Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Aug 10;74(Pt 9):1201–1205. doi: 10.1107/S2056989018010976

Crystal structure and Hirshfeld surface analysis of (2E)-3-(2,4-di­chloro­phen­yl)-1-(2,5-di­chloro­thio­phen-3-yl)prop-2-en-1-one

T N Sanjeeva Murthy a, Zeliha Atioğlu b, Mehmet Akkurt c,*, C S Chidan Kumar d, M K Veeraiah e, Ching Kheng Quah f, B P Siddaraju g
PMCID: PMC6127697  PMID: 30225099

In the title compound, the 2,5-di­chloro­thio­phene and 2,4-di­chloro­phenyl rings, linked via a prop-2-en-1-one spacer, make a dihedral angle of 12.24 (15)°. Both the thio­phene and benzene rings of adjacent mol­ecules inter­act attractively in a face-to-face manner, forming zigzag sheets lying parallel to the (011) plane.

Keywords: crystal structure; 2,5-di­chloro­thio­phene ring; 2,4-di­chloro­phenyl ring; E configuration; Hirshfeld surface analysis

Abstract

The mol­ecular structure of the title compound, C13H6Cl4OS, consists of a 2,5-di­chloro­thio­phene ring and a 2,4-di­chloro­phenyl ring linked via a prop-2-en-1-one spacer. The dihedral angle between the 2,5-di­chloro­thio­phene ring and the 2,4-di­chloro­phenyl ring is 12.24 (15)°. The mol­ecule has an E configuration about the C=C bond and the carbonyl group is syn with respect to the C=C bond. The mol­ecular conformation is stabilized by intra­molecular C—H⋯Cl contacts, producing S(6) and S(5) ring motifs. In the crystal, the mol­ecules are linked along the a-axis direction through face-to-face π-stacking between the thio­phene rings and the benzene rings of the mol­ecules in zigzag sheets lying parallel to the bc plane along the c axis. The inter­molecular inter­actions in the crystal packing were further analysed using Hirshfield surface analysis, which indicates that the most significant contacts are Cl⋯H/ H⋯Cl (20.8%), followed by Cl⋯Cl (18.7%), C⋯C (11.9%), Cl⋯S/S⋯Cl (10.9%), H⋯H (10.1%), C⋯H/H⋯C (9.3%) and O⋯H/H⋯O (7.6%).

Chemical context  

Compounds bearing the 1,3-diphenyl-2-propen-1-one framework and belong to the flavonoid family are commonly called by its generic name ‘chalcone’. These are abundant in nature, ranging from ferns to higher plants, and are considered to be the precursors of flavonoids and isoflavonoids, in which the two aromatic rings are joined by a three carbon α,β-unsaturated carbonyl system. In plants, chalcones are converted to the corresponding (2S)-flavanones in a stereospecific reaction catalysed by the enzyme chalcone isomerase. The chemistry of chalcones remains a fascination among researchers because of the large number of replaceable hydrogen atoms that allows a number of derivatives with a variety of promising biological activities. They are found in fruits and vegetables, which attracted attention because of their pharmacological activities such as anti-inflamatory (Yadav et al., 2011), anti­fungal (Mahapatra et al., 2015), anti­viral (Nowakowska, 2007; Chimenti et al., 2010; Elarfi &Al-Difar, 2012), anti­oxidant (Ferreira et al., 2006) and anti­cancer (Stiborova et al., 2011 activities). The synthesis and anti­microbial evaluation of new chalcones containing a 2,5-di­chloro­thio­phene moiety has been reported (Tomar et al., 2007). In recent years, chalcones have been used in the field of materials science as non-linear optical devices (Raghavendra et al., 2017; Chandra Shekhara Shetty et al., 2016). In view of all the above and as part of our ongoing work (Harrison et al., 2010; Jasinski et al., 2010; Dutkiewicz et al., 2010) herewith we report the crystal and mol­ecular structure of the title compound.graphic file with name e-74-01201-scheme1.jpg

Structural commentary  

The title compound, Fig. 1, is constructed from two aromatic rings (2,5-di­chloro­thio­phene and terminal 2,4-di­chloro­phenyl rings), which are linked by a C=C—C(=O)—C enone bridge. Probably as a result of the steric repulsion between the chlorine atoms of the adjacent mol­ecules, the C3—C4—C5—O1 and O1—C5—C6—C7 torsion angles about the enone bridge are −11.8 (5) and 0.4 (6)°, respectively. Hence, the dihedral angle between the 2,5-di­chloro­thio­phene ring and the 2,4-di­chloro­phenyl ring increases to 12.24 (15)°. The bond lengths and angles in the title compound are comparable with those of the related compounds (E)-3-(3,4-di­meth­oxy­phen­yl)-1-(1-hy­droxy­naphthalen-2­yl)prop-2-en-1-one (Ezhilarasi et al., 2015), (E)-1-(3-bromo­phen­yl)-3-(3,4-di­meth­oxy­phen­yl)prop-2-en-1-one (Escobar et al., 2012) and (E)-3-(2-bromo­phen­yl)-1-(3,4-di­meth­oxy­phen­yl)prop-2-en-1-one (Li et al., 2012). The mol­ecular conformation of the title compound is stabilized by intra­molecular C—H⋯Cl contacts (Table 1), producing S(6) and S(5) ring motifs.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level. The two intra­molecular C—H⋯Cl contacts (see Table1) are shown as dashed lines.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯Cl1 0.93 2.48 3.220 (3) 136
C7—H7A⋯Cl3 0.93 2.65 3.075 (3) 108

Supra­molecular features and Hirshfeld surface analysis  

In the crystal, conventional hydrogen bonds are not observed. π-stacking is observed between the thio­phene rings (S1/C1–C4, centroid Cg1) of adjacent mol­ecules in the alternating sheets along the [100] direction [Cg1⋯Cg1i,ii: centroid–centroid distance = 3.987 (2) Å, shortest perpendicular distance for the centroid of one ring to the plane of the other = 3.6143 (12) Å, ring-centroid offset = 1.683 Å; symmetry codes: (i) −1 + x, y, z; (i) 1 + x, y, z] and between the benzene rings (C8–C13, centroid Cg2) of the same mol­ecules [Cg2⋯Cg2i,ii: centroid–centroid distance = 3.987 (2) Å, shortest perpendic­ular distance = 3.5213 (13) Å, offset = 1.869 Å]. As shown Fig. 2, the mol­ecules are packed to form zigzag sheets lying parallel to (011) along the c-axis direction through face-to-face π-stacking between the thio­phene and benzene rings of pairs of adjacent mol­ecules along the [100] direction (Cl⋯S and Cl⋯H inter­actions; Table 2 and Fig. 2). The Cl⋯S contact, at 3.660 (1) Å, is equal to the sum of the van der Waals radii of S and Cl atoms (3.65 Å; Pauling, 1960).

Figure 2.

Figure 2

A view of the offset face-to-face π-stacking in the title compound, with the thick dashed lines indicating centroid-to-centroid inter­actions. The Cl⋯H and Cl⋯S inter­actions are also shown as dashed lines.

Table 2. Summary of short inter­atomic contacts (Å) in the title compound.

Contact Distance Symmetry operation
Cl2⋯S1 3.660 (1) Inline graphic + x, Inline graphic − y, 2 − z
H10A⋯Cl4 3.03 Inline graphic + x, Inline graphic − y, 1 − z
C8⋯C9 3.573 (4) 1 + x, y, z

Hirshfeld surfaces and fingerprint plots were generated for the title compound using CrystalExplorer (McKinnon et al., 2007). Hirshfeld surfaces enable the visualization of inter­molecular inter­actions by different colours and colour intensity, representing short or long contacts and indicating the relative strength of the inter­actions. The overall two-dimensional fingerprint plot for the title compound and those delineated into Cl⋯H/ H⋯Cl, Cl⋯Cl, C⋯C, Cl⋯S/S⋯Cl, H⋯H, C⋯H/H⋯C and O⋯H/H⋯O contacts are illus­trated in Fig. 3; the percentage contributions from the different inter­atomic contacts to the Hirshfeld surfaces are as follows: Cl⋯H/ H⋯Cl (20.8%), Cl⋯Cl (18.7%), C⋯C (11.9%), Cl⋯S/S⋯Cl (10.9%), H⋯H (10.1%), C⋯H/H⋯C (9.3%) and O⋯H/H⋯O (7.6%). The contributions of the other weak inter­molecular contacts to the Hirshfeld surfaces are Cl⋯C/C⋯Cl (3.6%), S⋯C/C⋯S (2.8%), Cl⋯O/O⋯Cl (2.3%), S⋯S (0.9%), O⋯O (0.6%) and C⋯O/O⋯C (0.6%).

Figure 3.

Figure 3

The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) Cl⋯H/ H⋯Cl, (c) Cl⋯Cl, (d) C⋯C, (e) Cl⋯S/S⋯Cl, (f) H⋯H, (g) C⋯H/H⋯C and (h) O⋯H/H⋯O inter­actions.

The C—H⋯Cl inter­actions appear as two distinct spikes in the fingerprint plot (Fig. 3 b) of the title compound, where the sum of Cl⋯H/H⋯Cl inter­actions comprises 20.8% of the total Hirshfeld surface area of the mol­ecule. The Cl⋯H/H⋯Cl inter­actions represented by the spikes in the bottom right and left region (d e + d i ≃ 2.83 Å) indicate that the hydrogen atoms are in contact with the Cl atoms to build the two-dimensional supra­molecular framework [d e and d i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively]. Cl⋯Cl contacts (Fig. 3 c; 18.7%) are disfavoured when the number of H atoms on the mol­ecular surface is large because of competition with the more attractive H⋯Cl contacts. Cl⋯Cl contacts from a parallel alignment of C—Cl bonds (C10—H10A⋯Cl4iii; (iii) −Inline graphic + x, Inline graphic − y, 1 − z] may be indicated. They are known in the literature as type-I halogen–halogen inter­actions (Bui et al., 2009), with both C—Cl⋯Cl angles equal to one another. In the present case, these angles are close to 165°. The C⋯C contacts (Fig. 3 d); 11.9%) reflect π–π inter­actions between the above-mentioned aromatic rings. The S⋯Cl contacts (Fig. 3 e; 10.9%) contracted to a much lesser degree. The C⋯H/H⋯C inter­actions (Fig. 3 g) account for 9.3% of the total Hirshfeld surface of the mol­ecules. The scattered points in the breakdown of the fingerprint plot show the π–π stacking inter­actions. In the fingerprint plot delineated into H⋯O/O⋯H contacts (Fig. 3 h), the 7.6% contribution to the Hirshfeld surface arises from inter­molecular C=O⋯H hydrogen bonding and is viewed as pair of spikes with the tip at de + di ∼ 2.9 Å.

The large number of Cl⋯H/ H⋯Cl, Cl⋯Cl, C⋯C, Cl⋯S/S⋯Cl, H⋯H, C⋯H/H⋯C and O⋯H/H⋯O inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).

Database survey  

The closest related compounds with the same skeleton and containing a similar bis-chalcone moiety to the title compound but with different substituents on the aromatic rings are: (2E)-1-(5-chloro­thio­phen-2-yl)-3-(4-ethyl­phen­yl)prop-2-en-1-one [(I); Naik et al., 2015], (2E)-1-(5-bromo­thio­phen-2-yl)-3-(4-ethyl­phen­yl)prop- 2-en-1-one [(II); Naik et al., 2015], (2E)-1-(5-chloro­thio­phen-2-yl)-3-(4-eth­oxy­phen­yl)prop-2-en-1-one [(III); Naik et al., 2015], (2E)-1-(5-bromo­thio­phen-2-yl)-3-(4-eth­oxy­phen­yl)prop-2-en-1-one [(IV); Naik et al., 2015], (2E)-3-(4-bromo­phen­yl)-1-(5-chloro­thio­phen-2-yl)prop-2-en-1-one [(V); Naik et al., 2015], (2E)-1-(5-bromo­thio­phen-2-yl)-3-(3-meth­oxy­phen­yl)prop-2-en-1-one [(VI); Naik et al., 2015], (E)-1-(5-chloro­thio­phen-2-yl)-3-(p-tol­yl)prop-2-en-1-one [(VII); Kumara et al., 2017], (E)-1-(5-chloro­thio­phen-2-yl)-3-(2,4-di­methyl­phen­yl) prop-2-en-1-one [(VIII); Naveen et al., 2016], (2E)-1-(5-bromo­thio­phen- 2-yl)-3-(2-chloro­phen­yl)prop-2-en-1-one [(IX); Anitha et al., 2015], (2E)-1-[4-hy­droxy-3-(morpholin-4-ylmeth­yl)phen­yl]-3-(thio­phen-2-yl)prop-2-en-1-one [(X); Yesilyurt et al., 2018] and (E)-1-(2-amino­phen­yl)-3-(thio­phen-2-yl)prop-2-en-1-one [(XI); Chantrapromma et al., 2013].

In (I) and (II), the structures are isostructural in space group P1, while (III) and (IV) are isostructural in space group P21/c. There are no hydrogen bonds of any kind in the structures of compounds (I) and (II), but in the structures of compounds (III) and (IV), the mol­ecules are linked into C(7) chains by means of C—H⋯O hydrogen bonds. In (V), there are again no hydrogen bonds nor π–π stacking inter­actions but in (VI), the mol­ecules are linked into C(5) chains by C—H⋯O hydrogen bonds. In each of compounds (I)–(VI), the mol­ecular skeletons are close to planarity, and there are short halogen–halogen contacts in the structures of compounds (II) and (V) and a short Br⋯O contact in the structure of compound (VI).

In (VII), the mol­ecule is non-planar, with a dihedral angle of 22.6 (2)° between the aromatic rings. The mol­ecules are linked by pairs of C—H⋯π inter­actions, forming inversion dimers. There are no other significant inter­molecular inter­actions present. In (VIII), the mol­ecule is nearly planar, the dihedral angle between the thio­phene and phenyl rings being 9.07 (8)°. The mol­ecules are linked via weak C—H⋯O and C—H⋯S hydrogen bonds, forming chains propagating along the c-axis direction. In (IX), the thienyl ring is not coplanar with the benzene ring, their planes forming a dihedral angle of 13.2 (4)°. In the crystal, mol­ecules stack along the a-axis direction, with the inter­planar separation between the thienyl rings and between the benzene rings being 3.925 (6) Å. In (X), the thio­phene ring forms a dihedral angle of 26.04 (9)° with the benzene ring. The mol­ecular conformation is stabilized by an O—H⋯N hydrogen bond. The mol­ecules are connected through C—H⋯O hydrogen bonds, forming wave-like layers parallel to the ab plane, which are further linked into a three-dimensional network by C—H⋯π inter­actions. In (XI), the mol­ecule is almost planar with a dihedral angle of 3.73 (8)° between the phenyl and thio­phene rings. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. Adjacent mol­ecules are linked into dimers in an anti-parallel face-to-face manner by pairs of C—H⋯O inter­actions. Neighboring dimers are further linked into chains along the c-axis direction by N—H⋯N hydrogen bonds.

Synthesis and crystallization  

The title compound was synthesized as per the procedure reported earlier (Kumar et al., 2013a ,b ; Chidan Kumar et al., 2014). 1-(2,5-Di­chloro­thio­phen-3-yl)ethanone (0.01 mol) (Harrison et al., 2010) and 2,4-di­chloro­benzaldehyde (0.01 mol) was dissolved in 20 ml methanol. A catalytic amount of NaOH was added to the solution dropwise with vigorous stirring. The reaction mixture was stirred for about 2 h at room temperature. The formed crude products were filtered, washed successively with distilled water and recrystallized from methanol to get the title chalcone. The melting point (381–383 K) was determined by Stuart Scientific (UK) apparatus.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and U iso(H) = 1.2U eq(C) for C—H. Owing to poor agreement between observed and calculated intensities, twelve outliers (2 7 2, 2 8 0, 2 8 1, 0 1 28, 2 8 23, 0 14 8, 0 0 6, 3 0 29, 1 0 8, 0 17 4, 1 3 27, 2 12 19) were omitted in the final cycles of refinement.

Table 3. Experimental details.

Crystal data
Chemical formula C13H6Cl4OS
M r 352.04
Crystal system, space group Orthorhombic, P212121
Temperature (K) 294
a, b, c (Å) 3.9867 (3), 13.4564 (11), 25.573 (2)
V3) 1371.91 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.00
Crystal size (mm) 0.63 × 0.23 × 0.11
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2007)
T min, T max 0.757, 0.894
No. of measured, independent and observed [I > 2σ(I)] reflections 11402, 4226, 3425
R int 0.026
(sin θ/λ)max−1) 0.720
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.038, 0.102, 1.03
No. of reflections 4226
No. of parameters 172
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.20
Absolute structure Flack x determined using 1124 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.04 (5)

Computer programs: APEX2 and SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989018010976/dx2006sup1.cif

e-74-01201-sup1.cif (391.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018010976/dx2006Isup2.hkl

e-74-01201-Isup2.hkl (336.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018010976/dx2006Isup3.cml

CCDC reference: 1036797

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors extend their appreciation to the Vidya Vikas Research & Development Centre for the facilities and encouragement.

supplementary crystallographic information

Crystal data

C13H6Cl4OS Dx = 1.704 Mg m3
Mr = 352.04 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 4362 reflections
a = 3.9867 (3) Å θ = 2.2–28.5°
b = 13.4564 (11) Å µ = 1.00 mm1
c = 25.573 (2) Å T = 294 K
V = 1371.91 (19) Å3 Block, yellow
Z = 4 0.63 × 0.23 × 0.11 mm
F(000) = 704

Data collection

Bruker APEXII CCD diffractometer 3425 reflections with I > 2σ(I)
φ and ω scans Rint = 0.026
Absorption correction: multi-scan (SADABS; Bruker, 2007) θmax = 30.8°, θmin = 1.6°
Tmin = 0.757, Tmax = 0.894 h = −5→2
11402 measured reflections k = −19→19
4226 independent reflections l = −36→36

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.011P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.102 (Δ/σ)max = 0.001
S = 1.03 Δρmax = 0.25 e Å3
4226 reflections Δρmin = −0.20 e Å3
172 parameters Absolute structure: Flack x determined using 1124 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraints Absolute structure parameter: 0.04 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.1673 (8) 0.77797 (19) 0.84012 (9) 0.0391 (6)
C2 1.2553 (8) 0.6794 (2) 0.91880 (10) 0.0419 (6)
C3 1.1115 (8) 0.6258 (2) 0.88062 (10) 0.0410 (6)
H3A 1.052432 0.559246 0.884223 0.049*
C4 1.0587 (8) 0.6820 (2) 0.83366 (10) 0.0382 (6)
C5 0.9016 (9) 0.6327 (2) 0.78763 (10) 0.0444 (7)
C6 0.7779 (10) 0.6938 (2) 0.74420 (11) 0.0493 (7)
H6A 0.809837 0.762158 0.746266 0.059*
C7 0.6253 (9) 0.6588 (2) 0.70264 (10) 0.0462 (7)
H7A 0.596005 0.590316 0.700760 0.055*
C8 0.4975 (8) 0.7177 (2) 0.65917 (10) 0.0386 (6)
C9 0.3384 (8) 0.67552 (19) 0.61621 (10) 0.0403 (6)
C10 0.2191 (8) 0.7316 (2) 0.57472 (10) 0.0431 (6)
H10A 0.112503 0.701315 0.546561 0.052*
C11 0.2620 (8) 0.8330 (2) 0.57612 (10) 0.0425 (7)
C12 0.4192 (9) 0.8788 (2) 0.61805 (11) 0.0465 (7)
H12A 0.447771 0.947373 0.618483 0.056*
C13 0.5316 (9) 0.8219 (2) 0.65879 (11) 0.0438 (7)
H13A 0.633719 0.852975 0.687101 0.053*
O1 0.8718 (9) 0.54311 (16) 0.78790 (9) 0.0721 (9)
S1 1.3313 (2) 0.80047 (5) 0.90119 (3) 0.04511 (19)
Cl1 1.1738 (3) 0.87633 (5) 0.79734 (3) 0.0556 (2)
Cl2 1.3606 (3) 0.63887 (6) 0.98017 (3) 0.0593 (2)
Cl3 0.2772 (3) 0.54840 (5) 0.61241 (3) 0.0639 (3)
Cl4 0.1204 (3) 0.90504 (6) 0.52453 (3) 0.0605 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0422 (17) 0.0375 (11) 0.0377 (11) 0.0021 (13) 0.0062 (12) −0.0015 (9)
C2 0.0429 (18) 0.0443 (13) 0.0384 (12) 0.0015 (13) −0.0020 (11) 0.0019 (10)
C3 0.0430 (18) 0.0392 (12) 0.0408 (12) −0.0001 (13) −0.0012 (12) 0.0003 (10)
C4 0.0376 (16) 0.0406 (12) 0.0364 (11) 0.0014 (12) 0.0021 (11) −0.0021 (10)
C5 0.051 (2) 0.0462 (14) 0.0362 (12) −0.0046 (14) 0.0005 (12) −0.0046 (10)
C6 0.059 (2) 0.0451 (13) 0.0437 (13) −0.0026 (15) −0.0080 (14) −0.0013 (11)
C7 0.058 (2) 0.0429 (13) 0.0382 (12) −0.0006 (15) 0.0010 (14) −0.0022 (10)
C8 0.0385 (16) 0.0415 (13) 0.0358 (11) 0.0001 (12) 0.0045 (11) −0.0038 (10)
C9 0.0416 (16) 0.0380 (11) 0.0412 (12) −0.0018 (13) 0.0027 (13) −0.0046 (9)
C10 0.0433 (18) 0.0481 (13) 0.0378 (12) 0.0008 (13) 0.0001 (12) −0.0066 (10)
C11 0.0387 (18) 0.0488 (14) 0.0401 (12) 0.0061 (13) 0.0018 (11) 0.0002 (10)
C12 0.048 (2) 0.0396 (13) 0.0522 (15) −0.0007 (13) 0.0013 (14) −0.0061 (11)
C13 0.0468 (19) 0.0422 (13) 0.0426 (13) −0.0004 (13) −0.0034 (13) −0.0080 (11)
O1 0.123 (3) 0.0414 (11) 0.0517 (12) −0.0110 (15) −0.0209 (16) −0.0012 (9)
S1 0.0504 (5) 0.0422 (3) 0.0427 (3) −0.0035 (3) −0.0008 (3) −0.0055 (3)
Cl1 0.0766 (6) 0.0403 (3) 0.0498 (4) −0.0043 (4) −0.0001 (4) 0.0048 (3)
Cl2 0.0740 (6) 0.0589 (4) 0.0450 (3) −0.0016 (4) −0.0159 (4) 0.0056 (3)
Cl3 0.0883 (8) 0.0410 (3) 0.0625 (4) −0.0127 (4) −0.0148 (5) −0.0023 (3)
Cl4 0.0684 (6) 0.0556 (4) 0.0576 (4) 0.0076 (4) −0.0106 (4) 0.0080 (3)

Geometric parameters (Å, º)

C1—C4 1.372 (4) C7—C8 1.458 (4)
C1—Cl1 1.717 (3) C7—H7A 0.9300
C1—S1 1.720 (3) C8—C9 1.390 (4)
C2—C3 1.343 (4) C8—C13 1.408 (4)
C2—Cl2 1.714 (3) C9—C10 1.386 (4)
C2—S1 1.717 (3) C9—Cl3 1.731 (3)
C3—C4 1.435 (4) C10—C11 1.375 (4)
C3—H3A 0.9300 C10—H10A 0.9300
C4—C5 1.489 (4) C11—C12 1.387 (4)
C5—O1 1.212 (4) C11—Cl4 1.732 (3)
C5—C6 1.467 (4) C12—C13 1.368 (4)
C6—C7 1.312 (4) C12—H12A 0.9300
C6—H6A 0.9300 C13—H13A 0.9300
C4—C1—Cl1 130.8 (2) C8—C7—H7A 117.1
C4—C1—S1 113.3 (2) C9—C8—C13 116.5 (3)
Cl1—C1—S1 115.92 (16) C9—C8—C7 122.7 (3)
C3—C2—Cl2 126.8 (2) C13—C8—C7 120.9 (3)
C3—C2—S1 113.3 (2) C10—C9—C8 122.6 (3)
Cl2—C2—S1 119.95 (17) C10—C9—Cl3 116.5 (2)
C2—C3—C4 112.8 (3) C8—C9—Cl3 120.8 (2)
C2—C3—H3A 123.6 C11—C10—C9 118.5 (3)
C4—C3—H3A 123.6 C11—C10—H10A 120.7
C1—C4—C3 110.5 (2) C9—C10—H10A 120.7
C1—C4—C5 130.3 (2) C10—C11—C12 121.2 (3)
C3—C4—C5 119.2 (3) C10—C11—Cl4 119.7 (2)
O1—C5—C6 121.9 (3) C12—C11—Cl4 119.2 (2)
O1—C5—C4 118.7 (3) C13—C12—C11 119.2 (3)
C6—C5—C4 119.3 (3) C13—C12—H12A 120.4
C7—C6—C5 124.6 (3) C11—C12—H12A 120.4
C7—C6—H6A 117.7 C12—C13—C8 122.0 (3)
C5—C6—H6A 117.7 C12—C13—H13A 119.0
C6—C7—C8 125.7 (3) C8—C13—H13A 119.0
C6—C7—H7A 117.1 C2—S1—C1 90.24 (13)
Cl2—C2—C3—C4 −179.6 (2) C13—C8—C9—C10 0.3 (5)
S1—C2—C3—C4 0.7 (4) C7—C8—C9—C10 −179.5 (3)
Cl1—C1—C4—C3 178.6 (3) C13—C8—C9—Cl3 −179.3 (3)
S1—C1—C4—C3 0.2 (4) C7—C8—C9—Cl3 0.9 (4)
Cl1—C1—C4—C5 −2.0 (6) C8—C9—C10—C11 0.4 (5)
S1—C1—C4—C5 179.6 (3) Cl3—C9—C10—C11 179.9 (3)
C2—C3—C4—C1 −0.6 (4) C9—C10—C11—C12 −0.3 (5)
C2—C3—C4—C5 179.9 (3) C9—C10—C11—Cl4 179.2 (2)
C1—C4—C5—O1 168.9 (4) C10—C11—C12—C13 −0.3 (5)
C3—C4—C5—O1 −11.8 (5) Cl4—C11—C12—C13 −179.9 (3)
C1—C4—C5—C6 −13.1 (5) C11—C12—C13—C8 1.0 (5)
C3—C4—C5—C6 166.3 (3) C9—C8—C13—C12 −1.0 (5)
O1—C5—C6—C7 0.4 (6) C7—C8—C13—C12 178.8 (3)
C4—C5—C6—C7 −177.6 (3) C3—C2—S1—C1 −0.5 (3)
C5—C6—C7—C8 179.5 (3) Cl2—C2—S1—C1 179.8 (2)
C6—C7—C8—C9 179.9 (4) C4—C1—S1—C2 0.1 (3)
C6—C7—C8—C13 0.1 (5) Cl1—C1—S1—C2 −178.5 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H6A···Cl1 0.93 2.48 3.220 (3) 136
C7—H7A···Cl3 0.93 2.65 3.075 (3) 108

References

  1. Anitha, B. R., Vinduvahini, M., Ravi, A. J. & Devarajegowda, H. C. (2015). Acta Cryst. E71, o930. [DOI] [PMC free article] [PubMed]
  2. Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bui, T. T. T., Dahaoui, S., Lecomte, C., Desiraju, G. & Espinosa, E. (2009). Angew. Chem. Int. Ed. 48, 3838–3841. [DOI] [PubMed]
  4. Chandra Shekhara Shetty, T., Raghavendra, S., Chidan Kumar, C. S. & Dharmaprakash, S. M. (2016). Appl. Phys. B, 122, 205–213.
  5. Chantrapromma, S., Ruanwas, P., Boonnak, N. & Fun, H.-K. (2013). Acta Cryst. E69, o1004–o1005. [DOI] [PMC free article] [PubMed]
  6. Chidan Kumar, C. S., Fun, H. K., Parlak, C., Rhyman, L., Ramasami, P., Tursun, M., Chandraju, S. & Quah, C. K. (2014). Spectrochim. Acta A, 132, 174–182. [DOI] [PubMed]
  7. Chimenti, F., Fioravanti, R., Bolasco, A., Chimenti, P., Secci, D., Rossi, F., Yanez, M., Orallo, F., Ortuso, F., Alcaro, S., Cirilli, R., Ferretti, R. & Sanna, M. L. (2010). Bioorg. Med. Chem. 18, 1273–1279. [DOI] [PubMed]
  8. Dutkiewicz, G., Chidan Kumar, C. S., Yathirajan, H. S., Narayana, B. & Kubicki, M. (2010). Acta Cryst. E66, o1139. [DOI] [PMC free article] [PubMed]
  9. Elarfi, M. J. & Al-Difar, H. A. (2012). Sci. Rev. Chem. Commun. 2, 103–107.
  10. Escobar, C. A., Trujillo, A., Howard, J. A. K. & Fuentealba, M. (2012). Acta Cryst. E68, o887. [DOI] [PMC free article] [PubMed]
  11. Ezhilarasi, K. S., Reuben Jonathan, D., Vasanthi, R., Revathi, B. K. & Usha, G. (2015). Acta Cryst. E71, o371–o372. [DOI] [PMC free article] [PubMed]
  12. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  13. Ferreira, I. C. F. R., Queiroz, M. R. P., Vilas-Boas, M., Estevinho, L. M., Begouin, A. & Kirsch, G. (2006). Bioorg. Med. Chem. Lett. 16, 1384–1387. [DOI] [PubMed]
  14. Harrison, W. T. A., Chidan Kumar, C. S., Yathirajan, H. S., Mayekar, A. N. & Narayana, B. (2010). Acta Cryst. E66, o2479. [DOI] [PMC free article] [PubMed]
  15. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  16. Jasinski, J. P., Pek, A. E., Chidan Kumar, C. S., Yathirajan, H. S. & Mayekar, A. N. (2010). Acta Cryst. E66, o1717. [DOI] [PMC free article] [PubMed]
  17. Kumara, K., Naveen, S., Prabhudeva, M. G., Ajay Kumar, K., Lokanath, N. K. & Warad, I. (2017). IUCrData, 2, x170038.
  18. Kumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013a). Molecules, 18, 11996–12011. [DOI] [PMC free article] [PubMed]
  19. Kumar, C. S. C., Loh, W. S., Ooi, C. W., Quah, C. K. & Fun, H. K. (2013b). Molecules, 18, 12707–12724. [DOI] [PMC free article] [PubMed]
  20. Li, Z., Wang, Y., Peng, K., Chen, L. & Chu, S. (2012). Acta Cryst. E68, o776. [DOI] [PMC free article] [PubMed]
  21. Mahapatra, D. K., Asati, V. & Bharti, S. K. (2015). Eur. J. Med. Chem. 92, 839–865. [DOI] [PubMed]
  22. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  23. Naik, V. S., Yathirajan, H. S., Jasinski, J. P., Smolenski, V. A. & Glidewell, C. (2015). Acta Cryst. E71, 1093–1099. [DOI] [PMC free article] [PubMed]
  24. Naveen, S., Prabhudeva, M. G., Ajay Kumar, K., Lokanath, N. K. & Abdoh, M. (2016). IUCrData, 1, x161974.
  25. Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125–137. [DOI] [PubMed]
  26. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  27. Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca, New York: Cornell University Press.
  28. Raghavendra, S., Chidan Kumar, C. S., Shetty, T. C. S., Lakshminarayana, B. N., Quah, C. K., Chandraju, S., Ananthnag, G. S., Gonsalves, R. A. & Dharmaprakash, S. M. (2017). Results Phys. 7, 2550–2556.
  29. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  30. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  31. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  32. Stiborová, M., Poljaková, I., Martínková, E., Bořek-Dohalská, L., Eckschlager, T., Kizek, R. & Frei, E. (2011). Interdiscipl. Toxicol. 4, 98–105. [DOI] [PMC free article] [PubMed]
  33. Tomar, V., Bhattacharjee, G., Kamaluddin & Kumar, A. (2007). Bioorg. Med. Chem. Lett. 17, 5321–5324. [DOI] [PubMed]
  34. Yadav, V. R., Prasad, S., Sung, B. & Aggarwal, B. B. (2011). Int. Immunopharmacol. 11, 295–309. [DOI] [PMC free article] [PubMed]
  35. Yesilyurt, F., Aydin, A., Gul, H. I., Akkurt, M. & Ozcelik, N. D. (2018). Acta Cryst. E74, 960–963. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989018010976/dx2006sup1.cif

e-74-01201-sup1.cif (391.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018010976/dx2006Isup2.hkl

e-74-01201-Isup2.hkl (336.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018010976/dx2006Isup3.cml

CCDC reference: 1036797

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES