0431 (4)
C5 0.3230 (4) 0.6358 (2) 0.44404 (17) 0.0511 (4)
H5 0.1693 0.5951 0.4767 0.061*
C6 0.4664 (4) 0.7695 (2) 0.50175 (19) 0.0586 (5)
H6 0.4109 0.8182 0.5740 0.070*
C7 0.6917 (4) 0.8311 (2) 0.4525 (2) 0.0642 (6)
H7 0.7871 0.9218 0.4915 0.077*
C8 0.7782 (3) 0.7597 (2) 0.34557 (18) 0.0530 (5)
H8 0.9302 0.8021 0.3123 0.064*
C9 0.6345 (3) 0.62361 (16) 0.28851 (15) 0.0389 (4)
C10 0.4061 (3) 0.56178 (17) 0.33796 (15) 0.0397 (4)
C11 0.1798 (4) 0.19019 (18) 0.10516 (18) 0.0536 (5)
H11A 0.0054 0.1811 0.1290 0.064*
H11B 0.1751 0.1833 0.0103 0.064*
C12 0.2779 (4) 0.07067 (19) 0.14761 (17) 0.0552 (5)
C13 0.3566 (5) −0.0258 (2) 0.1781 (2) 0.0829 (7)
H13 0.4196 −0.1030 0.2026 0.099*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O3 0.0570 (8) 0.0492 (7) 0.0513 (7) 0.0084 (6) 0.0167 (6) −0.0053 (5)
O1 0.0456 (7) 0.0531 (7) 0.0548 (7) 0.0048 (6) 0.0176 (6) 0.0060 (5)
O2 0.0540 (8) 0.0635 (9) 0.0699 (9) −0.0031 (6) 0.0256 (7) 0.0043 (7)
C1 0.0372 (9) 0.0400 (8) 0.0405 (8) 0.0091 (7) 0.0057 (7) 0.0094 (6)
C2 0.0433 (9) 0.0397 (9) 0.0391 (9) 0.0119 (7) 0.0057 (7) 0.0047 (6)
C3 0.0437 (9) 0.0374 (8) 0.0430 (9) 0.0075 (7) 0.0018 (7) 0.0040 (7)
C4 0.0395 (9) 0.0443 (9) 0.0453 (9) 0.0061 (7) 0.0073 (7) 0.0110 (7)
C5 0.0499 (10) 0.0575 (11) 0.0468 (10) 0.0140 (8) 0.0121 (8) 0.0047 (8)
C6 0.0615 (12) 0.0620 (12) 0.0503 (10) 0.0185 (10) 0.0071 (9) −0.0096 (8)
C7 0.0615 (13) 0.0533 (11) 0.0678 (13) 0.0076 (10) 0.0001 (10) −0.0172 (9)
C8 0.0441 (10) 0.0488 (10) 0.0611 (11) 0.0041 (8) 0.0066 (8) −0.0004 (8)
C9 0.0377 (9) 0.0390 (8) 0.0402 (8) 0.0101 (7) 0.0019 (7) 0.0046 (6)
C10 0.0389 (9) 0.0430 (9) 0.0380 (8) 0.0106 (7) 0.0049 (7) 0.0055 (7)
C11 0.0497 (10) 0.0458 (10) 0.0582 (11) 0.0004 (8) 0.0023 (9) 0.0006 (8)
C12 0.0671 (12) 0.0395 (10) 0.0515 (10) 0.0016 (9) 0.0070 (9) −0.0039 (8)
C13 0.113 (2) 0.0483 (12) 0.0862 (16) 0.0257 (13) −0.0048 (14) 0.0002 (11)

Geometric parameters (Å, º)

O3—H3 0.88 (3) C6—H6 0.9300
O3—C2 1.3426 (19) C6—C7 1.375 (3)
O1—C1 1.2217 (18) C7—H7 0.9300
O2—C4 1.2189 (19) C7—C8 1.384 (3)
C1—C2 1.485 (2) C8—H8 0.9300
C1—C9 1.473 (2) C8—C9 1.392 (2)
C2—C3 1.340 (2) C9—C10 1.390 (2)
C3—C4 1.465 (2) C11—H11A 0.9700
C3—C11 1.521 (2) C11—H11B 0.9700
C4—C10 1.499 (2) C11—C12 1.458 (3)
C5—H5 0.9300 C12—C13 1.161 (3)
C5—C6 1.376 (3) C13—H13 0.9300
C5—C10 1.381 (2)
C2—O3—H3 106.5 (17) C6—C7—C8 120.80 (18)
O1—C1—C2 118.90 (14) C8—C7—H7 119.6
O1—C1—C9 123.40 (15) C7—C8—H8 120.5
C9—C1—C2 117.69 (14) C7—C8—C9 119.08 (17)
O3—C2—C1 115.90 (14) C9—C8—H8 120.5
C3—C2—O3 120.71 (15) C8—C9—C1 120.23 (15)
C3—C2—C1 123.38 (14) C10—C9—C1 119.71 (14)
C2—C3—C4 119.88 (15) C10—C9—C8 120.07 (15)
C2—C3—C11 122.10 (15) C5—C10—C4 119.53 (15)
C4—C3—C11 118.01 (15) C5—C10—C9 119.69 (15)
O2—C4—C3 121.03 (16) C9—C10—C4 120.78 (14)
O2—C4—C10 120.40 (15) C3—C11—H11A 109.1
C3—C4—C10 118.56 (14) C3—C11—H11B 109.1
C6—C5—H5 119.8 H11A—C11—H11B 107.8
C6—C5—C10 120.37 (17) C12—C11—C3 112.70 (14)
C10—C5—H5 119.8 C12—C11—H11A 109.1
C5—C6—H6 120.0 C12—C11—H11B 109.1
C7—C6—C5 119.98 (17) C13—C12—C11 178.3 (2)
C7—C6—H6 120.0 C12—C13—H13 180.0
C6—C7—H7 119.6
O1—C1—C2—O3 −0.4 (2) C4—C3—C11—C12 −100.96 (19)
O1—C1—C2—C3 −179.15 (16) O2—C4—C10—C5 2.0 (3)
C9—C1—C2—O3 178.72 (14) O2—C4—C10—C9 −177.93 (16)
C9—C1—C2—C3 −0.1 (2) C3—C4—C10—C5 −179.45 (16)
O1—C1—C9—C8 −1.0 (2) C3—C4—C10—C9 0.7 (2)
O1—C1—C9—C10 178.81 (15) C10—C5—C6—C7 1.0 (3)
C2—C1—C9—C8 179.98 (14) C6—C5—C10—C4 179.40 (17)
C2—C1—C9—C10 −0.2 (2) C6—C5—C10—C9 −0.7 (3)
O3—C2—C3—C4 −178.09 (15) C5—C6—C7—C8 −0.5 (3)
O3—C2—C3—C11 1.0 (2) C6—C7—C8—C9 −0.4 (3)
C1—C2—C3—C4 0.7 (2) C7—C8—C9—C1 −179.48 (16)
C1—C2—C3—C11 179.77 (15) C7—C8—C9—C10 0.7 (3)
C2—C3—C4—O2 177.64 (16) C1—C9—C10—C4 −0.1 (2)
C2—C3—C4—C10 −0.9 (2) C1—C9—C10—C5 −180.00 (16)
C11—C3—C4—O2 −1.5 (2) C8—C9—C10—C4 179.73 (15)
C11—C3—C4—C10 179.92 (15) C8—C9—C10—C5 −0.2 (2)
C2—C3—C11—C12 79.9 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3···O1i 0.89 (3) 2.06 (3) 2.8118 (19) 142 (3)
C5—H5···O2ii 0.93 2.49 3.231 (2) 137

Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x, −y+1, −z+1.

Funding Statement

This work was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico grant 303901/2017-9. Fundação de Amparo à Pesquisa do Estado de Minas Gerais grant CDS-APQ-02541-15.

References

  1. Alcantara Emiliano, S., Welma Duarte Silva, S., Alves Pereira, M., R. dos Santos Malta, V. & Luciano Balliano, T. (2016). Acta Cryst. E72, 188–190. [DOI] [PMC free article] [PubMed]
  2. Ashton, T. M., Fokas, E., Kunz-Schughart, L. A., Folkes, L. K., Anbalagan, S., Huether, M., Kelly, C. J., Pirovano, G., Buffa, F. M., Hammond, E. M., Stratford, M., Muschel, R. J., Higgins, G. S. & Mckenna, W. G. (2016). Nat. Commun. 7, 12308. [DOI] [PMC free article] [PubMed]
  3. Cirioni, O., Giacometti, A., Balducci, M., Burzacchini, F. & Scalise, G. (1995). J. Antimicrob. Chemother. 36, 740–741. [DOI] [PubMed]
  4. Comley, J. C. W., Yeates, C. L. & Frend, T. J. (1995). J. Antimicrob. Chemother. 39, 806–809. [DOI] [PMC free article] [PubMed]
  5. Dekkers, J., Kooijman, H., Kroon, J. & Grech, E. (1996). Acta Cryst. C52, 2896–2899.
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Fiorillo, M., Lamb, R., Tanowitz, H. B., Mutti, L., Krstic-Demonacos, M., Cappello, A. R., Martinez-Outschoorn, U. E., Sotgia, F. & Lisanti, M. F. (2016). Oncotarget, 7, 34084–34099. [DOI] [PMC free article] [PubMed]
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Jordão, A. K., Vargas, M. D., Pinto, A. C., da Silva, F. de C. & Ferreira, V. F. (2015). RSC Adv. 5, 67909–67943.
  10. Meyer, E. A., Castellano, R. K. & Diederich, F. (2003). Angew. Chem. 42, 1210–1250. [DOI] [PubMed]
  11. Nasiri, H. R., Madej, M. G., Lancaster, C. R. D., Schwalbe, H. & Bolte, M. (2006). Acta Cryst. C62, o671–o673. [DOI] [PubMed]
  12. Nixon, G. L., Moss, D. M., Shone, A. E., Lalloo, D. G., Fisher, N., O’Neill, P. M., Ward, S. A. & Biagini, G. A. (2013). J. Antimicrob. Chemother. 68, 977–985. [DOI] [PMC free article] [PubMed]
  13. Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffaction, Yarnton, Oxfordshire, England.
  14. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  15. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  16. Valença, W. O., Baiju, T. V., Brito, F. G., Araujo, M. H., Pessoa, C., Cavalcanti, B. C., Simore, C. A., Jacob, C., Namboothiri, I. N. N. & da Silva Júnior, E. N. (2017). ChemistrySelect, 2, 4301–4308.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018011647/is5498sup1.cif

e-74-01319-sup1.cif (20.6KB, cif)

Supporting information file. DOI: 10.1107/S2056989018011647/is5498Isup3.cml

The infrared and NMR spectroscopic data and corresponding spectra of <b>3</b>. DOI: 10.1107/S2056989018011647/is5498sup4.pdf

e-74-01319-sup4.pdf (5.4MB, pdf)

CCDC reference: 1862442

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES