Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Aug 16;74(Pt 9):1267–1271. doi: 10.1107/S2056989018011416

Isomorphous diethyl 1-(4-chloro­benz­yl)-4-(4-chloro­phen­yl)-2,2-dioxo-3,4,6,7,8,8a-hexa­hydro-1H-pyrrolo­[2,1-c][1,4]thia­zine-1,3-di­carboxyl­ate and its 1-(4-methyl­benz­yl)-4-(4-methyl­phen­yl)-substituted analogue obeying the chloro–methyl exchange rule

R Sribala a, N Srinivasan a,*, S Indumathi b, R V Krishnakumar a
PMCID: PMC6127705  PMID: 30225114

The influence of the substituents in the crystals of the title compounds has not made any significant effect on the crystal packing and inter­molecular hydrogen bonds. The validity of chlorine–methyl exchange rule is confirmed.

Keywords: crystal structure, pyrrolo derivatives, thia­zine, hydrogen bonding, Hirshfeld surface analysis

Abstract

Accurate studies on the effect of substituents on the crystal packing are essential for understanding the inter­molecular inter­actions and thus paving the way to crystal structure prediction. The crystal structures of diethyl 1-(4-chloro­benz­yl)-4-(4-chloro­phen­yl)-2,2-dioxo-3,4,6,7,8,8a-hexa­hydro-1H-pyrrolo­[2,1-c][1,4]thiazine-1,3-di­carboxyl­ate, C26H29Cl2NO6S, (I), and its isomorphous pair diethyl 1-(4-methyl­benz­yl)-4-(4-methyl­phen­yl)-2,2-dioxo-3,4,6,7,8,8a-hexa­hydro-1H-pyrrolo­[2,1-c][1,4]thia­zine-1,3-di­carboxyl­ate, C28H35NO6S, (II), are described. The mol­ecular aggregation patterns appear to be strikingly similar despite changes in the substituents, with a Cl atom in (I) being replaced by a methyl group in (II). Inspite of the chemical modifications, the structures of (I) and (I) are isomorphous, isostructural and found to obey the chlorine–methyl exchange rule. Both the structures feature C—H⋯O hydrogen bonding. However, a distinguishing feature between (I) and (II) is observed in the conformation of the pyrrole rings where the twist occurs on different C—N bonds. Hirshfeld analysis of both structures is presented and discussed.

Chemical context  

Crystal structure determinations of small mol­ecules have often revealed inter­esting features that have direct relationships to their predicted structures. In this context, the display of chlorine–methyl and benzene–thio­phene exchange rules in the close-packing model of organic mol­ecules (Kitaigorodskii, 1973) may be regarded as crucial to crystal engineering studies. In the present study, the crystal structures of two closely related heterocyclic analogues which differ only by a chlorine-methyl substituent, viz. diethyl 1-(4-chloro­benz­yl)-4-(4-chloro­phen­yl)-2,2-dioxo-3,4,6,7,8,8a-hexa­hydro-1H-pyrrolo[2,1-c][1,4]thia­zine-1,3-di­carboxyl­ate (I) and its isomorphous pair diethyl 1-(4-methyl­benz­yl)-4-(4-methyl­phen­yl)-2,2-dioxo-3,4,6,7,8,8a-hexa­hydro-1H-pyrrolo­[2,1-c][1,4]thiazine-1,3-di­carboxyl­ate (II) have been determined. Inter­estingly, (I) and (II) are found to obey the chorine–methyl exchange rule and hence are isomorphous and isostructural. While there is evidence that the Cl–Me rule based solely on the size of the substituent need not always be valid (Jones et al., 1981; Gnanaguru et al., 1984), it has been observed as a valid proposition for large, irregularly shaped mol­ecules (Desiraju & Sarma, 1986). Although crystal-packing inter­actions in large irregularly shaped mol­ecules such as (I) and (II) are not entirely based on geometrical considerations, the role of inter­molecular inter­actions in such pairs of structures seems far from being complex with striking similarities involving the strongest among them. In some of our earlier structure determinations to ascertain the validity of exchange rules, two obeying the chloro–phenyl exchange (Rajni Swamy et al., 2013; Rajni Swamy, 2016) and another obeying the benzene–thio­phene exchange (Rajni Swamy, 2016) have been observed.graphic file with name e-74-01267-scheme1.jpg

Both (I) and (II) are thia­zine derivatives that may potentially exhibit pharmacological activities in view of the presence of nitro­gen and sulfur atoms as constituents of the fused pyrrolo­thia­zine ring (Moriyama et al., 2004; Koketsu et al., 2002; Rai et al., 2013). Derivatives of thia­zine have been shown to exhibit calcium antagonist activities (Erker, 1998) and various inhibitory activities on central nervous system (Grandolini et al., 1997; Malinka et al., 2002). Pyrrolo­thia­zine derivatives have been employed as anti-inflammatory, anti-fungal and anti-microbial agents (Armenise et al., 1991; Armenise et al., 1998). The present work reports the detailed description of the crystal structures of (I) and (II) along with Hirshfeld surface analysis of their respective inter­molecular inter­actions.

Structural commentary  

The mol­ecular structures of the title compounds differ from each other only by a chlorine atom in (I) being replaced by a methyl group in (II). The replacement has not effected changes in their unit-cell parameters, lattice type and space group, indicating that structures (I) and (II) are isomorphous in nature (Figs. 1 and 2). The pyrrolo ring (N1/C2–C5) in compound (I) adopts a twisted conformation on N1—C2 with puckering parameters Q(2) = 0.3604 (19) Å and φ = 191.2 (4)°. However, in compound (II) the twisted conformation is observed on the C5—N1 bond with Q(2) = 0.377 (2) Å and φ(2) = 169.3 (4)°. The Cremer and Pople puckering parameters of the six-membered heterocyclic ring in (I) are Q = 0.6441 (15) Å, θ = 8.51 (14)° and φ = 95.8 (8)°, close to a chair conformation (1 C 4), which is comparable with the values of Q = 0.6511 (16) Å, θ = 9.53 (15)° and φ = 97.5 (7)° for (II). The dihedral angle between the planes of the thia­zine and pyrrolo rings is 6.68 (10)° in compound (I) compared with 8.06 (11)° in (II). Similarly the thia­zine ring and the chloro-substituted benzyl ring (C21–C26) in (I) subtend a dihedral angle of 78.61 (9)° [79.48 (9)° for the methyl-substituted benzyl ring (II)]. The terminal methyl carbon atom C10 deviates from the plane involving the carboxyl group (C7/C8/O3/O4/C9) by 1.371 (3) Å in compound (I) and 1.409 (3) Å in compound (II). Similarly the methyl­carbon atom C19 deviates from the C1/C17/O5/O6/C18 plane by 1.246 (3) Å in (I) and 1.203 (3) Å in (II). The dihedral angles between these two planes are 12.73 (10) and 12.07 10)° in compounds (I) and (II), respectively.

Figure 1.

Figure 1

Displacement ellipsoid plot (50% probability level) of title compound (I), showing the atom-labelling scheme.

Figure 2.

Figure 2

Displacement ellipsoid plot (50% probability level) of title compound (II), showing the atom-labelling scheme.

Supra­molecular features  

The crystal packing of both compounds (Figs. 3 and 4) features C—H⋯O hydrogen bonding (Tables 1 and 2) and π–π inter­actions. The C—H⋯O inter­actions, which are similar in strength and geometry, involve only one of the two dioxo oxygen atoms, viz. O1. The non participation of the other oxygen atom (O2) cannot be explained from the viewpoint of inter­molecular inter­actions whereas the absence of such inter­actions involving O3 and O5 may be attributed to steric factors arising from an unfavourable packing geometry. In both crystals, mol­ecules are connected into inversion dimers via pairs of weak C—H⋯O hydrogen bonds, forming Inline graphic(14) graph-set motifs. These dimers are further connected via weak C—H⋯O inter­actions into chains running along [011]. A parallel-displaced π–π stacking inter­action is observed in both compounds between the C21–C26 benzyl rings. In (I), CgCg(1 − x, −y, 2 − z) = 4.0485 (13) Å, with a slippage of 1.749 Å [for (II), CgCg(1 − x, 2 − y, 2 − z) = 4.0554 (14) Å, slippage of 1.711 Å] where Cg is the ring centroid.

Figure 3.

Figure 3

Part of the crystal structure of compound (I), showing the formation of an Inline graphic(14) ring. Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bonding have been omitted for the sake of clarity.

Figure 4.

Figure 4

Part of the crystal structure of compound (II), showing the formation of an Inline graphic(14) ring. Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bonding have been omitted for the sake of clarity.

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O1i 0.93 2.50 3.335 (2) 149
C18—H18A⋯O1ii 0.97 2.45 3.397 (2) 166

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O1i 0.93 2.57 3.406 (2) 150
C18—H18B⋯O1ii 0.97 2.40 3.333 (2) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Hirshfeld Surface Analysis  

Hirshfeld surface analysis is a graphical tool to investigate the packing modes and nature of prominent inter­molecular inter­actions in crystal structures. The Hirshfeld surfaces (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots were generated using CrystalExplorer 3.0 software (Wolff et al., 2012). In the present work, the nature of the inter­molecular inter­actions in the two structures is similar because of their isomorphism. The Hirshfeld surfaces mapped with shape-index together with decomposed fingerprint plots for (I) and (II) are shown in Figs. 5 and 6, respectively. In both the structures, the mol­ecules participate in weak C—H⋯O hydrogen bonds, which are indicated by red spots on the surface plots. The O⋯H/H⋯O inter­molecular inter­actions appear as distinct sharp spikes in the fingerprint plots. The area between the spikes corresponds to the H⋯H contacts, which account for nearly 46.7% of the surface in (I) and 70.6% in (II). The Cl⋯H/H⋯Cl inter­action, shown by two wing-like projections in (I), is obviously absent in (II). The Hirshfeld surfaces of the two compounds show striking similarities in the relative contributions of the inter­actions and a noteworthy difference, accounted for by the presence of Cl⋯H/H⋯Cl inter­actions in (I) and their absence in (II).

Figure 5.

Figure 5

Hirshfeld surface of compound (I) mapped over shape-index and decomposed finger print plots of dominant inter­actions showing (a) all, (b) O⋯H, (c) Cl⋯H, (d) H⋯H and (e) C⋯H inter­actions.

Figure 6.

Figure 6

Hirshfeld surface of compound (II) mapped over shape-index and decomposed finger print plots of dominant inter­actions showing (a) all, (b) O⋯H, (c) H⋯H and (d) C⋯H inter­actions.

Database survey  

A search in the Cambridge Structural Database (CSD Version 5.39, update November 2017; Groom et al., 2016) for the skeleton of the title compound without chlorine or methyl substitution for which 3D coordinates were determined with no disorder, no ions and no other errors, with R factors less than 0.05 revealed only one structure, with refcode EXIYAM (Chitradevi, et al., 2011). A search on 4-thio­morpholine-1,1-dione gave five hits with refcodes EXIYAM, IDOGIT (Chitradevi et al., 2013), IJULAB (Sugumar et al., 2011), NEVCUN (Indumathi et al.,2007) and ZEXYEG (Krishnaiah et al., 1995).

Synthesis and crystallization  

A mixture of ethyl 2-[(2-eth­oxy-2-oxo-eth­yl)sulfon­yl]acetate (1.6 mmol), aromatic aldehyde (3.2 mmol) and pyrrolidine (1.6mmol) was dissolved in ethanol (10 mL), heated until the solution turned yellow and stirred at room temperature for 2–5 days. After completion of the reaction, the crude product was purified using flash column chromatography on silica gel (230–400 mesh) with petroleum ether and ethyl acetate mixture (95:5 v/v) as eluent (Indumathi et al., 2007).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. In both compounds, the carbon-bound H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and were included in the refinement in the riding-model approximation, with U iso(H) set at 1.2–1.5U eq(C).

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C26H29Cl2NO6S C28H35NO6S
M r 554.46 513.63
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 293 293
a, b, c (Å) 11.6596 (4), 14.5734 (4), 15.7000 (5) 11.8641 (5), 14.4765 (6), 15.8654 (7)
β (°) 104.635 (2) 104.960 (2)
V3) 2581.19 (14) 2632.5 (2)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.38 0.17
Crystal size (mm) 0.30 × 0.22 × 0.20 0.26 × 0.22 × 0.20
 
Data collection
Diffractometer Bruker SMART APEXII CCD Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009) Multi-scan (SADABS; Bruker, 2009)
T min, T max 0.858, 1.000 0.863, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 36335, 8631, 5838 34960, 7985, 5294
R int 0.027 0.032
(sin θ/λ)max−1) 0.737 0.713
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.047, 0.143, 1.03 0.051, 0.163, 1.03
No. of reflections 8631 7985
No. of parameters 325 325
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.25 0.36, −0.22

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXS2013 (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015), PLUTON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989018011416/xu5934sup1.cif

e-74-01267-sup1.cif (2.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018011416/xu5934Isup2.hkl

e-74-01267-Isup2.hkl (685.3KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989018011416/xu5934IIsup3.hkl

e-74-01267-IIsup3.hkl (634.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018011416/xu5934Isup4.cml

Supporting information file. DOI: 10.1107/S2056989018011416/xu5934IIsup5.cml

CCDC references: 1861314, 1861313

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Sophisticated Analytical Instrumental Facility (SAIF), Indian Institute of Technology, Chennai for the data collection and the Management of Thiagarajar College, Madurai, for their financial support in establishing the Cambridge Structural Database facility.

supplementary crystallographic information

Diethyl 1-(4-chlorobenzyl)-4-(4-chlorophenyl)-2,2-dioxo-3,4,6,7,8,8a-hexahydro-1H-pyrrolo[2,1-c][1,4]thiazine-1,3-dicarboxylate (I) . Crystal data

C26H29Cl2NO6S F(000) = 1160
Mr = 554.46 Dx = 1.427 Mg m3Dm = 1.43 Mg m3Dm measured by floatation method
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 11.6596 (4) Å Cell parameters from 5292 reflections
b = 14.5734 (4) Å θ = 5.0–57.6°
c = 15.7000 (5) Å µ = 0.38 mm1
β = 104.635 (2)° T = 293 K
V = 2581.19 (14) Å3 Block, colorless
Z = 4 0.30 × 0.22 × 0.20 mm

Diethyl 1-(4-chlorobenzyl)-4-(4-chlorophenyl)-2,2-dioxo-3,4,6,7,8,8a-hexahydro-1H-pyrrolo[2,1-c][1,4]thiazine-1,3-dicarboxylate (I) . Data collection

Bruker SMART APEXII CCD diffractometer 5838 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.027
φ and ω scans θmax = 31.6°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −17→17
Tmin = 0.858, Tmax = 1.000 k = −21→20
36335 measured reflections l = −23→23
8631 independent reflections

Diethyl 1-(4-chlorobenzyl)-4-(4-chlorophenyl)-2,2-dioxo-3,4,6,7,8,8a-hexahydro-1H-pyrrolo[2,1-c][1,4]thiazine-1,3-dicarboxylate (I) . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H-atom parameters constrained
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0699P)2 + 0.608P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.002
8631 reflections Δρmax = 0.37 e Å3
325 parameters Δρmin = −0.24 e Å3

Diethyl 1-(4-chlorobenzyl)-4-(4-chlorophenyl)-2,2-dioxo-3,4,6,7,8,8a-hexahydro-1H-pyrrolo[2,1-c][1,4]thiazine-1,3-dicarboxylate (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Diethyl 1-(4-chlorobenzyl)-4-(4-chlorophenyl)-2,2-dioxo-3,4,6,7,8,8a-hexahydro-1H-pyrrolo[2,1-c][1,4]thiazine-1,3-dicarboxylate (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.32800 (3) 0.34179 (3) 1.03337 (2) 0.03295 (10)
Cl1 −0.00585 (5) 0.85049 (4) 0.91942 (4) 0.06627 (16)
Cl2 0.38130 (7) −0.10569 (4) 1.17052 (5) 0.0853 (2)
O1 0.45439 (10) 0.35292 (9) 1.05844 (8) 0.0442 (3)
O2 0.27381 (11) 0.29006 (8) 1.09012 (7) 0.0432 (3)
O3 0.39736 (13) 0.53038 (12) 1.13297 (10) 0.0674 (4)
O4 0.20861 (13) 0.52151 (10) 1.13778 (9) 0.0590 (4)
O5 0.08678 (11) 0.31457 (9) 0.91571 (9) 0.0515 (3)
O6 0.14113 (12) 0.21823 (10) 0.82265 (8) 0.0532 (3)
N1 0.26062 (11) 0.45390 (9) 0.86029 (8) 0.0362 (3)
C1 0.29435 (13) 0.29532 (11) 0.92235 (9) 0.0344 (3)
C2 0.33387 (15) 0.37130 (11) 0.86656 (10) 0.0390 (3)
H2 0.416042 0.387925 0.895085 0.047*
C3 0.3266 (2) 0.34621 (15) 0.77102 (12) 0.0634 (6)
H3A 0.399936 0.318238 0.765640 0.076*
H3B 0.261824 0.303885 0.748523 0.076*
C4 0.3057 (2) 0.43494 (17) 0.72276 (13) 0.0691 (6)
H4A 0.236877 0.430465 0.673075 0.083*
H4B 0.373895 0.451028 0.700958 0.083*
C5 0.28580 (19) 0.50628 (14) 0.78658 (11) 0.0508 (4)
H5A 0.355794 0.544158 0.806892 0.061*
H5B 0.219325 0.545392 0.759368 0.061*
C6 0.28676 (13) 0.50771 (10) 0.94154 (9) 0.0343 (3)
H6 0.370972 0.524206 0.957456 0.041*
C7 0.25832 (13) 0.45226 (10) 1.01733 (9) 0.0334 (3)
H7 0.172299 0.443640 1.004568 0.040*
C8 0.29875 (16) 0.50547 (11) 1.10326 (10) 0.0411 (3)
C9 0.2340 (3) 0.57919 (17) 1.21645 (15) 0.0740 (7)
H9A 0.304941 0.556664 1.257728 0.089*
H9B 0.168940 0.574461 1.244380 0.089*
C10 0.2512 (3) 0.67602 (17) 1.19685 (18) 0.0808 (7)
H10A 0.267583 0.710943 1.250422 0.121*
H10B 0.316632 0.681308 1.170343 0.121*
H10C 0.180636 0.699105 1.156995 0.121*
C11 0.21287 (14) 0.59445 (11) 0.93111 (10) 0.0362 (3)
C12 0.08995 (15) 0.59070 (13) 0.90414 (12) 0.0467 (4)
H12 0.052715 0.534480 0.888783 0.056*
C13 0.02241 (16) 0.66873 (13) 0.89977 (13) 0.0495 (4)
H13 −0.059830 0.665665 0.881391 0.059*
C14 0.07868 (16) 0.75169 (12) 0.92311 (11) 0.0440 (4)
C15 0.19989 (17) 0.75719 (12) 0.94920 (13) 0.0493 (4)
H15 0.236848 0.813579 0.964160 0.059*
C16 0.26658 (15) 0.67846 (12) 0.95307 (12) 0.0448 (4)
H16 0.348824 0.682066 0.970723 0.054*
C17 0.16167 (15) 0.27789 (11) 0.88911 (10) 0.0382 (3)
C18 0.01724 (19) 0.20457 (18) 0.77497 (14) 0.0667 (6)
H18A 0.013683 0.185606 0.715136 0.080*
H18B −0.025021 0.262259 0.772271 0.080*
C19 −0.0413 (2) 0.13481 (18) 0.8174 (2) 0.0801 (8)
H19A −0.122184 0.127782 0.784298 0.120*
H19B −0.000616 0.077309 0.819137 0.120*
H19C −0.039294 0.153913 0.876235 0.120*
C20 0.37399 (16) 0.21008 (12) 0.92377 (11) 0.0431 (4)
H20A 0.353151 0.183237 0.865339 0.052*
H20B 0.455297 0.231203 0.934593 0.052*
C21 0.37065 (15) 0.13484 (11) 0.98875 (11) 0.0415 (3)
C22 0.27325 (18) 0.07926 (13) 0.98202 (13) 0.0523 (4)
H22 0.204724 0.090984 0.938080 0.063*
C23 0.2745 (2) 0.00668 (13) 1.03865 (14) 0.0571 (5)
H23 0.207476 −0.029598 1.033520 0.069*
C24 0.3756 (2) −0.01102 (13) 1.10227 (14) 0.0547 (5)
C25 0.4723 (2) 0.04360 (18) 1.11285 (17) 0.0731 (7)
H25 0.539652 0.032188 1.157984 0.088*
C26 0.47006 (18) 0.11658 (16) 1.05584 (16) 0.0635 (6)
H26 0.536548 0.153845 1.062887 0.076*

Diethyl 1-(4-chlorobenzyl)-4-(4-chlorophenyl)-2,2-dioxo-3,4,6,7,8,8a-hexahydro-1H-pyrrolo[2,1-c][1,4]thiazine-1,3-dicarboxylate (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.03340 (18) 0.03586 (19) 0.02935 (16) 0.00057 (14) 0.00751 (13) −0.00005 (13)
Cl1 0.0653 (3) 0.0548 (3) 0.0799 (4) 0.0222 (2) 0.0206 (3) 0.0083 (2)
Cl2 0.1097 (5) 0.0584 (4) 0.0927 (4) 0.0177 (3) 0.0348 (4) 0.0280 (3)
O1 0.0329 (6) 0.0545 (7) 0.0421 (6) 0.0022 (5) 0.0037 (4) −0.0009 (5)
O2 0.0529 (7) 0.0419 (6) 0.0376 (5) 0.0011 (5) 0.0168 (5) 0.0049 (5)
O3 0.0503 (8) 0.0792 (10) 0.0645 (9) −0.0028 (7) −0.0005 (7) −0.0298 (8)
O4 0.0737 (9) 0.0586 (8) 0.0534 (7) −0.0123 (7) 0.0323 (7) −0.0186 (6)
O5 0.0390 (6) 0.0577 (8) 0.0591 (7) −0.0067 (5) 0.0149 (5) −0.0205 (6)
O6 0.0480 (7) 0.0621 (8) 0.0435 (6) 0.0037 (6) 0.0003 (5) −0.0200 (6)
N1 0.0392 (7) 0.0397 (7) 0.0301 (6) 0.0000 (5) 0.0095 (5) 0.0021 (5)
C1 0.0376 (7) 0.0366 (7) 0.0306 (6) 0.0006 (6) 0.0113 (6) −0.0020 (5)
C2 0.0431 (8) 0.0424 (8) 0.0349 (7) 0.0000 (7) 0.0162 (6) 0.0007 (6)
C3 0.1002 (17) 0.0582 (12) 0.0410 (9) −0.0006 (11) 0.0350 (10) −0.0019 (8)
C4 0.0897 (17) 0.0819 (16) 0.0406 (9) 0.0261 (13) 0.0251 (10) 0.0129 (10)
C5 0.0609 (11) 0.0547 (11) 0.0379 (8) −0.0010 (9) 0.0148 (8) 0.0113 (7)
C6 0.0314 (7) 0.0361 (7) 0.0342 (7) −0.0021 (6) 0.0058 (5) 0.0017 (6)
C7 0.0333 (7) 0.0348 (7) 0.0312 (6) 0.0005 (6) 0.0065 (5) −0.0028 (5)
C8 0.0484 (9) 0.0382 (8) 0.0346 (7) 0.0022 (7) 0.0064 (7) −0.0016 (6)
C9 0.114 (2) 0.0633 (13) 0.0550 (11) −0.0095 (13) 0.0410 (12) −0.0196 (10)
C10 0.107 (2) 0.0549 (13) 0.0810 (16) 0.0131 (13) 0.0248 (15) −0.0163 (12)
C11 0.0346 (7) 0.0370 (8) 0.0362 (7) 0.0006 (6) 0.0074 (6) 0.0043 (6)
C12 0.0371 (8) 0.0443 (9) 0.0542 (10) −0.0027 (7) 0.0034 (7) −0.0002 (7)
C13 0.0358 (8) 0.0561 (11) 0.0536 (10) 0.0043 (7) 0.0059 (7) 0.0047 (8)
C14 0.0475 (9) 0.0433 (9) 0.0426 (8) 0.0104 (7) 0.0141 (7) 0.0071 (7)
C15 0.0502 (10) 0.0360 (9) 0.0607 (11) −0.0019 (7) 0.0121 (8) 0.0010 (7)
C16 0.0361 (8) 0.0408 (9) 0.0552 (10) −0.0026 (7) 0.0074 (7) 0.0026 (7)
C17 0.0413 (8) 0.0383 (8) 0.0340 (7) −0.0017 (6) 0.0075 (6) −0.0022 (6)
C18 0.0517 (11) 0.0873 (16) 0.0486 (10) 0.0048 (11) −0.0106 (9) −0.0256 (11)
C19 0.0570 (13) 0.0634 (14) 0.107 (2) −0.0067 (11) −0.0032 (13) −0.0201 (14)
C20 0.0455 (9) 0.0421 (9) 0.0447 (8) 0.0061 (7) 0.0168 (7) −0.0029 (7)
C21 0.0433 (9) 0.0363 (8) 0.0461 (8) 0.0057 (6) 0.0132 (7) −0.0055 (6)
C22 0.0509 (10) 0.0435 (9) 0.0558 (10) −0.0004 (8) 0.0010 (8) −0.0016 (8)
C23 0.0606 (12) 0.0406 (10) 0.0678 (12) −0.0057 (8) 0.0119 (10) −0.0026 (8)
C24 0.0657 (12) 0.0417 (10) 0.0597 (11) 0.0113 (9) 0.0216 (9) 0.0065 (8)
C25 0.0526 (12) 0.0780 (16) 0.0804 (15) 0.0089 (11) 0.0011 (11) 0.0285 (13)
C26 0.0415 (10) 0.0639 (13) 0.0795 (14) −0.0003 (9) 0.0047 (9) 0.0156 (11)

Diethyl 1-(4-chlorobenzyl)-4-(4-chlorophenyl)-2,2-dioxo-3,4,6,7,8,8a-hexahydro-1H-pyrrolo[2,1-c][1,4]thiazine-1,3-dicarboxylate (I) . Geometric parameters (Å, º)

S1—O2 1.4303 (12) C9—H9A 0.9700
S1—O1 1.4352 (12) C9—H9B 0.9700
S1—C7 1.7921 (15) C10—H10A 0.9600
S1—C1 1.8181 (14) C10—H10B 0.9600
Cl1—C14 1.7375 (17) C10—H10C 0.9600
Cl2—C24 1.738 (2) C11—C16 1.379 (2)
O3—C8 1.183 (2) C11—C12 1.389 (2)
O4—C8 1.319 (2) C12—C13 1.375 (3)
O4—C9 1.461 (2) C12—H12 0.9300
O5—C17 1.186 (2) C13—C14 1.380 (3)
O6—C17 1.3326 (19) C13—H13 0.9300
O6—C18 1.463 (2) C14—C15 1.371 (3)
N1—C6 1.4623 (19) C15—C16 1.379 (3)
N1—C2 1.465 (2) C15—H15 0.9300
N1—C5 1.476 (2) C16—H16 0.9300
C1—C17 1.524 (2) C18—C19 1.474 (4)
C1—C20 1.548 (2) C18—H18A 0.9700
C1—C2 1.552 (2) C18—H18B 0.9700
C2—C3 1.525 (2) C19—H19A 0.9600
C2—H2 0.9800 C19—H19B 0.9600
C3—C4 1.487 (3) C19—H19C 0.9600
C3—H3A 0.9700 C20—C21 1.505 (2)
C3—H3B 0.9700 C20—H20A 0.9700
C4—C5 1.502 (3) C20—H20B 0.9700
C4—H4A 0.9700 C21—C22 1.377 (3)
C4—H4B 0.9700 C21—C26 1.381 (3)
C5—H5A 0.9700 C22—C23 1.380 (3)
C5—H5B 0.9700 C22—H22 0.9300
C6—C11 1.515 (2) C23—C24 1.363 (3)
C6—C7 1.542 (2) C23—H23 0.9300
C6—H6 0.9800 C24—C25 1.356 (3)
C7—C8 1.524 (2) C25—C26 1.386 (3)
C7—H7 0.9800 C25—H25 0.9300
C9—C10 1.469 (4) C26—H26 0.9300
O2—S1—O1 118.25 (7) C9—C10—H10B 109.5
O2—S1—C7 107.77 (7) H10A—C10—H10B 109.5
O1—S1—C7 109.55 (7) C9—C10—H10C 109.5
O2—S1—C1 112.24 (7) H10A—C10—H10C 109.5
O1—S1—C1 105.24 (7) H10B—C10—H10C 109.5
C7—S1—C1 102.68 (7) C16—C11—C12 118.66 (15)
C8—O4—C9 115.89 (17) C16—C11—C6 120.26 (14)
C17—O6—C18 116.64 (14) C12—C11—C6 120.98 (14)
C6—N1—C2 113.12 (12) C13—C12—C11 121.09 (17)
C6—N1—C5 111.57 (13) C13—C12—H12 119.5
C2—N1—C5 104.44 (13) C11—C12—H12 119.5
C17—C1—C20 115.13 (13) C12—C13—C14 118.91 (16)
C17—C1—C2 110.24 (12) C12—C13—H13 120.5
C20—C1—C2 108.55 (12) C14—C13—H13 120.5
C17—C1—S1 110.17 (10) C15—C14—C13 121.04 (16)
C20—C1—S1 107.57 (10) C15—C14—Cl1 119.66 (14)
C2—C1—S1 104.61 (10) C13—C14—Cl1 119.30 (14)
N1—C2—C3 104.15 (14) C14—C15—C16 119.46 (17)
N1—C2—C1 111.90 (12) C14—C15—H15 120.3
C3—C2—C1 115.67 (14) C16—C15—H15 120.3
N1—C2—H2 108.3 C15—C16—C11 120.84 (16)
C3—C2—H2 108.3 C15—C16—H16 119.6
C1—C2—H2 108.3 C11—C16—H16 119.6
C4—C3—C2 104.70 (16) O5—C17—O6 124.55 (15)
C4—C3—H3A 110.8 O5—C17—C1 125.33 (14)
C2—C3—H3A 110.8 O6—C17—C1 110.05 (13)
C4—C3—H3B 110.8 O6—C18—C19 111.90 (19)
C2—C3—H3B 110.8 O6—C18—H18A 109.2
H3A—C3—H3B 108.9 C19—C18—H18A 109.2
C3—C4—C5 107.14 (15) O6—C18—H18B 109.2
C3—C4—H4A 110.3 C19—C18—H18B 109.2
C5—C4—H4A 110.3 H18A—C18—H18B 107.9
C3—C4—H4B 110.3 C18—C19—H19A 109.5
C5—C4—H4B 110.3 C18—C19—H19B 109.5
H4A—C4—H4B 108.5 H19A—C19—H19B 109.5
N1—C5—C4 105.07 (16) C18—C19—H19C 109.5
N1—C5—H5A 110.7 H19A—C19—H19C 109.5
C4—C5—H5A 110.7 H19B—C19—H19C 109.5
N1—C5—H5B 110.7 C21—C20—C1 118.45 (13)
C4—C5—H5B 110.7 C21—C20—H20A 107.7
H5A—C5—H5B 108.8 C1—C20—H20A 107.7
N1—C6—C11 111.45 (12) C21—C20—H20B 107.7
N1—C6—C7 110.73 (12) C1—C20—H20B 107.7
C11—C6—C7 107.06 (12) H20A—C20—H20B 107.1
N1—C6—H6 109.2 C22—C21—C26 117.53 (18)
C11—C6—H6 109.2 C22—C21—C20 122.59 (16)
C7—C6—H6 109.2 C26—C21—C20 119.80 (17)
C8—C7—C6 109.74 (12) C21—C22—C23 121.82 (18)
C8—C7—S1 107.75 (10) C21—C22—H22 119.1
C6—C7—S1 113.64 (10) C23—C22—H22 119.1
C8—C7—H7 108.5 C24—C23—C22 118.9 (2)
C6—C7—H7 108.5 C24—C23—H23 120.5
S1—C7—H7 108.5 C22—C23—H23 120.5
O3—C8—O4 125.41 (16) C25—C24—C23 121.14 (19)
O3—C8—C7 123.87 (16) C25—C24—Cl2 119.31 (17)
O4—C8—C7 110.70 (14) C23—C24—Cl2 119.54 (17)
O4—C9—C10 112.64 (19) C24—C25—C26 119.5 (2)
O4—C9—H9A 109.1 C24—C25—H25 120.3
C10—C9—H9A 109.1 C26—C25—H25 120.3
O4—C9—H9B 109.1 C21—C26—C25 121.1 (2)
C10—C9—H9B 109.1 C21—C26—H26 119.5
H9A—C9—H9B 107.8 C25—C26—H26 119.5
C9—C10—H10A 109.5
O2—S1—C1—C17 48.56 (13) S1—C7—C8—O3 66.9 (2)
O1—S1—C1—C17 178.45 (11) C6—C7—C8—O4 121.01 (15)
C7—S1—C1—C17 −66.91 (12) S1—C7—C8—O4 −114.79 (13)
O2—S1—C1—C20 −77.67 (12) C8—O4—C9—C10 72.6 (3)
O1—S1—C1—C20 52.23 (12) N1—C6—C11—C16 −127.69 (16)
C7—S1—C1—C20 166.86 (11) C7—C6—C11—C16 111.09 (16)
O2—S1—C1—C2 167.03 (10) N1—C6—C11—C12 55.95 (19)
O1—S1—C1—C2 −63.07 (11) C7—C6—C11—C12 −65.28 (18)
C7—S1—C1—C2 51.56 (11) C16—C11—C12—C13 −0.4 (3)
C6—N1—C2—C3 −159.98 (14) C6—C11—C12—C13 176.01 (16)
C5—N1—C2—C3 −38.47 (17) C11—C12—C13—C14 −0.3 (3)
C6—N1—C2—C1 74.37 (16) C12—C13—C14—C15 0.9 (3)
C5—N1—C2—C1 −164.12 (13) C12—C13—C14—Cl1 −179.04 (15)
C17—C1—C2—N1 51.72 (16) C13—C14—C15—C16 −0.7 (3)
C20—C1—C2—N1 178.67 (12) Cl1—C14—C15—C16 179.20 (15)
S1—C1—C2—N1 −66.71 (14) C14—C15—C16—C11 0.0 (3)
C17—C1—C2—C3 −67.33 (19) C12—C11—C16—C15 0.6 (3)
C20—C1—C2—C3 59.6 (2) C6—C11—C16—C15 −175.87 (16)
S1—C1—C2—C3 174.25 (14) C18—O6—C17—O5 5.9 (3)
N1—C2—C3—C4 28.0 (2) C18—O6—C17—C1 −171.25 (16)
C1—C2—C3—C4 151.21 (18) C20—C1—C17—O5 144.79 (17)
C2—C3—C4—C5 −7.1 (3) C2—C1—C17—O5 −92.02 (19)
C6—N1—C5—C4 156.59 (15) S1—C1—C17—O5 22.9 (2)
C2—N1—C5—C4 34.06 (19) C20—C1—C17—O6 −38.06 (18)
C3—C4—C5—N1 −16.2 (2) C2—C1—C17—O6 85.14 (16)
C2—N1—C6—C11 177.61 (12) S1—C1—C17—O6 −159.90 (12)
C5—N1—C6—C11 60.20 (17) C17—O6—C18—C19 −86.0 (2)
C2—N1—C6—C7 −63.33 (16) C17—C1—C20—C21 −68.67 (19)
C5—N1—C6—C7 179.26 (13) C2—C1—C20—C21 167.23 (14)
N1—C6—C7—C8 173.85 (12) S1—C1—C20—C21 54.56 (18)
C11—C6—C7—C8 −64.47 (15) C1—C20—C21—C22 69.0 (2)
N1—C6—C7—S1 53.15 (14) C1—C20—C21—C26 −114.3 (2)
C11—C6—C7—S1 174.82 (10) C26—C21—C22—C23 −1.3 (3)
O2—S1—C7—C8 71.37 (12) C20—C21—C22—C23 175.54 (18)
O1—S1—C7—C8 −58.51 (12) C21—C22—C23—C24 −0.8 (3)
C1—S1—C7—C8 −169.97 (11) C22—C23—C24—C25 2.8 (3)
O2—S1—C7—C6 −166.81 (10) C22—C23—C24—Cl2 −176.68 (16)
O1—S1—C7—C6 63.30 (12) C23—C24—C25—C26 −2.6 (4)
C1—S1—C7—C6 −48.16 (12) Cl2—C24—C25—C26 176.9 (2)
C9—O4—C8—O3 3.5 (3) C22—C21—C26—C25 1.5 (3)
C9—O4—C8—C7 −174.77 (16) C20—C21—C26—C25 −175.4 (2)
C6—C7—C8—O3 −57.3 (2) C24—C25—C26—C21 0.4 (4)

Diethyl 1-(4-chlorobenzyl)-4-(4-chlorophenyl)-2,2-dioxo-3,4,6,7,8,8a-hexahydro-1H-pyrrolo[2,1-c][1,4]thiazine-1,3-dicarboxylate (I) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C16—H16···O1i 0.93 2.50 3.335 (2) 149
C18—H18A···O1ii 0.97 2.45 3.397 (2) 166

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x−1/2, −y+1/2, z−1/2.

Diethyl 1-(4-methylbenzyl)-4-(4-methylphenyl)-2,2-dioxo-3,4,6,7,8,8a-hexahydro-1H-pyrrolo[2,1-c][1,4]thiazine-1,3-dicarboxylate (II) . Crystal data

C28H35NO6S F(000) = 1096
Mr = 513.63 Dx = 1.296 Mg m3Dm = 1.29 Mg m3Dm measured by floatation method
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 11.8641 (5) Å Cell parameters from 5161 reflections
b = 14.4765 (6) Å θ = 4.8–59.1°
c = 15.8654 (7) Å µ = 0.17 mm1
β = 104.960 (2)° T = 293 K
V = 2632.5 (2) Å3 Block, colorless
Z = 4 0.26 × 0.22 × 0.20 mm

Diethyl 1-(4-methylbenzyl)-4-(4-methylphenyl)-2,2-dioxo-3,4,6,7,8,8a-hexahydro-1H-pyrrolo[2,1-c][1,4]thiazine-1,3-dicarboxylate (II) . Data collection

Bruker SMART APEXII CCD diffractometer 5294 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.032
φ and ω scans θmax = 30.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −16→16
Tmin = 0.863, Tmax = 1.000 k = −20→19
34960 measured reflections l = −22→19
7985 independent reflections

Diethyl 1-(4-methylbenzyl)-4-(4-methylphenyl)-2,2-dioxo-3,4,6,7,8,8a-hexahydro-1H-pyrrolo[2,1-c][1,4]thiazine-1,3-dicarboxylate (II) . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051 H-atom parameters constrained
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.0833P)2 + 0.5606P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.002
7985 reflections Δρmax = 0.36 e Å3
325 parameters Δρmin = −0.22 e Å3

Diethyl 1-(4-methylbenzyl)-4-(4-methylphenyl)-2,2-dioxo-3,4,6,7,8,8a-hexahydro-1H-pyrrolo[2,1-c][1,4]thiazine-1,3-dicarboxylate (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Diethyl 1-(4-methylbenzyl)-4-(4-methylphenyl)-2,2-dioxo-3,4,6,7,8,8a-hexahydro-1H-pyrrolo[2,1-c][1,4]thiazine-1,3-dicarboxylate (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.33590 (3) 0.66176 (3) 1.04119 (2) 0.03672 (12)
O1 0.45970 (10) 0.64748 (9) 1.06758 (8) 0.0481 (3)
O2 0.28369 (11) 0.71408 (8) 1.09751 (8) 0.0470 (3)
O3 0.39277 (12) 0.46595 (12) 1.13588 (10) 0.0692 (4)
O4 0.20861 (13) 0.48525 (10) 1.13971 (9) 0.0614 (4)
O5 0.10131 (11) 0.69708 (10) 0.92535 (9) 0.0544 (3)
O6 0.15751 (12) 0.78342 (10) 0.82750 (8) 0.0569 (4)
N1 0.26795 (12) 0.55299 (10) 0.86792 (8) 0.0389 (3)
C1 0.30621 (14) 0.71013 (11) 0.93172 (10) 0.0375 (3)
C2 0.34466 (15) 0.63369 (12) 0.87672 (11) 0.0414 (4)
H2 0.423774 0.614248 0.907295 0.050*
C3 0.3446 (2) 0.65906 (15) 0.78307 (13) 0.0601 (5)
H3A 0.294614 0.711960 0.763165 0.072*
H3B 0.422883 0.673687 0.779229 0.072*
C4 0.2993 (3) 0.57610 (18) 0.73004 (14) 0.0774 (7)
H4A 0.352341 0.557578 0.695710 0.093*
H4B 0.223547 0.588810 0.690802 0.093*
C5 0.28986 (19) 0.50135 (15) 0.79370 (12) 0.0536 (5)
H5A 0.225872 0.459708 0.768792 0.064*
H5B 0.361618 0.466066 0.811293 0.064*
C6 0.28984 (13) 0.49651 (11) 0.94697 (10) 0.0374 (3)
H6 0.371873 0.477439 0.963365 0.045*
C7 0.26332 (13) 0.55239 (11) 1.02239 (10) 0.0360 (3)
H7 0.179024 0.563348 1.008656 0.043*
C8 0.29827 (15) 0.49644 (12) 1.10607 (11) 0.0422 (4)
C9 0.2268 (3) 0.42380 (17) 1.21509 (16) 0.0785 (7)
H9A 0.165274 0.433703 1.244232 0.094*
H9B 0.300563 0.438652 1.256026 0.094*
C10 0.2273 (3) 0.32666 (18) 1.1897 (2) 0.0920 (9)
H10A 0.239383 0.288404 1.240731 0.138*
H10B 0.153808 0.311446 1.150054 0.138*
H10C 0.288994 0.316392 1.161839 0.138*
C11 0.21321 (14) 0.41175 (12) 0.93370 (11) 0.0390 (3)
C12 0.09207 (15) 0.41939 (13) 0.91062 (13) 0.0486 (4)
H12 0.057668 0.477442 0.900477 0.058*
C13 0.02312 (16) 0.34248 (14) 0.90269 (13) 0.0505 (4)
H13 −0.057565 0.349263 0.887189 0.061*
C14 0.07066 (16) 0.25490 (13) 0.91721 (12) 0.0470 (4)
C14A −0.0061 (2) 0.17109 (16) 0.90913 (17) 0.0671 (6)
H14A −0.086463 0.189820 0.893354 0.101*
H14B 0.008329 0.130876 0.864951 0.101*
H14C 0.010726 0.139017 0.963930 0.101*
C15 0.19089 (17) 0.24754 (13) 0.93940 (13) 0.0507 (4)
H15 0.225235 0.189437 0.949129 0.061*
C16 0.26104 (15) 0.32506 (12) 0.94740 (13) 0.0463 (4)
H16 0.341720 0.318298 0.962260 0.056*
C17 0.17625 (15) 0.72887 (12) 0.89707 (11) 0.0402 (4)
C18 0.03628 (19) 0.79511 (19) 0.77812 (14) 0.0709 (7)
H18A −0.004747 0.737054 0.777501 0.085*
H18B 0.033985 0.810862 0.718277 0.085*
C19 −0.0236 (2) 0.86713 (19) 0.8148 (2) 0.0895 (9)
H19A −0.102775 0.872332 0.780277 0.134*
H19B −0.023044 0.851248 0.873615 0.134*
H19C 0.015681 0.925041 0.814403 0.134*
C20 0.38532 (16) 0.79579 (13) 0.93554 (12) 0.0463 (4)
H20A 0.465523 0.774455 0.949683 0.056*
H20B 0.368509 0.822013 0.877356 0.056*
C21 0.37805 (16) 0.87256 (12) 0.99772 (12) 0.0452 (4)
C22 0.2812 (2) 0.92793 (15) 0.98748 (15) 0.0625 (5)
H22 0.215341 0.915392 0.942459 0.075*
C23 0.2791 (2) 1.00134 (15) 1.04211 (17) 0.0671 (6)
H23 0.211776 1.036793 1.033849 0.080*
C24 0.3747 (2) 1.02312 (15) 1.10852 (15) 0.0600 (5)
C24A 0.3743 (3) 1.10687 (18) 1.1650 (2) 0.0882 (8)
H24A 0.299692 1.136819 1.147269 0.132*
H24B 0.388762 1.088117 1.224862 0.132*
H24C 0.434114 1.148974 1.158740 0.132*
C25 0.4700 (2) 0.96798 (19) 1.11975 (17) 0.0748 (7)
H25 0.535644 0.980826 1.164838 0.090*
C26 0.47207 (18) 0.89356 (17) 1.06612 (16) 0.0661 (6)
H26 0.538450 0.856724 1.076391 0.079*

Diethyl 1-(4-methylbenzyl)-4-(4-methylphenyl)-2,2-dioxo-3,4,6,7,8,8a-hexahydro-1H-pyrrolo[2,1-c][1,4]thiazine-1,3-dicarboxylate (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0372 (2) 0.0420 (2) 0.0315 (2) 0.00073 (16) 0.00974 (15) 0.00117 (16)
O1 0.0367 (6) 0.0609 (8) 0.0442 (7) −0.0017 (5) 0.0060 (5) 0.0021 (6)
O2 0.0586 (7) 0.0470 (7) 0.0399 (6) 0.0019 (6) 0.0207 (6) −0.0029 (5)
O3 0.0511 (8) 0.0829 (11) 0.0668 (9) 0.0067 (7) 0.0029 (7) 0.0315 (8)
O4 0.0788 (10) 0.0605 (8) 0.0567 (8) 0.0195 (7) 0.0390 (7) 0.0217 (7)
O5 0.0416 (7) 0.0645 (8) 0.0600 (8) 0.0097 (6) 0.0181 (6) 0.0242 (7)
O6 0.0516 (7) 0.0703 (9) 0.0440 (7) −0.0039 (6) 0.0034 (6) 0.0224 (7)
N1 0.0397 (7) 0.0451 (8) 0.0331 (7) 0.0017 (6) 0.0115 (5) −0.0002 (6)
C1 0.0382 (8) 0.0418 (9) 0.0347 (8) −0.0003 (7) 0.0132 (6) 0.0038 (7)
C2 0.0437 (8) 0.0476 (9) 0.0370 (8) −0.0004 (7) 0.0179 (7) 0.0004 (7)
C3 0.0853 (15) 0.0619 (12) 0.0424 (10) −0.0003 (11) 0.0333 (10) 0.0024 (9)
C4 0.1073 (19) 0.0896 (17) 0.0390 (10) −0.0316 (15) 0.0258 (11) −0.0069 (11)
C5 0.0622 (11) 0.0620 (12) 0.0393 (9) −0.0029 (9) 0.0180 (8) −0.0099 (8)
C6 0.0336 (7) 0.0414 (8) 0.0369 (8) 0.0031 (6) 0.0085 (6) 0.0002 (7)
C7 0.0356 (7) 0.0395 (8) 0.0329 (7) 0.0028 (6) 0.0087 (6) 0.0048 (6)
C8 0.0478 (9) 0.0408 (9) 0.0360 (8) 0.0017 (7) 0.0071 (7) 0.0025 (7)
C9 0.121 (2) 0.0677 (14) 0.0610 (13) 0.0211 (14) 0.0495 (14) 0.0257 (12)
C10 0.121 (2) 0.0649 (16) 0.091 (2) −0.0210 (15) 0.0281 (18) 0.0176 (14)
C11 0.0367 (8) 0.0443 (9) 0.0362 (8) 0.0014 (7) 0.0100 (6) −0.0013 (7)
C12 0.0389 (9) 0.0482 (10) 0.0560 (11) 0.0053 (7) 0.0072 (7) 0.0027 (9)
C13 0.0359 (8) 0.0604 (12) 0.0539 (11) −0.0007 (8) 0.0092 (7) −0.0024 (9)
C14 0.0499 (9) 0.0504 (10) 0.0427 (9) −0.0069 (8) 0.0154 (8) −0.0078 (8)
C14A 0.0636 (13) 0.0617 (13) 0.0794 (15) −0.0170 (10) 0.0246 (12) −0.0110 (11)
C15 0.0523 (10) 0.0405 (9) 0.0595 (11) 0.0019 (8) 0.0151 (9) −0.0057 (8)
C16 0.0378 (8) 0.0462 (10) 0.0553 (10) 0.0040 (7) 0.0125 (7) −0.0035 (8)
C17 0.0438 (8) 0.0401 (8) 0.0367 (8) 0.0027 (7) 0.0104 (7) 0.0042 (7)
C18 0.0547 (12) 0.0952 (18) 0.0518 (12) −0.0029 (12) −0.0064 (9) 0.0278 (12)
C19 0.0639 (15) 0.0751 (17) 0.114 (2) 0.0094 (13) −0.0057 (14) 0.0259 (16)
C20 0.0463 (9) 0.0505 (10) 0.0460 (9) −0.0052 (8) 0.0189 (7) 0.0042 (8)
C21 0.0478 (9) 0.0427 (9) 0.0474 (10) −0.0062 (8) 0.0166 (8) 0.0055 (8)
C22 0.0625 (12) 0.0504 (11) 0.0657 (13) 0.0049 (9) 0.0007 (10) −0.0013 (10)
C23 0.0714 (14) 0.0505 (12) 0.0778 (15) 0.0126 (10) 0.0165 (12) 0.0022 (11)
C24 0.0737 (14) 0.0489 (11) 0.0644 (13) −0.0112 (10) 0.0304 (11) −0.0026 (10)
C24A 0.116 (2) 0.0635 (15) 0.096 (2) −0.0161 (15) 0.0468 (17) −0.0197 (14)
C25 0.0598 (13) 0.0840 (17) 0.0761 (16) −0.0124 (12) 0.0094 (11) −0.0278 (14)
C26 0.0445 (10) 0.0749 (15) 0.0757 (15) −0.0011 (10) 0.0098 (10) −0.0146 (12)

Diethyl 1-(4-methylbenzyl)-4-(4-methylphenyl)-2,2-dioxo-3,4,6,7,8,8a-hexahydro-1H-pyrrolo[2,1-c][1,4]thiazine-1,3-dicarboxylate (II) . Geometric parameters (Å, º)

S1—O2 1.4287 (12) C11—C16 1.371 (2)
S1—O1 1.4345 (12) C11—C12 1.393 (2)
S1—C7 1.7901 (17) C12—C13 1.368 (3)
S1—C1 1.8208 (16) C12—H12 0.9300
O3—C8 1.184 (2) C13—C14 1.383 (3)
O4—C8 1.317 (2) C13—H13 0.9300
O4—C9 1.461 (2) C14—C15 1.382 (3)
O5—C17 1.187 (2) C14—C14A 1.503 (3)
O6—C17 1.328 (2) C14A—H14A 0.9600
O6—C18 1.459 (2) C14A—H14B 0.9600
N1—C6 1.463 (2) C14A—H14C 0.9600
N1—C2 1.465 (2) C15—C16 1.383 (3)
N1—C5 1.474 (2) C15—H15 0.9300
C1—C17 1.522 (2) C16—H16 0.9300
C1—C20 1.547 (2) C18—C19 1.464 (4)
C1—C2 1.549 (2) C18—H18A 0.9700
C2—C3 1.530 (2) C18—H18B 0.9700
C2—H2 0.9800 C19—H19A 0.9600
C3—C4 1.485 (3) C19—H19B 0.9600
C3—H3A 0.9700 C19—H19C 0.9600
C3—H3B 0.9700 C20—C21 1.503 (3)
C4—C5 1.504 (3) C20—H20A 0.9700
C4—H4A 0.9700 C20—H20B 0.9700
C4—H4B 0.9700 C21—C26 1.374 (3)
C5—H5A 0.9700 C21—C22 1.376 (3)
C5—H5B 0.9700 C22—C23 1.375 (3)
C6—C11 1.509 (2) C22—H22 0.9300
C6—C7 1.543 (2) C23—C24 1.370 (3)
C6—H6 0.9800 C23—H23 0.9300
C7—C8 1.519 (2) C24—C25 1.358 (3)
C7—H7 0.9800 C24—C24A 1.508 (3)
C9—C10 1.463 (4) C24A—H24A 0.9600
C9—H9A 0.9700 C24A—H24B 0.9600
C9—H9B 0.9700 C24A—H24C 0.9600
C10—H10A 0.9600 C25—C26 1.377 (3)
C10—H10B 0.9600 C25—H25 0.9300
C10—H10C 0.9600 C26—H26 0.9300
O2—S1—O1 118.06 (8) C16—C11—C6 120.81 (15)
O2—S1—C7 107.80 (8) C12—C11—C6 121.04 (15)
O1—S1—C7 109.48 (8) C13—C12—C11 120.77 (17)
O2—S1—C1 112.60 (8) C13—C12—H12 119.6
O1—S1—C1 105.37 (7) C11—C12—H12 119.6
C7—S1—C1 102.41 (7) C12—C13—C14 121.50 (17)
C8—O4—C9 116.26 (17) C12—C13—H13 119.3
C17—O6—C18 116.44 (15) C14—C13—H13 119.3
C6—N1—C2 113.30 (13) C15—C14—C13 117.57 (17)
C6—N1—C5 111.88 (14) C15—C14—C14A 121.49 (19)
C2—N1—C5 104.32 (13) C13—C14—C14A 120.93 (18)
C17—C1—C20 114.78 (14) C14—C14A—H14A 109.5
C17—C1—C2 110.01 (13) C14—C14A—H14B 109.5
C20—C1—C2 109.32 (13) H14A—C14A—H14B 109.5
C17—C1—S1 109.98 (11) C14—C14A—H14C 109.5
C20—C1—S1 107.75 (11) H14A—C14A—H14C 109.5
C2—C1—S1 104.48 (11) H14B—C14A—H14C 109.5
N1—C2—C3 104.72 (15) C14—C15—C16 121.18 (17)
N1—C2—C1 110.93 (12) C14—C15—H15 119.4
C3—C2—C1 116.68 (15) C16—C15—H15 119.4
N1—C2—H2 108.1 C11—C16—C15 120.89 (16)
C3—C2—H2 108.1 C11—C16—H16 119.6
C1—C2—H2 108.1 C15—C16—H16 119.6
C4—C3—C2 105.40 (16) O5—C17—O6 124.30 (16)
C4—C3—H3A 110.7 O5—C17—C1 125.60 (15)
C2—C3—H3A 110.7 O6—C17—C1 110.05 (14)
C4—C3—H3B 110.7 O6—C18—C19 112.4 (2)
C2—C3—H3B 110.7 O6—C18—H18A 109.1
H3A—C3—H3B 108.8 C19—C18—H18A 109.1
C3—C4—C5 106.27 (17) O6—C18—H18B 109.1
C3—C4—H4A 110.5 C19—C18—H18B 109.1
C5—C4—H4A 110.5 H18A—C18—H18B 107.8
C3—C4—H4B 110.5 C18—C19—H19A 109.5
C5—C4—H4B 110.5 C18—C19—H19B 109.5
H4A—C4—H4B 108.7 H19A—C19—H19B 109.5
N1—C5—C4 103.34 (17) C18—C19—H19C 109.5
N1—C5—H5A 111.1 H19A—C19—H19C 109.5
C4—C5—H5A 111.1 H19B—C19—H19C 109.5
N1—C5—H5B 111.1 C21—C20—C1 118.77 (14)
C4—C5—H5B 111.1 C21—C20—H20A 107.6
H5A—C5—H5B 109.1 C1—C20—H20A 107.6
N1—C6—C11 111.57 (13) C21—C20—H20B 107.6
N1—C6—C7 110.19 (13) C1—C20—H20B 107.6
C11—C6—C7 107.37 (13) H20A—C20—H20B 107.1
N1—C6—H6 109.2 C26—C21—C22 116.57 (19)
C11—C6—H6 109.2 C26—C21—C20 120.61 (18)
C7—C6—H6 109.2 C22—C21—C20 122.74 (18)
C8—C7—C6 109.52 (13) C23—C22—C21 121.7 (2)
C8—C7—S1 108.36 (11) C23—C22—H22 119.1
C6—C7—S1 114.05 (11) C21—C22—H22 119.1
C8—C7—H7 108.3 C24—C23—C22 121.1 (2)
C6—C7—H7 108.3 C24—C23—H23 119.4
S1—C7—H7 108.3 C22—C23—H23 119.4
O3—C8—O4 124.95 (17) C25—C24—C23 117.5 (2)
O3—C8—C7 124.37 (16) C25—C24—C24A 121.7 (2)
O4—C8—C7 110.67 (14) C23—C24—C24A 120.8 (2)
O4—C9—C10 111.7 (2) C24—C24A—H24A 109.5
O4—C9—H9A 109.3 C24—C24A—H24B 109.5
C10—C9—H9A 109.3 H24A—C24A—H24B 109.5
O4—C9—H9B 109.3 C24—C24A—H24C 109.5
C10—C9—H9B 109.3 H24A—C24A—H24C 109.5
H9A—C9—H9B 107.9 H24B—C24A—H24C 109.5
C9—C10—H10A 109.5 C24—C25—C26 121.7 (2)
C9—C10—H10B 109.5 C24—C25—H25 119.1
H10A—C10—H10B 109.5 C26—C25—H25 119.1
C9—C10—H10C 109.5 C21—C26—C25 121.4 (2)
H10A—C10—H10C 109.5 C21—C26—H26 119.3
H10B—C10—H10C 109.5 C25—C26—H26 119.3
C16—C11—C12 118.10 (16)
O2—S1—C1—C17 −49.60 (14) S1—C7—C8—O3 −69.1 (2)
O1—S1—C1—C17 −179.61 (11) C6—C7—C8—O4 −122.94 (15)
C7—S1—C1—C17 65.90 (13) S1—C7—C8—O4 112.09 (14)
O2—S1—C1—C20 76.17 (13) C8—O4—C9—C10 −74.8 (3)
O1—S1—C1—C20 −53.83 (13) N1—C6—C11—C16 122.88 (17)
C7—S1—C1—C20 −168.32 (11) C7—C6—C11—C16 −116.29 (17)
O2—S1—C1—C2 −167.63 (10) N1—C6—C11—C12 −59.7 (2)
O1—S1—C1—C2 62.36 (12) C7—C6—C11—C12 61.13 (19)
C7—S1—C1—C2 −52.13 (12) C16—C11—C12—C13 0.6 (3)
C6—N1—C2—C3 157.61 (14) C6—C11—C12—C13 −176.90 (17)
C5—N1—C2—C3 35.70 (18) C11—C12—C13—C14 0.0 (3)
C6—N1—C2—C1 −75.69 (17) C12—C13—C14—C15 −0.5 (3)
C5—N1—C2—C1 162.40 (14) C12—C13—C14—C14A 179.4 (2)
C17—C1—C2—N1 −50.27 (17) C13—C14—C15—C16 0.5 (3)
C20—C1—C2—N1 −177.16 (14) C14A—C14—C15—C16 −179.5 (2)
S1—C1—C2—N1 67.73 (14) C12—C11—C16—C15 −0.7 (3)
C17—C1—C2—C3 69.51 (19) C6—C11—C16—C15 176.82 (17)
C20—C1—C2—C3 −57.4 (2) C14—C15—C16—C11 0.2 (3)
S1—C1—C2—C3 −172.48 (14) C18—O6—C17—O5 −7.4 (3)
N1—C2—C3—C4 −17.1 (2) C18—O6—C17—C1 170.01 (17)
C1—C2—C3—C4 −140.19 (19) C20—C1—C17—O5 −139.09 (19)
C2—C3—C4—C5 −7.5 (3) C2—C1—C17—O5 97.1 (2)
C6—N1—C5—C4 −163.15 (16) S1—C1—C17—O5 −17.4 (2)
C2—N1—C5—C4 −40.30 (19) C20—C1—C17—O6 43.57 (19)
C3—C4—C5—N1 29.2 (3) C2—C1—C17—O6 −80.20 (17)
C2—N1—C6—C11 −177.18 (13) S1—C1—C17—O6 165.25 (12)
C5—N1—C6—C11 −59.59 (17) C17—O6—C18—C19 84.3 (2)
C2—N1—C6—C7 63.65 (16) C17—C1—C20—C21 66.2 (2)
C5—N1—C6—C7 −178.76 (14) C2—C1—C20—C21 −169.65 (15)
N1—C6—C7—C8 −174.19 (12) S1—C1—C20—C21 −56.66 (18)
C11—C6—C7—C8 64.12 (16) C1—C20—C21—C26 115.4 (2)
N1—C6—C7—S1 −52.58 (15) C1—C20—C21—C22 −67.9 (2)
C11—C6—C7—S1 −174.27 (11) C26—C21—C22—C23 0.9 (3)
O2—S1—C7—C8 −70.91 (12) C20—C21—C22—C23 −175.9 (2)
O1—S1—C7—C8 58.70 (13) C21—C22—C23—C24 0.9 (4)
C1—S1—C7—C8 170.15 (11) C22—C23—C24—C25 −1.8 (4)
O2—S1—C7—C6 166.85 (11) C22—C23—C24—C24A 176.5 (2)
O1—S1—C7—C6 −63.55 (13) C23—C24—C25—C26 0.8 (4)
C1—S1—C7—C6 47.91 (12) C24A—C24—C25—C26 −177.5 (2)
C9—O4—C8—O3 −5.5 (3) C22—C21—C26—C25 −1.9 (3)
C9—O4—C8—C7 173.31 (17) C20—C21—C26—C25 175.0 (2)
C6—C7—C8—O3 55.9 (2) C24—C25—C26—C21 1.1 (4)

Diethyl 1-(4-methylbenzyl)-4-(4-methylphenyl)-2,2-dioxo-3,4,6,7,8,8a-hexahydro-1H-pyrrolo[2,1-c][1,4]thiazine-1,3-dicarboxylate (II) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C16—H16···O1i 0.93 2.57 3.406 (2) 150
C18—H18B···O1ii 0.97 2.40 3.333 (2) 161

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x−1/2, −y+3/2, z−1/2.

References

  1. Armenise, D., Trapani, G., Arrivo, V. & Morlacchi, F. (1991). Farmaco, 46, 1023–1032. [PubMed]
  2. Armenise, D., Trapani, G., Stasi, F. & Morlacchi, F. (1998). Arch. Pharm. Pharm. Med. Chem. 331, 54–58. [DOI] [PubMed]
  3. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chitradevi, A., Athimoolam, S., Bahadur, S. A., Indumathi, S. & Perumal, S. (2011). Acta Cryst. E67, o2268. [DOI] [PMC free article] [PubMed]
  5. Chitradevi, A., Athimoolam, S., Bahadur, S. A., Indumathi, S. & Perumal, S. (2013). Acta Cryst. E69, o706–o707. [DOI] [PMC free article] [PubMed]
  6. Desiraju, G. R. & Sarma, J. A. R. P. (1986). Proc. Indian Acad. Sci. Chem. Sci. 96, 599–605.
  7. Erker, T. (1998). J. Heterocycl. Chem. 35, 1521–1526.
  8. Gnanaguru, K., Murthy, G. S., Venkatesan, K. & Ramamurthy, V. (1984). Chem. Phys. Lett. 109, 255–258.
  9. Grandolini, G., Ambrogi, V., Perioli, L., D’Eramo, D., Bernardini, C. & Giampietri, A. (1997). Farmaco, 52, 379–384. [PubMed]
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. Indumathi, S., Kumar, R. R. & Perumal, S. (2007). Tetrahedron, 63, 1411–1416.
  12. Jones, W., Ramdas, S., Theocharis, C. R., Thomas, J. M. & Thomas, N. W. (1981). J. Phys. Chem. 85, 2594–2597.
  13. Kitaigorodskii, A. I. (1973). Molecular Crystals and Molecules. New York: Academic Press.
  14. Koketsu, M., Tanaka, K., Takenaka, Y., Kwong, C. D. & Ishihara, H. (2002). Eur. J. Pharm. Sci. 15, 307–310. [DOI] [PubMed]
  15. Krishnaiah, M., Jagadeesh Kumar, N., Bhaskar Reddy, D., Muralidhar Reddy, M., Soriano, M., Chen, Y.-S. & Narasinga Rao, S. (1995). Acta Cryst. C51, 2426–2428.
  16. Malinka, W., Kaczmarz, M., Filipek, B., Sapa, J. & Glod, B. (2002). Farmaco, 57, 737–746. [DOI] [PubMed]
  17. Moriyama, H., Tsukida, T., Inoue, Y., Yokota, K., Yoshino, K., Kondo, H., Miura, N. & Nishimura, S. (2004). J. Med. Chem. 47, 1930–1938. [DOI] [PubMed]
  18. Rai, V. K., Rai, P. & Thakur, Y. (2013). Tetrahedron Lett. 54, 6469–6473.
  19. Rajni Swamy, V. (2016). PhD thesis, Madurai Kamraj University, India.
  20. Rajni Swamy, V., Müller, P., Srinivasan, N., Perumal, S. & Krishnakumar, R. V. (2013). Acta Cryst. C69, 412–415. [DOI] [PubMed]
  21. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  22. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  23. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  24. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  25. Sugumar, P., Edayadulla, N., Ramesh, P., Ramesh, P. & Ponnuswamy, M. N. (2011). Acta Cryst. E67, o305. [DOI] [PMC free article] [PubMed]
  26. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  27. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989018011416/xu5934sup1.cif

e-74-01267-sup1.cif (2.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018011416/xu5934Isup2.hkl

e-74-01267-Isup2.hkl (685.3KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989018011416/xu5934IIsup3.hkl

e-74-01267-IIsup3.hkl (634.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018011416/xu5934Isup4.cml

Supporting information file. DOI: 10.1107/S2056989018011416/xu5934IIsup5.cml

CCDC references: 1861314, 1861313

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES