Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Aug 10;74(Pt 9):1211–1214. doi: 10.1107/S2056989018010848

Hirshfeld surface analysis and crystal structure of 7-meth­oxy-5-methyl-2-phenyl-11,12-di­hydro-5,11-methano-1,2,4-triazolo[1,5-c][1,3,5]benzoxadiazo­cine

Mustafa Kemal Gumus a, Sevgi Kansiz b, Necmi Dege b, Valentina A Kalibabchuk c,*
PMCID: PMC6127710  PMID: 30225101

In the crystal, classical N—H⋯N hydrogen bonds, weak C—H⋯O hydrogen bonds and weak C—H⋯π inter­actions link the mol­ecules into a three-dimensional supra­molecular network.

Keywords: crystal structure, Biginelli condensation, benzoxa­diazo­cine, Hirshfeld surface

Abstract

The title compound, C19H18N4O2, crystallizes with two independent mol­ecules in the asymmetric unit. The triazole ring is inclined to the benzene rings by 9.63 (13) and 87.37 (12)° in one mol­ecule, and by 4.46 (13) and 86.15 (11)° in the other. In the crystal, classical N—H⋯N hydrogen bonds, weak C—H⋯O hydrogen bonds and weak C—H⋯π inter­actions link the mol­ecules into a three-dimensional supra­molecular network. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to investigate the inter­molecular inter­actions present in the crystal, indicating that the most important contributions for the crystal packing are from H⋯H (51.4%), H⋯C/C⋯H (26.7%), H⋯O/O⋯H (8.9%) and H⋯N/N⋯H (8%) inter­actions.

Chemical context  

One of the earliest known multi-component reactions (MCRs) is the Biginelli multi-component cyclo­condensation. Its variations are still a timely subject for research because of the near unlimited scope of this approach and the constant demand for mol­ecular diversity of small mol­ecules in many areas such as drug discovery, combinatorial and medicinal chemistry (Kappe, 2000; Slobbe et al., 2012). As we had previously synthesized a type of oxygen-bridged Biginelli compounds derivatives, (Gümüş et al., 2017), we decided to examine the structure of this heterocyclic system by X-ray analysis (Aydemir et al., 2018; Gümüş et al., 2018). In this study, a novel Biginelli-like assembly of 3-amino-5-(phen­yl)-1,2,4-triazole with acetone and 2-hy­droxy-3-meth­oxy­benzaldehyde has been developed to offer easy access to 7-meth­oxy-5-methyl-2-(phen­yl)-11,12-di­hydro-5,11-methano[1,2,4]triazolo[1,5-c][1,3,5]benzoxa­diazo­cine compounds as examples of a new class of heterocycles.graphic file with name e-74-01211-scheme1.jpg

Structural commentary  

The asymmetric unit of the compound contains two independent mol­ecules (Fig. 1), linked by N4—H4⋯N5 and N8—H8⋯N1 hydrogen bonds, which stabilize the mol­ecular structure (Table 1, Fig. 1 and 2). The C11—O1, C13—O1, C18—O2, C19—O2, C30—O3, C32—O3, C37—O4 and C38—O4 bond lengths are all in agreement with single-bond character. The C—O bond distances observed are lower than in the literature [1.364 (4), 1.390 (4), 1.428 (4) and 1.443 (4) Å; Aydemir et al., 2018). The triazole ring is inclined to the benzene rings by 9.63 (13) and 87.37 (12)° in one mol­ecule, and by 4.46 (13) and 86.15 (11)° in the other. The ring N3/C8/N4/C9–C11 is inclined to the ring N2/C7/N1/C8/N3 by 5.80 (14)° and to the ring C9–C11/O1/C13/C14 by 86.9 (6)° [equivalent values of 6.55 (11) and 85.29 (11)°, respectively, in the other independent mol­ecule].

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 20% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the N1/C7/N2/N3/C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯N5 0.86 2.18 2.958 (3) 150
N8—H8⋯N1 0.86 2.33 3.025 (2) 139
C31—H31A⋯O4i 0.96 2.59 3.471 (3) 152
C38—H38A⋯O1ii 0.96 2.56 3.489 (3) 162
C12—H12ACg1iii 0.96 2.67 3.613 (3) 172

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 2.

Figure 2

The view of the crystal packing of C19H18N4O2. Dashed lines denote the N—H⋯N and C—H⋯O hydrogen bonds.

Supra­molecular features  

In the crystal, weak C—H⋯O interactions link the pairs of independent molecules into layers parallel to (100) (Table 1; Fig. 2). The layers are further connected by weak C—H⋯π inter­actions, generating a three-dimensional supra­molecular structure.

Hirshfeld surface analysis  

Hirshfield surface analysis was performed using CrystalExplorer (Turner et al., 2017) to qu­antify the various inter­molecular inter­actions in the synthesized complex. The Hirshfeld surfaces of the title compound mapped over d norm, d i and d e are illustrated in Fig. 3. The red spots on the surface indicate the intermolecular contacts involved in strong hydrogen bonding and interatomic contacts (Sen et al., 2018) and correspond to C—H⋯O hydrogen bonds in the title compound (Figs. 3 and 4). The Hirshfeld surfaces were calculated using a standard (high) surface resolution with the three-dimensional dnorm surfaces mapped over a fixed colour scale of −0.249 (red) to 1.531 (blue) a.u..

Figure 3.

Figure 3

Hirshfeld surfaces of the title compound mapped over d norm, d i and d e.

Figure 4.

Figure 4

Hirshfeld surface mapped over d norm for visualizing the inter­molecular inter­actions of the title compound.

Fig. 5 shows the two-dimensional fingerprint of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. The graph shown in Fig. 6 a (H⋯H) shows the two-dimensional fingerprint of the (d i, d e) points associated with hydrogen atoms. It is characterized by an end point that points to the origin and corresponds to d i = d e = 1.2 Å, which indicates the presence of the H⋯H contacts in this study (51.4%). The graph shown in Fig. 6 b (H⋯C/C⋯H) shows the contacts between the carbon atoms inside the surface and the hydrogen atoms outside the surface of Hirshfeld and vice versa with two symmetrical wings on the left and right sides (26.7%). Two symmetrical points at the top, bottom left and right with d e + d i 2.5 Å indicate the presence of the H⋯C/C⋯H contacts. Further, there are H⋯O/O⋯H (8.9%), H⋯N/N⋯H (8%), C⋯C (3.2%) and C⋯O/O⋯C (1.0%) contacts.

Figure 5.

Figure 5

Fingerprint plot for the title compound.

Figure 6.

Figure 6

Two-dimensional fingerprint plots with a d norm view of the (a) H⋯H (51.4%), (b) H⋯C/C⋯H (26.7%), (c) H⋯O/O⋯H (8.9%) and (d) H⋯N/N⋯H (8%) contacts in the title compound.

The view of the three-dimensional Hirshfeld surface of the title compound plotted over the electrostatic potential energy in the range −0.083 to 0.046 a.u. using the STO-3G basis set at the Hartree–Fock level of theory is shown in Fig. 7. The donors and acceptors are shown as blue and red areas around the atoms related with positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) electrostatic potentials, respectively.

Figure 7.

Figure 7

The view of the three-dimensional Hirshfeld surface of the title compound plotted over the electrostatic potential energy.

Database survey  

There are no direct precedents for the structure of the title compound in the crystallographic literature (CSD version 5.39; Groom et al., 2016). However, there are several precedents for triazolobenzoxa­diazo­cines including 5-(2-hy­droxy­phen­yl)-7-methyl-4,5,6,7-tetra­hydro­[1,2,4]triazolo[1,5-a]pyrimidin-7-ol (Gorobets et al., 2010), ethyl 7-chloro­methyl-5-(2-chloro­phen­yl)-7-hy­droxy-2-methyl­sulfanyl-4,5,6,7-tetra­hydro-1,2,4-triazolo[1,5-a]pyrimidine-6-carboxyl­ate (Huang, 2009), methyl 5′-(2-hy­droxy­phen­yl)-5′,6′-di­hydro-4′H-spiro­[chromene-2,7′-[1,2,4]triazolo[1,5-a]pyrimidine]-3-carboxyl­ate (Kett­mann & Světlík, 2011), 7-eth­oxy-5-methyl-2-(pyridin-3-yl)-11,12-di­hydro-5,11-methano­[1,2,4]triazolo[1,5-c][1,3,5]benzoxa­diazo­cine (Aydemir et al., 2018) and 7-meth­oxy-5-methyl-2-(pyridin-3-yl)-11,12-di­hydro-5,11-methano­[1,2,4]triazolo[1,5-c][1,3,5]benzoxa­diazo­cine (Gümüş et al., 2018).

Synthesis and crystallization  

The synthesis (Fig. 8) of the title compound was described by Gümüş et al. (2017). 3-Amino-5-(phen­yl)-1,2,4-triazole (1.0 mmol), 2-hy­droxy-3-meth­oxy­benzaldehyde (1.0 mmol), acetone (0.22 mL, 3.0 mmol), and abs. EtOH (2.0 mL) were mixed in a microwave process vial, after which a 4 N solution of HCl in dioxane (0.07 mL, 0.3 mmol) was added. The mixture was irradiated at 423 K for 30 min. The reaction mixture was cooled by an air flow and stirred for 24 h at room temperature for complete precipitation of the product. The precipitate was filtered off, washed with EtOH (1.0 mL) and Et2O (3 × 1.0 mL), and dried. The compound was obtained in the form of a white solid with %53 yields. It was recrystallized from ethanol.

Figure 8.

Figure 8

The synthesis of the title compound.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were positioned geometrically and refined using a riding model with N—H = 0.86 and C—H = 0.93–0.97 Å, U iso(H) = 1.2U eq(N,C).

Table 2. Experimental details.

Crystal data
Chemical formula C19H18N4O2
M r 334.37
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 13.9787 (9), 21.5654 (12), 11.6625 (8)
β (°) 111.639 (5)
V3) 3268.0 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.57 × 0.43 × 0.30
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002)
T min, T max 0.959, 0.988
No. of measured, independent and observed [I > 2σ(I)] reflections 18118, 5769, 3357
R int 0.060
(sin θ/λ)max−1) 0.596
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.045, 0.104, 0.91
No. of reflections 5769
No. of parameters 451
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.25

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002), ORTEP-3 for Windows and WinGX (Farrugia, 1999), SHELXL2017 (Sheldrick, 2015) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989018010848/xu5932sup1.cif

e-74-01211-sup1.cif (750.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018010848/xu5932Isup2.hkl

e-74-01211-Isup2.hkl (458.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018010848/xu5932Isup3.cml

CCDC reference: 1852961

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

Crystal data

C19H18N4O2 F(000) = 1408
Mr = 334.37 Dx = 1.359 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 13.9787 (9) Å Cell parameters from 15386 reflections
b = 21.5654 (12) Å θ = 1.8–27.5°
c = 11.6625 (8) Å µ = 0.09 mm1
β = 111.639 (5)° T = 296 K
V = 3268.0 (4) Å3 Prism, yellow
Z = 8 0.57 × 0.43 × 0.30 mm

Data collection

Stoe IPDS 2 diffractometer 5769 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 3357 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1 Rint = 0.060
rotation method scans θmax = 25.1°, θmin = 1.8°
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) h = −16→16
Tmin = 0.959, Tmax = 0.988 k = −25→25
18118 measured reflections l = −13→13

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.047P)2] where P = (Fo2 + 2Fc2)/3
S = 0.91 (Δ/σ)max < 0.001
5769 reflections Δρmax = 0.29 e Å3
451 parameters Δρmin = −0.25 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.57191 (11) 0.54141 (7) 0.85374 (13) 0.0513 (4)
O3 −0.05290 (11) 0.70675 (7) 0.16610 (13) 0.0504 (4)
O4 −0.12345 (12) 0.62171 (7) 0.00529 (15) 0.0609 (4)
O2 0.65831 (13) 0.60242 (8) 1.05519 (15) 0.0693 (5)
N2 0.56434 (13) 0.59962 (8) 0.60236 (17) 0.0476 (4)
N7 0.02141 (13) 0.69913 (8) 0.38048 (16) 0.0480 (4)
N3 0.49670 (13) 0.56839 (8) 0.64341 (16) 0.0466 (4)
N5 0.12284 (13) 0.63678 (8) 0.52233 (16) 0.0480 (5)
N1 0.40245 (13) 0.63875 (8) 0.51364 (16) 0.0458 (4)
N6 −0.04391 (14) 0.66487 (8) 0.41952 (17) 0.0495 (5)
N8 0.19756 (13) 0.70519 (8) 0.41385 (16) 0.0515 (5)
H8 0.260678 0.704239 0.463886 0.062*
N4 0.32207 (14) 0.57046 (9) 0.61530 (17) 0.0558 (5)
H4 0.259042 0.578111 0.569932 0.067*
C8 0.40190 (16) 0.59300 (10) 0.58996 (19) 0.0451 (5)
C7 0.50387 (17) 0.64037 (10) 0.52610 (19) 0.0448 (5)
C27 0.11950 (16) 0.68042 (10) 0.4408 (2) 0.0458 (5)
C32 0.01999 (16) 0.67411 (10) 0.13675 (19) 0.0456 (5)
C26 0.02015 (16) 0.62878 (10) 0.5035 (2) 0.0451 (5)
C33 0.12485 (16) 0.68567 (10) 0.19011 (19) 0.0467 (5)
C37 −0.01936 (17) 0.62810 (10) 0.0473 (2) 0.0483 (5)
C6 0.54385 (17) 0.68468 (10) 0.4582 (2) 0.0474 (5)
C13 0.50606 (17) 0.57244 (10) 0.8977 (2) 0.0492 (5)
C28 0.16447 (17) 0.73388 (10) 0.2910 (2) 0.0503 (6)
H28 0.222322 0.756287 0.282106 0.060*
C25 −0.01654 (18) 0.58212 (10) 0.5693 (2) 0.0494 (6)
C11 0.52605 (17) 0.51710 (10) 0.7309 (2) 0.0471 (5)
C30 −0.01415 (17) 0.74234 (10) 0.2777 (2) 0.0483 (5)
C9 0.35099 (17) 0.53199 (11) 0.7259 (2) 0.0555 (6)
H9 0.289752 0.511153 0.729201 0.067*
C14 0.40010 (18) 0.57065 (11) 0.8413 (2) 0.0534 (6)
C34 0.19025 (18) 0.65033 (11) 0.1511 (2) 0.0548 (6)
H34 0.260894 0.657001 0.185676 0.066*
C29 0.07890 (17) 0.77909 (10) 0.2817 (2) 0.0543 (6)
H29A 0.100512 0.806638 0.352464 0.065*
H29B 0.062320 0.803995 0.207645 0.065*
C18 0.55385 (19) 0.60704 (11) 1.0052 (2) 0.0556 (6)
C36 0.04709 (19) 0.59434 (11) 0.0098 (2) 0.0567 (6)
H36 0.021854 0.563977 −0.050559 0.068*
C12 0.60649 (19) 0.47693 (11) 0.7120 (2) 0.0605 (6)
H12A 0.579701 0.459349 0.630639 0.091*
H12B 0.666141 0.501476 0.721056 0.091*
H12C 0.625136 0.444240 0.772071 0.091*
C10 0.42693 (18) 0.48407 (10) 0.7174 (2) 0.0574 (6)
H10A 0.399673 0.462980 0.638432 0.069*
H10B 0.439491 0.453458 0.782246 0.069*
C35 0.15170 (19) 0.60569 (11) 0.0620 (2) 0.0588 (6)
H35 0.196558 0.582758 0.036374 0.071*
C5 0.64853 (19) 0.69075 (12) 0.4875 (2) 0.0670 (7)
H5A 0.693835 0.666194 0.549337 0.080*
C1 0.4784 (2) 0.72152 (11) 0.3660 (2) 0.0609 (6)
H1 0.407676 0.718224 0.345098 0.073*
C31 −0.10430 (18) 0.77995 (11) 0.2792 (2) 0.0613 (6)
H31A −0.083448 0.805098 0.352206 0.092*
H31B −0.128321 0.806149 0.207610 0.092*
H31C −0.158667 0.752615 0.278616 0.092*
C20 0.0495 (2) 0.54167 (12) 0.6515 (2) 0.0645 (7)
H20 0.119801 0.544843 0.668764 0.077*
C24 −0.12103 (19) 0.57611 (12) 0.5459 (2) 0.0637 (7)
H24 −0.167586 0.602879 0.490434 0.076*
C15 0.3415 (2) 0.60652 (13) 0.8898 (3) 0.0688 (7)
H15 0.270132 0.606084 0.852524 0.083*
C17 0.4942 (2) 0.64257 (12) 1.0508 (2) 0.0676 (7)
H17 0.525066 0.666583 1.121105 0.081*
C38 −0.1696 (2) 0.57518 (13) −0.0835 (3) 0.0798 (8)
H38A −0.242770 0.575837 −0.104823 0.120*
H38B −0.154160 0.582802 −0.155971 0.120*
H38C −0.143044 0.535338 −0.050002 0.120*
C23 −0.1563 (2) 0.53131 (14) 0.6036 (3) 0.0762 (8)
H23 −0.226406 0.528106 0.587450 0.091*
C16 0.3881 (2) 0.64250 (13) 0.9919 (3) 0.0750 (8)
H16 0.348124 0.667168 1.022098 0.090*
C4 0.6866 (2) 0.73270 (14) 0.4262 (3) 0.0808 (8)
H4A 0.757287 0.736288 0.447000 0.097*
C19 0.7121 (2) 0.64069 (14) 1.1580 (3) 0.0842 (9)
H19A 0.784592 0.632894 1.184031 0.126*
H19B 0.698488 0.683463 1.134921 0.126*
H19C 0.689387 0.631569 1.224482 0.126*
C22 −0.0888 (3) 0.49106 (13) 0.6851 (3) 0.0756 (8)
H22 −0.113075 0.460398 0.723457 0.091*
C2 0.5172 (2) 0.76332 (12) 0.3045 (3) 0.0734 (8)
H2 0.472295 0.787680 0.241927 0.088*
C3 0.6211 (3) 0.76918 (13) 0.3349 (3) 0.0758 (8)
H3 0.647028 0.797672 0.293850 0.091*
C21 0.0138 (2) 0.49632 (12) 0.7093 (3) 0.0753 (8)
H21 0.059945 0.469357 0.764810 0.090*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0424 (9) 0.0642 (9) 0.0441 (9) 0.0040 (7) 0.0120 (7) −0.0015 (8)
O3 0.0413 (9) 0.0561 (9) 0.0489 (9) 0.0062 (7) 0.0109 (8) −0.0038 (8)
O4 0.0468 (10) 0.0702 (10) 0.0618 (10) −0.0085 (8) 0.0152 (8) −0.0175 (9)
O2 0.0586 (11) 0.0860 (12) 0.0571 (11) −0.0089 (9) 0.0139 (9) −0.0156 (9)
N2 0.0389 (10) 0.0547 (11) 0.0478 (11) −0.0005 (9) 0.0144 (9) 0.0001 (9)
N7 0.0377 (10) 0.0567 (11) 0.0464 (11) 0.0050 (9) 0.0119 (9) 0.0040 (9)
N3 0.0371 (10) 0.0518 (10) 0.0480 (11) 0.0030 (9) 0.0123 (9) 0.0039 (9)
N5 0.0426 (11) 0.0547 (11) 0.0447 (11) 0.0012 (9) 0.0137 (9) 0.0006 (9)
N1 0.0385 (11) 0.0512 (10) 0.0440 (10) 0.0010 (8) 0.0111 (9) 0.0011 (9)
N6 0.0414 (11) 0.0572 (11) 0.0507 (11) 0.0015 (9) 0.0179 (10) −0.0004 (10)
N8 0.0368 (10) 0.0665 (12) 0.0450 (11) −0.0043 (9) 0.0080 (9) 0.0059 (9)
N4 0.0343 (10) 0.0705 (12) 0.0549 (12) −0.0032 (9) 0.0075 (9) 0.0133 (10)
C8 0.0379 (13) 0.0495 (12) 0.0428 (13) 0.0001 (10) 0.0091 (11) −0.0018 (11)
C7 0.0417 (13) 0.0506 (13) 0.0399 (12) −0.0005 (10) 0.0125 (11) −0.0059 (11)
C27 0.0412 (13) 0.0512 (12) 0.0421 (12) 0.0017 (11) 0.0120 (11) −0.0016 (11)
C32 0.0438 (13) 0.0502 (13) 0.0432 (13) 0.0048 (10) 0.0166 (11) 0.0055 (11)
C26 0.0412 (13) 0.0526 (13) 0.0411 (12) 0.0001 (11) 0.0146 (11) −0.0043 (11)
C33 0.0442 (13) 0.0498 (12) 0.0460 (13) 0.0000 (10) 0.0164 (11) 0.0069 (11)
C37 0.0458 (14) 0.0527 (13) 0.0455 (13) −0.0007 (11) 0.0158 (11) 0.0014 (11)
C6 0.0472 (14) 0.0494 (12) 0.0454 (13) −0.0025 (11) 0.0169 (11) −0.0059 (11)
C13 0.0490 (14) 0.0554 (13) 0.0456 (13) 0.0051 (11) 0.0203 (12) 0.0068 (11)
C28 0.0436 (13) 0.0534 (13) 0.0507 (14) −0.0037 (11) 0.0137 (11) 0.0077 (11)
C25 0.0521 (14) 0.0550 (13) 0.0430 (13) −0.0030 (11) 0.0200 (12) −0.0063 (11)
C11 0.0438 (13) 0.0487 (12) 0.0430 (13) 0.0026 (10) 0.0090 (11) 0.0013 (11)
C30 0.0478 (13) 0.0473 (12) 0.0437 (13) 0.0055 (11) 0.0096 (11) −0.0016 (11)
C9 0.0420 (14) 0.0609 (15) 0.0599 (15) −0.0041 (11) 0.0144 (12) 0.0128 (12)
C14 0.0483 (14) 0.0624 (14) 0.0519 (14) 0.0024 (12) 0.0213 (12) 0.0121 (12)
C34 0.0430 (13) 0.0642 (15) 0.0592 (15) 0.0020 (11) 0.0213 (12) 0.0075 (13)
C29 0.0550 (15) 0.0459 (13) 0.0552 (14) −0.0009 (11) 0.0123 (12) 0.0029 (11)
C18 0.0574 (16) 0.0635 (15) 0.0480 (14) 0.0015 (12) 0.0221 (13) 0.0029 (12)
C36 0.0606 (16) 0.0562 (14) 0.0560 (15) 0.0013 (12) 0.0246 (13) −0.0027 (12)
C12 0.0595 (16) 0.0558 (14) 0.0598 (16) 0.0117 (12) 0.0146 (13) −0.0031 (12)
C10 0.0533 (15) 0.0523 (13) 0.0578 (15) −0.0061 (12) 0.0101 (12) 0.0056 (12)
C35 0.0576 (16) 0.0606 (15) 0.0672 (16) 0.0066 (13) 0.0334 (14) −0.0001 (13)
C5 0.0531 (16) 0.0833 (18) 0.0658 (17) −0.0021 (13) 0.0234 (14) 0.0112 (14)
C1 0.0578 (16) 0.0613 (15) 0.0627 (16) 0.0028 (12) 0.0211 (14) 0.0049 (13)
C31 0.0545 (15) 0.0592 (14) 0.0627 (16) 0.0116 (12) 0.0128 (13) −0.0082 (12)
C20 0.0599 (16) 0.0727 (16) 0.0649 (16) 0.0024 (14) 0.0276 (14) 0.0071 (14)
C24 0.0527 (15) 0.0824 (17) 0.0585 (16) −0.0047 (13) 0.0234 (13) 0.0025 (14)
C15 0.0570 (16) 0.0872 (19) 0.0704 (18) 0.0086 (15) 0.0331 (15) 0.0132 (16)
C17 0.081 (2) 0.0726 (17) 0.0567 (16) −0.0002 (15) 0.0342 (16) −0.0012 (13)
C38 0.0663 (18) 0.0786 (18) 0.089 (2) −0.0166 (15) 0.0226 (16) −0.0311 (17)
C23 0.0673 (19) 0.101 (2) 0.0685 (19) −0.0221 (17) 0.0345 (16) −0.0049 (17)
C16 0.079 (2) 0.0835 (19) 0.078 (2) 0.0133 (16) 0.0480 (18) 0.0033 (17)
C4 0.0661 (19) 0.100 (2) 0.085 (2) −0.0130 (17) 0.0382 (18) 0.0117 (19)
C19 0.081 (2) 0.104 (2) 0.0644 (18) −0.0348 (17) 0.0222 (16) −0.0262 (17)
C22 0.097 (2) 0.0745 (18) 0.0685 (19) −0.0187 (17) 0.0453 (19) −0.0053 (15)
C2 0.090 (2) 0.0661 (16) 0.0674 (19) 0.0051 (15) 0.0335 (17) 0.0144 (14)
C3 0.093 (2) 0.0706 (17) 0.079 (2) −0.0091 (17) 0.0497 (19) 0.0045 (16)
C21 0.095 (2) 0.0693 (17) 0.0699 (19) 0.0095 (16) 0.0395 (18) 0.0153 (15)

Geometric parameters (Å, º)

O1—C13 1.380 (2) C9—H9 0.9800
O1—C11 1.436 (3) C14—C15 1.389 (3)
O3—C32 1.381 (2) C34—C35 1.373 (3)
O3—C30 1.434 (3) C34—H34 0.9300
O4—C37 1.360 (3) C29—H29A 0.9700
O4—C38 1.415 (3) C29—H29B 0.9700
O2—C18 1.362 (3) C18—C17 1.376 (3)
O2—C19 1.421 (3) C36—C35 1.383 (3)
N2—C7 1.313 (3) C36—H36 0.9300
N2—N3 1.382 (2) C12—H12A 0.9600
N7—C27 1.351 (3) C12—H12B 0.9600
N7—N6 1.376 (2) C12—H12C 0.9600
N7—C30 1.454 (3) C10—H10A 0.9700
N3—C8 1.348 (3) C10—H10B 0.9700
N3—C11 1.457 (3) C35—H35 0.9300
N5—C27 1.326 (3) C5—C4 1.376 (3)
N5—C26 1.381 (3) C5—H5A 0.9300
N1—C8 1.331 (3) C1—C2 1.381 (3)
N1—C7 1.371 (3) C1—H1 0.9300
N6—C26 1.312 (3) C31—H31A 0.9600
N8—C27 1.352 (3) C31—H31B 0.9600
N8—C28 1.470 (3) C31—H31C 0.9600
N8—H8 0.8600 C20—C21 1.381 (3)
N4—C8 1.346 (3) C20—H20 0.9300
N4—C9 1.460 (3) C24—C23 1.368 (3)
N4—H4 0.8600 C24—H24 0.9300
C7—C6 1.476 (3) C15—C16 1.369 (4)
C32—C33 1.387 (3) C15—H15 0.9300
C32—C37 1.397 (3) C17—C16 1.386 (4)
C26—C25 1.468 (3) C17—H17 0.9300
C33—C34 1.390 (3) C38—H38A 0.9600
C33—C28 1.514 (3) C38—H38B 0.9600
C37—C36 1.373 (3) C38—H38C 0.9600
C6—C1 1.378 (3) C23—C22 1.373 (4)
C6—C5 1.381 (3) C23—H23 0.9300
C13—C14 1.382 (3) C16—H16 0.9300
C13—C18 1.399 (3) C4—C3 1.368 (4)
C28—C29 1.516 (3) C4—H4A 0.9300
C28—H28 0.9800 C19—H19A 0.9600
C25—C20 1.371 (3) C19—H19B 0.9600
C25—C24 1.390 (3) C19—H19C 0.9600
C11—C12 1.499 (3) C22—C21 1.361 (4)
C11—C10 1.514 (3) C22—H22 0.9300
C30—C31 1.504 (3) C2—C3 1.369 (4)
C30—C29 1.509 (3) C2—H2 0.9300
C9—C10 1.511 (3) C3—H3 0.9300
C9—C14 1.515 (3) C21—H21 0.9300
C13—O1—C11 115.72 (17) C28—C29—H29A 110.1
C32—O3—C30 115.55 (16) C30—C29—H29B 110.1
C37—O4—C38 118.28 (19) C28—C29—H29B 110.1
C18—O2—C19 118.0 (2) H29A—C29—H29B 108.4
C7—N2—N3 102.06 (16) O2—C18—C17 125.6 (2)
C27—N7—N6 109.69 (17) O2—C18—C13 115.3 (2)
C27—N7—C30 126.41 (18) C17—C18—C13 119.1 (2)
N6—N7—C30 123.39 (17) C37—C36—C35 119.7 (2)
C8—N3—N2 109.23 (17) C37—C36—H36 120.1
C8—N3—C11 126.70 (18) C35—C36—H36 120.1
N2—N3—C11 124.07 (17) C11—C12—H12A 109.5
C27—N5—C26 102.41 (18) C11—C12—H12B 109.5
C8—N1—C7 102.05 (17) H12A—C12—H12B 109.5
C26—N6—N7 102.24 (17) C11—C12—H12C 109.5
C27—N8—C28 113.71 (18) H12A—C12—H12C 109.5
C27—N8—H8 123.1 H12B—C12—H12C 109.5
C28—N8—H8 123.1 C9—C10—C11 108.04 (18)
C8—N4—C9 114.67 (18) C9—C10—H10A 110.1
C8—N4—H4 122.7 C11—C10—H10A 110.1
C9—N4—H4 122.7 C9—C10—H10B 110.1
N1—C8—N4 128.6 (2) C11—C10—H10B 110.1
N1—C8—N3 110.74 (18) H10A—C10—H10B 108.4
N4—C8—N3 120.62 (19) C34—C35—C36 120.9 (2)
N2—C7—N1 115.91 (19) C34—C35—H35 119.5
N2—C7—C6 121.35 (19) C36—C35—H35 119.5
N1—C7—C6 122.74 (19) C4—C5—C6 120.8 (3)
N5—C27—N7 110.24 (18) C4—C5—H5A 119.6
N5—C27—N8 129.0 (2) C6—C5—H5A 119.6
N7—C27—N8 120.78 (19) C6—C1—C2 120.5 (2)
O3—C32—C33 123.44 (19) C6—C1—H1 119.8
O3—C32—C37 115.06 (19) C2—C1—H1 119.8
C33—C32—C37 121.50 (19) C30—C31—H31A 109.5
N6—C26—N5 115.36 (19) C30—C31—H31B 109.5
N6—C26—C25 121.54 (19) H31A—C31—H31B 109.5
N5—C26—C25 123.1 (2) C30—C31—H31C 109.5
C32—C33—C34 117.9 (2) H31A—C31—H31C 109.5
C32—C33—C28 119.68 (19) H31B—C31—H31C 109.5
C34—C33—C28 122.3 (2) C25—C20—C21 121.4 (2)
O4—C37—C36 126.2 (2) C25—C20—H20 119.3
O4—C37—C32 114.56 (19) C21—C20—H20 119.3
C36—C37—C32 119.2 (2) C23—C24—C25 120.8 (3)
C1—C6—C5 118.4 (2) C23—C24—H24 119.6
C1—C6—C7 121.2 (2) C25—C24—H24 119.6
C5—C6—C7 120.3 (2) C16—C15—C14 120.5 (3)
O1—C13—C14 123.7 (2) C16—C15—H15 119.8
O1—C13—C18 115.3 (2) C14—C15—H15 119.8
C14—C13—C18 121.0 (2) C18—C17—C16 119.8 (3)
N8—C28—C33 111.22 (17) C18—C17—H17 120.1
N8—C28—C29 107.28 (18) C16—C17—H17 120.1
C33—C28—C29 109.47 (19) O4—C38—H38A 109.5
N8—C28—H28 109.6 O4—C38—H38B 109.5
C33—C28—H28 109.6 H38A—C38—H38B 109.5
C29—C28—H28 109.6 O4—C38—H38C 109.5
C20—C25—C24 117.7 (2) H38A—C38—H38C 109.5
C20—C25—C26 121.8 (2) H38B—C38—H38C 109.5
C24—C25—C26 120.4 (2) C24—C23—C22 120.4 (3)
O1—C11—N3 109.16 (16) C24—C23—H23 119.8
O1—C11—C12 105.96 (18) C22—C23—H23 119.8
N3—C11—C12 111.61 (18) C15—C16—C17 120.7 (3)
O1—C11—C10 109.30 (18) C15—C16—H16 119.6
N3—C11—C10 105.88 (18) C17—C16—H16 119.6
C12—C11—C10 114.85 (18) C3—C4—C5 120.5 (3)
O3—C30—N7 107.77 (16) C3—C4—H4A 119.8
O3—C30—C31 105.15 (18) C5—C4—H4A 119.8
N7—C30—C31 111.67 (18) O2—C19—H19A 109.5
O3—C30—C29 110.02 (18) O2—C19—H19B 109.5
N7—C30—C29 106.40 (18) H19A—C19—H19B 109.5
C31—C30—C29 115.63 (18) O2—C19—H19C 109.5
N4—C9—C10 107.63 (19) H19A—C19—H19C 109.5
N4—C9—C14 111.05 (18) H19B—C19—H19C 109.5
C10—C9—C14 109.61 (19) C21—C22—C23 119.6 (3)
N4—C9—H9 109.5 C21—C22—H22 120.2
C10—C9—H9 109.5 C23—C22—H22 120.2
C14—C9—H9 109.5 C3—C2—C1 120.6 (3)
C13—C14—C15 118.7 (2) C3—C2—H2 119.7
C13—C14—C9 119.5 (2) C1—C2—H2 119.7
C15—C14—C9 121.7 (2) C4—C3—C2 119.3 (3)
C35—C34—C33 120.7 (2) C4—C3—H3 120.3
C35—C34—H34 119.6 C2—C3—H3 120.3
C33—C34—H34 119.6 C22—C21—C20 120.0 (3)
C30—C29—C28 108.22 (17) C22—C21—H21 120.0
C30—C29—H29A 110.1 C20—C21—H21 120.0
C7—N2—N3—C8 −0.6 (2) N2—N3—C11—C10 −161.78 (18)
C7—N2—N3—C11 179.45 (18) C32—O3—C30—N7 −68.6 (2)
C27—N7—N6—C26 1.6 (2) C32—O3—C30—C31 172.12 (17)
C30—N7—N6—C26 173.82 (18) C32—O3—C30—C29 47.0 (2)
C7—N1—C8—N4 −179.8 (2) C27—N7—C30—O3 97.7 (2)
C7—N1—C8—N3 −0.7 (2) N6—N7—C30—O3 −73.2 (2)
C9—N4—C8—N1 −164.4 (2) C27—N7—C30—C31 −147.3 (2)
C9—N4—C8—N3 16.5 (3) N6—N7—C30—C31 41.8 (3)
N2—N3—C8—N1 0.9 (2) C27—N7—C30—C29 −20.3 (3)
C11—N3—C8—N1 −179.18 (17) N6—N7—C30—C29 168.82 (18)
N2—N3—C8—N4 −179.95 (18) C8—N4—C9—C10 −50.3 (2)
C11—N3—C8—N4 0.0 (3) C8—N4—C9—C14 69.7 (2)
N3—N2—C7—N1 0.1 (2) O1—C13—C14—C15 −176.4 (2)
N3—N2—C7—C6 −179.56 (18) C18—C13—C14—C15 3.3 (3)
C8—N1—C7—N2 0.3 (2) O1—C13—C14—C9 1.1 (3)
C8—N1—C7—C6 −179.96 (19) C18—C13—C14—C9 −179.18 (19)
C26—N5—C27—N7 2.3 (2) N4—C9—C14—C13 −99.0 (2)
C26—N5—C27—N8 −176.9 (2) C10—C9—C14—C13 19.8 (3)
N6—N7—C27—N5 −2.6 (2) N4—C9—C14—C15 78.5 (3)
C30—N7—C27—N5 −174.52 (18) C10—C9—C14—C15 −162.7 (2)
N6—N7—C27—N8 176.73 (18) C32—C33—C34—C35 0.3 (3)
C30—N7—C27—N8 4.8 (3) C28—C33—C34—C35 178.0 (2)
C28—N8—C27—N5 157.9 (2) O3—C30—C29—C28 −66.0 (2)
C28—N8—C27—N7 −21.2 (3) N7—C30—C29—C28 50.4 (2)
C30—O3—C32—C33 −15.9 (3) C31—C30—C29—C28 175.05 (19)
C30—O3—C32—C37 164.59 (18) N8—C28—C29—C30 −69.0 (2)
N7—N6—C26—N5 −0.1 (2) C33—C28—C29—C30 51.8 (2)
N7—N6—C26—C25 −178.34 (18) C19—O2—C18—C17 −4.9 (4)
C27—N5—C26—N6 −1.4 (2) C19—O2—C18—C13 174.5 (2)
C27—N5—C26—C25 176.84 (19) O1—C13—C18—O2 −3.6 (3)
O3—C32—C33—C34 −178.85 (19) C14—C13—C18—O2 176.7 (2)
C37—C32—C33—C34 0.6 (3) O1—C13—C18—C17 175.9 (2)
O3—C32—C33—C28 3.5 (3) C14—C13—C18—C17 −3.8 (3)
C37—C32—C33—C28 −177.07 (19) O4—C37—C36—C35 −179.4 (2)
C38—O4—C37—C36 1.7 (3) C32—C37—C36—C35 0.9 (3)
C38—O4—C37—C32 −178.6 (2) N4—C9—C10—C11 69.0 (2)
O3—C32—C37—O4 −1.5 (3) C14—C9—C10—C11 −51.9 (2)
C33—C32—C37—O4 179.01 (19) O1—C11—C10—C9 66.9 (2)
O3—C32—C37—C36 178.25 (19) N3—C11—C10—C9 −50.6 (2)
C33—C32—C37—C36 −1.3 (3) C12—C11—C10—C9 −174.19 (19)
N2—C7—C6—C1 171.0 (2) C33—C34—C35—C36 −0.6 (4)
N1—C7—C6—C1 −8.7 (3) C37—C36—C35—C34 0.0 (4)
N2—C7—C6—C5 −10.1 (3) C1—C6—C5—C4 0.1 (4)
N1—C7—C6—C5 170.2 (2) C7—C6—C5—C4 −178.8 (2)
C11—O1—C13—C14 12.7 (3) C5—C6—C1—C2 0.2 (4)
C11—O1—C13—C18 −166.98 (18) C7—C6—C1—C2 179.1 (2)
C27—N8—C28—C33 −67.2 (2) C24—C25—C20—C21 0.1 (4)
C27—N8—C28—C29 52.5 (2) C26—C25—C20—C21 −177.4 (2)
C32—C33—C28—N8 95.9 (2) C20—C25—C24—C23 0.1 (3)
C34—C33—C28—N8 −81.7 (2) C26—C25—C24—C23 177.7 (2)
C32—C33—C28—C29 −22.5 (3) C13—C14—C15—C16 −0.5 (4)
C34—C33—C28—C29 159.9 (2) C9—C14—C15—C16 −178.0 (2)
N6—C26—C25—C20 175.8 (2) O2—C18—C17—C16 −179.1 (2)
N5—C26—C25—C20 −2.2 (3) C13—C18—C17—C16 1.5 (4)
N6—C26—C25—C24 −1.6 (3) C25—C24—C23—C22 −0.5 (4)
N5—C26—C25—C24 −179.7 (2) C14—C15—C16—C17 −1.8 (4)
C13—O1—C11—N3 69.0 (2) C18—C17—C16—C15 1.2 (4)
C13—O1—C11—C12 −170.65 (17) C6—C5—C4—C3 −0.1 (4)
C13—O1—C11—C10 −46.4 (2) C24—C23—C22—C21 0.7 (4)
C8—N3—C11—O1 −99.3 (2) C6—C1—C2—C3 −0.6 (4)
N2—N3—C11—O1 80.7 (2) C5—C4—C3—C2 −0.3 (4)
C8—N3—C11—C12 143.9 (2) C1—C2—C3—C4 0.7 (4)
N2—N3—C11—C12 −36.1 (3) C23—C22—C21—C20 −0.4 (4)
C8—N3—C11—C10 18.3 (3) C25—C20—C21—C22 0.0 (4)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the N1/C7/N2/N3/C8 ring.

D—H···A D—H H···A D···A D—H···A
N4—H4···N5 0.86 2.18 2.958 (3) 150
N8—H8···N1 0.86 2.33 3.025 (2) 139
C31—H31A···O4i 0.96 2.59 3.471 (3) 152
C38—H38A···O1ii 0.96 2.56 3.489 (3) 162
C12—H12A···Cg1iii 0.96 2.67 3.613 (3) 172

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x−1, y, z−1; (iii) −x+1, −y, −z+1.

References

  1. Aydemir, E., Kansiz, S., Gumus, M. K., Gorobets, N. Y. & Dege, N. (2018). Acta Cryst. E74, 367–370. [DOI] [PMC free article] [PubMed]
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Gorobets, N. Y., Sedash, Y. V., Ostras, K. S., Zaremba, O. V., Shishkina, S. V., Baumer, V. N., Shishkin, O. V., Kovalenko, S. M., Desenko, S. M. & Van der Eycken, E. V. (2010). Tetrahedron Lett. 51, 2095–2098.
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Gümüş, M. K., Gorobets, N. Y., Sedash, Y. V., Chebanov, V. A. & Desenko, S. M. (2017). Chem. Heterocycl. Compd, 53, 1261–1267.
  6. Gümüş, M. K., Kansız, S., Aydemir, E., Gorobets, N. Y. & Dege, N. (2018). J. Mol. Struct. 1168, 280–290.
  7. Huang, S. (2009). Acta Cryst. E65, o2671. [DOI] [PMC free article] [PubMed]
  8. Kappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043–1052. [DOI] [PubMed]
  9. Kettmann, V. & Světlík, J. (2011). Acta Cryst. E67, o92. [DOI] [PMC free article] [PubMed]
  10. Sen, P., Kansiz, S., Dege, N., Iskenderov, T. S. & Yildiz, S. Z. (2018). Acta Cryst. E74, 994–997. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8.
  12. Slobbe, P., Ruijter, E. & Orru, R. V. (2012). Med. Chem. Commun. 3, 1189–1218.
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
  15. Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia, Perth.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989018010848/xu5932sup1.cif

e-74-01211-sup1.cif (750.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018010848/xu5932Isup2.hkl

e-74-01211-Isup2.hkl (458.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018010848/xu5932Isup3.cml

CCDC reference: 1852961

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES