Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Aug 21;74(Pt 9):1272–1275. doi: 10.1107/S2056989018011532

Crystal structure of 2,3′-bi­pyridine-2′,6′-dicarbo­nitrile

Seoulgi Jung a, Ki-Min Park b,*, Jinho Kim a, Youngjin Kang a,*
PMCID: PMC6127714  PMID: 30225115

The asymmetric unit of the title disubstituted 2,3′-bi­pyridine, contains four independent mol­ecules (namely, A, B, C and D). The conformations of the mol­ecules differ, as seen from the dihedral angles between the two pyridine rings in each mol­ecule. They vary from 5.51 (9)° for mol­ecule B to 25.25 (8)° for mol­ecule A.

Keywords: crystal structure, dipyridyl derivative, cyano substituent, hydrogen bonds, π–π stacking inter­actions, C≡N⋯π inter­actions

Abstract

The title compound, C12H6N4, crystallizes with four independent mol­ecules (A, B, C and D) in the asymmetric unit. The dihedral angles between the two pyridine rings in each mol­ecule are 25.25 (8)° in A, 5.51 (9)° in B, 11.11 (9)° in C and 16.24 (8)° in D. In the crystal, mol­ecules A and B are linked by C—H⋯N hydrogen bonds to form layers extending parallel to the ab plane, while mol­ecules C and D are linked by C—H⋯N hydrogen bonds forming –CDCD– chains propagating along the b-axis direction. The layers and the chains are stacked alternately along the c axis through offset π–π and C≡N⋯π [N-to-pyridine-centroid distance = 3.882 (2) Å] inter­actions, resulting in the formation of a supra­molecular framework.

Chemical context  

Bi­pyridine ligands with the CInline graphicN chelating mode to transition metal ions, such as 2,3′-bi­pyridine, are considered to be strong candidates for the synthesis of blue phospho­rescent heavy transition metal complexes because of their larger triplet energy (T 1) compared with phenyl­pyridine-based CInline graphicN chelating ligands (Reddy & Bejoymohandas, 2016). In particular, the triplet energy of fluorine-functionalized 2,3′-bi­pyridine (T 1: 2.82 eV) is larger than that of alk­oxy-functionalized analogue, 2′,6′-dimeth­oxy-2,3′-bi­pyridine (T 1: 2.70 eV) (Lee et al., 2017; Kim et al., 2018). Therefore, the introduction of electron-withdrawing groups into the C-coordinating pyridine group is highly desirable in order to develop blue phospho­rescent metal complexes. To design a suitable ligand possessing a large triplet energy is still a main issue in the organic light-emitting diodes (OLEDs) research area because developing blue phospho­rescent materials remains a problem that has not been solved so far. Although there are a number of advantages in 2,3′-bi­pyridine ligands, incorporating the substituents into the ligand framework is difficult owing to the low selectivity and reactivity of the pyridine ring (Oh et al., 2013). In addition, structural examples of bi­pyridine-bearing electron-withdrawing groups are very scarce.graphic file with name e-74-01272-scheme1.jpg

Herein, for potential applications for the development of blue phospho­rescent materials, we describe the synthesis and crystal structure of the title compound, 2,3′-bi­pyridine-2′,6′-dicarbo­nitrile.

Structural commentary  

As shown in Fig. 1, the asymmetric unit of the title compound contains four crystallographically independent mol­ecules (A, B, C and D). The dihedral angles between the two pyridine rings in each mol­ecule are 25.25 (8)° in A, 5.51 (9)° in B, 11.11 (9)° in C and 16.24 (8)° in D. In order to investigate the conformational similarity between the four mol­ecules, the r.m.s. overlay fits of the 16 non-H atoms of each mol­ecule were calculated using the AutoMolFit routine in PLATON (Spek, 2009). As shown in Fig. 2, and as expected in view of the values of the dihedral angles, the largest overlay fit of 0.197 Å is observed for mol­ecules A and B, while the smallest r.m.s. overlay fit of 0.060 Å is observed for mol­ecules C and D.

Figure 1.

Figure 1

The mol­ecular structure of the four independent mol­ecules (A, B, C and D) of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2.

Figure 2

The overlay fits of the various mol­ecules in the asymmetric unit of the title compound.

Supra­molecular features  

In the crystal, mol­ecules A and B are linked via C—H⋯N hydrogen bonds (C3—H3⋯N3i, C3B—H3B⋯N3B ii and C10B—H10B⋯N3, Table 1 and Fig. 3 a), forming layers extending parallel to the ab plane, while the C and D mol­ecules are connected through C—H⋯N hydrogen bonds (C3C—H3C⋯N3D iii and C3D–-H3D⋯N3C, Table 1 and Fig. 3 b) to from –CDCD– chains propagating along the b-axis direction. The layers and chains stack alternately along the c axis, linked by inter­molecular π–π stacking inter­actions, resulting in the formation of a supra­molecular framework, as shown in Fig. 4 [Cg1⋯Cg2D i = 3.6741 (9) Å; Cg1⋯Cg2D iv = 3.6546 (9) Å; Cg2⋯Cg1D iv = 3.5888 (9) Å; Cg2BCg1C iv = 3.8196 (10) Å; Cg1 and Cg2 are the centroids of the N1/C1–C5 and N2/C6-C10 rings. Atoms and centroids labelled with suffixes B, C and D represent those of the mol­ecules B, C and D, respectively]. In addition, inter­molecular C≡N⋯π inter­actions between the cyano N atom of the D mol­ecule and the N1B-containing pyridine ring of mol­ecule B [N4DCg1B vi = 3.882 (2) Å; Cg1B is the centroid of the N1B/C1B–C5B ring; symmetry code: (vi) −x + 1, y − Inline graphic, −z + Inline graphic], contribute to the stabilization of the framework.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N3i 0.95 2.42 3.343 (2) 164
C3B—H3B⋯N3B ii 0.95 2.34 3.281 (2) 169
C10B—H10B⋯N3 0.95 2.57 3.269 (2) 130
C3C—H3C⋯N3D iii 0.95 2.46 3.379 (2) 164
C3D—H3D⋯N3C 0.95 2.56 3.397 (2) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 3.

Figure 3

(a) View along the c axis of the layer formed by C—H⋯N hydrogen bonds between mol­ecules A and B; (b) view along the c axis of the chains formed by C—H⋯N hydrogen bonds between mol­ecules C and D [symmetry codes: (i) −x + 1, y + Inline graphic, −z + Inline graphic; (ii) −x + 2, y − Inline graphic, −z + Inline graphic; (iii) x, y + 1, z; colour codes: grey = carbon, blue = nitro­gen and white = hydrogen].

Figure 4.

Figure 4

The supra­molecular framework formed via inter­molecular π-π stacking (black dashed lines) and C≡N⋯π (yellow dashed lines) inter­actions involving the four independent mol­ecules (colour codes: gray = mol­ecule A, red = mol­ecule B, blue = mol­ecule C and green = mol­ecule D). All H atoms have been omitted for clarity.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.39, last update May 2018; Groom et al., 2016) for 2′,6′-disubstituted 2,3′-bi­pyridines, gave a number of hits. The majority of them involve iridium or platinum complexes of the di­fluoro and dimeth­oxy analogues of the title compound. As explained in the Chemical context, such compounds, particularly blue iridium complexes of 2′,6′-di­fluoro-2,3′-bi­pyridine, have been synthesized to study their phospho­rescence (e.g. Lee et al., 2009) and electroluminescence (e.g. Xu et al., 2015) efficiency. As there are no reports of the crystal structures of either 2′,6′-di­fluoro-2,3′-bi­pyridine nor 2′,6′-dimeth­oxy-2,3′-bi­pyridine, it is not possible to compare their conformations with those of the four independent mol­ecules of the title compound.

Synthesis and crystallization  

All experiments were performed under a dry N2 atmosphere using standard Schlenk techniques. All solvents were freshly distilled over appropriate drying reagents prior to use. All starting materials were commercially purchased and used without further purification. The 1H NMR spectrum was recorded on a Bruker Avance 300 MHz spectrometer. The fluorinated bi­pyridine, 2′,6′-di­fluoro-2,3′-bi­pyridine, was synthesized according to previous reports (Lee et al., 2009). Then 2′,6′-di­fluoro-2,3′-bi­pyridine (2.0 g, 10.4 mmol) and sodium cyanide (1.02 g, 20.8 mmol) were dissolved in DMSO (10 ml). The reaction mixture was stirred overnight at 308 K. All the volatile components were removed under reduced pressure. The resulting mixture was poured into CH2Cl2 (20 × 3 ml), and then washed with water (3 × 50 ml) to remove any remaining sodium cyanide. Silica gel column purification with EtOAc and hexane gave a yellow powder in 60% yield. Colourless crystals suitable for X-ray crystallography analysis were obtained from a CH2Cl2/hexane solution under slow evaporation. 1H NMR (300 MHz, CDCl3, δ): 8.78 (dd, J = 3.6, 1.2 Hz, 1H), 8.40 (d, J = 8.4 Hz, 1H), 7.93–7.84 (m, 3H), 7.42 (td, J = 5.1, 1.5 Hz, 1H). IR(KBr, pellet): νCN = 2239 cm−1. Mass spectrum m/z (EI): 206 for [M]+ (calculated, 206).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically and refined using a riding model: C—H = 0.95 Å with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C12H6N4
M r 206.21
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 22.5144 (5), 13.1601 (3), 13.2652 (3)
β (°) 93.4509 (11)
V3) 3923.24 (15)
Z 16
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.40 × 0.33 × 0.29
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014)
T min, T max 0.696, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 39169, 9671, 6997
R int 0.034
(sin θ/λ)max−1) 0.667
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.049, 0.140, 1.05
No. of reflections 9671
No. of parameters 578
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.23

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXS97 and SHELXTL (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg, 2010), PLATON (Spek, 2009), and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989018011532/xu5937sup1.cif

e-74-01272-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018011532/xu5937Isup2.hkl

e-74-01272-Isup2.hkl (529.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018011532/xu5937Isup3.cml

CCDC reference: 1862117

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C12H6N4 F(000) = 1696
Mr = 206.21 Dx = 1.396 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 22.5144 (5) Å Cell parameters from 9514 reflections
b = 13.1601 (3) Å θ = 2.3–28.3°
c = 13.2652 (3) Å µ = 0.09 mm1
β = 93.4509 (11)° T = 173 K
V = 3923.24 (15) Å3 Block, colourless
Z = 16 0.40 × 0.33 × 0.29 mm

Data collection

Bruker APEXII CCD diffractometer 6997 reflections with I > 2σ(I)
φ and ω scans Rint = 0.034
Absorption correction: multi-scan (SADABS; Bruker, 2014) θmax = 28.3°, θmin = 0.9°
Tmin = 0.696, Tmax = 0.746 h = −29→29
39169 measured reflections k = −15→17
9671 independent reflections l = −17→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049 H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0597P)2 + 1.2183P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
9671 reflections Δρmax = 0.29 e Å3
578 parameters Δρmin = −0.23 e Å3
0 restraints Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00078 (18)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.49910 (5) 0.74057 (9) 0.26760 (10) 0.0280 (3)
N2 0.67745 (5) 0.83351 (10) 0.29072 (11) 0.0346 (3)
N3 0.62263 (6) 0.61415 (10) 0.24069 (12) 0.0376 (3)
N4 0.35033 (6) 0.75276 (12) 0.29544 (15) 0.0533 (4)
C1 0.55555 (6) 0.77161 (10) 0.26223 (11) 0.0259 (3)
C2 0.45846 (6) 0.81336 (11) 0.27582 (12) 0.0297 (3)
C3 0.47099 (7) 0.91693 (11) 0.27679 (13) 0.0338 (3)
H3 0.4402 0.9658 0.2815 0.041*
C4 0.52920 (6) 0.94626 (11) 0.27070 (12) 0.0322 (3)
H4 0.5391 1.0165 0.2714 0.039*
C5 0.57391 (6) 0.87387 (11) 0.26354 (11) 0.0271 (3)
C6 0.63739 (6) 0.90300 (11) 0.25798 (12) 0.0285 (3)
C7 0.65339 (7) 0.99737 (11) 0.22031 (12) 0.0332 (3)
H7 0.6239 1.0453 0.1983 0.040*
C8 0.71324 (7) 1.01972 (12) 0.21571 (13) 0.0363 (4)
H8 0.7255 1.0838 0.1913 0.044*
C9 0.75478 (7) 0.94792 (12) 0.24703 (13) 0.0361 (4)
H9 0.7961 0.9608 0.2433 0.043*
C10 0.73499 (7) 0.85668 (12) 0.28397 (14) 0.0376 (4)
H10 0.7639 0.8075 0.3059 0.045*
C11 0.59619 (6) 0.68697 (11) 0.25145 (12) 0.0282 (3)
C12 0.39805 (7) 0.77851 (12) 0.28566 (14) 0.0374 (4)
N1B 1.00098 (5) 0.66865 (10) 0.25099 (11) 0.0328 (3)
N2B 0.82233 (6) 0.58423 (10) 0.23869 (13) 0.0426 (4)
N3B 0.87912 (6) 0.79976 (11) 0.21706 (16) 0.0595 (5)
N4B 1.15222 (6) 0.65194 (11) 0.28236 (15) 0.0522 (4)
C1B 0.94394 (6) 0.63854 (11) 0.24219 (12) 0.0302 (3)
C2B 1.04188 (7) 0.59585 (12) 0.26116 (14) 0.0368 (4)
C3B 1.02892 (7) 0.49305 (13) 0.26150 (17) 0.0497 (5)
H3B 1.0597 0.4437 0.2677 0.060*
C4B 0.97019 (7) 0.46449 (13) 0.25256 (16) 0.0477 (5)
H4B 0.9602 0.3943 0.2525 0.057*
C5B 0.92501 (7) 0.53684 (11) 0.24356 (13) 0.0331 (3)
C6B 0.86123 (7) 0.50763 (11) 0.23825 (12) 0.0325 (3)
C7B 0.84293 (7) 0.40674 (12) 0.23460 (13) 0.0364 (4)
H7B 0.8713 0.3534 0.2336 0.044*
C8B 0.78279 (7) 0.38510 (12) 0.23251 (13) 0.0381 (4)
H8B 0.7694 0.3166 0.2310 0.046*
C9B 0.74263 (7) 0.46356 (13) 0.23266 (13) 0.0372 (4)
H9B 0.7011 0.4507 0.2310 0.045*
C10B 0.76432 (7) 0.56175 (13) 0.23535 (15) 0.0421 (4)
H10B 0.7366 0.6162 0.2348 0.051*
C11B 0.90390 (7) 0.72465 (12) 0.22910 (15) 0.0396 (4)
C12B 1.10337 (7) 0.62904 (12) 0.27276 (15) 0.0408 (4)
N1C 0.25051 (5) 0.53772 (10) 0.02073 (10) 0.0328 (3)
N2C 0.07122 (6) 0.62043 (11) −0.00555 (15) 0.0522 (4)
N3C 0.13060 (6) 0.40241 (12) 0.02803 (17) 0.0616 (5)
N4C 0.40066 (6) 0.55328 (12) 0.01479 (14) 0.0520 (4)
C1C 0.19315 (6) 0.56632 (11) 0.02102 (12) 0.0307 (3)
C2C 0.29079 (7) 0.61155 (12) 0.02084 (13) 0.0340 (3)
C3C 0.27729 (7) 0.71403 (13) 0.02209 (15) 0.0429 (4)
H3C 0.3078 0.7639 0.0238 0.051*
C4C 0.21814 (7) 0.74172 (13) 0.02080 (15) 0.0422 (4)
H4C 0.2077 0.8116 0.0206 0.051*
C5C 0.17368 (7) 0.66812 (12) 0.01976 (12) 0.0325 (3)
C6C 0.10958 (7) 0.69596 (12) 0.01452 (12) 0.0322 (3)
C7C 0.09100 (7) 0.79532 (13) 0.02696 (15) 0.0420 (4)
H7C 0.1192 0.8479 0.0415 0.050*
C8C 0.03076 (7) 0.81675 (13) 0.01785 (15) 0.0445 (4)
H8C 0.0170 0.8844 0.0257 0.053*
C9C −0.00892 (7) 0.73939 (13) −0.00260 (14) 0.0402 (4)
H9C −0.0505 0.7522 −0.0094 0.048*
C10C 0.01307 (7) 0.64306 (14) −0.01301 (18) 0.0527 (5)
H10C −0.0145 0.5893 −0.0263 0.063*
C11C 0.15421 (7) 0.47900 (12) 0.02419 (15) 0.0400 (4)
C12C 0.35214 (7) 0.57814 (12) 0.01809 (14) 0.0396 (4)
N1D 0.25087 (5) 0.03678 (9) 0.02181 (10) 0.0312 (3)
N2D 0.42958 (5) 0.11479 (9) −0.00983 (11) 0.0328 (3)
N3D 0.37265 (6) −0.09144 (10) 0.07125 (13) 0.0432 (4)
N4D 0.10036 (6) 0.04871 (12) 0.00311 (15) 0.0545 (5)
C1D 0.30810 (6) 0.06558 (11) 0.02102 (11) 0.0274 (3)
C2D 0.21010 (6) 0.10823 (12) −0.00026 (12) 0.0325 (3)
C3D 0.22322 (7) 0.20789 (12) −0.02331 (14) 0.0383 (4)
H3D 0.1925 0.2561 −0.0382 0.046*
C4D 0.28232 (7) 0.23508 (12) −0.02402 (13) 0.0360 (4)
H4D 0.2926 0.3030 −0.0398 0.043*
C5D 0.32714 (6) 0.16403 (11) −0.00185 (11) 0.0281 (3)
C6D 0.39103 (6) 0.19201 (11) −0.00522 (11) 0.0274 (3)
C7D 0.40905 (7) 0.29331 (11) −0.00522 (12) 0.0312 (3)
H7D 0.3808 0.3464 −0.0003 0.037*
C8D 0.46879 (7) 0.31533 (12) −0.01251 (12) 0.0336 (3)
H8D 0.4821 0.3838 −0.0135 0.040*
C9D 0.50870 (7) 0.23649 (12) −0.01824 (12) 0.0335 (3)
H9D 0.5499 0.2495 −0.0241 0.040*
C10D 0.48740 (7) 0.13777 (12) −0.01523 (13) 0.0354 (4)
H10D 0.5152 0.0835 −0.0171 0.042*
C11D 0.34799 (6) −0.01830 (11) 0.04801 (12) 0.0316 (3)
C12D 0.14866 (7) 0.07449 (13) 0.00158 (15) 0.0408 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0254 (6) 0.0296 (6) 0.0288 (7) 0.0007 (5) 0.0007 (5) 0.0007 (5)
N2 0.0283 (6) 0.0308 (6) 0.0447 (8) −0.0002 (5) 0.0013 (6) 0.0033 (6)
N3 0.0288 (6) 0.0296 (7) 0.0544 (9) 0.0026 (5) 0.0009 (6) −0.0007 (6)
N4 0.0313 (7) 0.0405 (8) 0.0889 (14) 0.0008 (6) 0.0094 (8) 0.0011 (8)
C1 0.0251 (6) 0.0272 (7) 0.0252 (7) 0.0023 (5) 0.0006 (5) 0.0008 (6)
C2 0.0249 (7) 0.0305 (7) 0.0338 (8) 0.0020 (5) 0.0014 (6) 0.0012 (6)
C3 0.0298 (7) 0.0295 (7) 0.0421 (9) 0.0059 (6) 0.0019 (7) 0.0009 (6)
C4 0.0312 (7) 0.0253 (7) 0.0399 (9) 0.0008 (6) 0.0013 (6) 0.0000 (6)
C5 0.0284 (7) 0.0267 (7) 0.0259 (8) 0.0010 (5) 0.0000 (6) 0.0013 (6)
C6 0.0284 (7) 0.0266 (7) 0.0303 (8) −0.0017 (5) 0.0010 (6) −0.0022 (6)
C7 0.0327 (8) 0.0286 (7) 0.0381 (9) 0.0006 (6) 0.0014 (7) 0.0009 (6)
C8 0.0378 (8) 0.0307 (8) 0.0408 (10) −0.0074 (6) 0.0056 (7) −0.0003 (7)
C9 0.0280 (7) 0.0379 (8) 0.0425 (10) −0.0050 (6) 0.0035 (7) −0.0059 (7)
C10 0.0275 (7) 0.0352 (8) 0.0495 (11) −0.0003 (6) −0.0013 (7) 0.0013 (7)
C11 0.0247 (6) 0.0269 (7) 0.0328 (8) −0.0013 (5) −0.0003 (6) 0.0023 (6)
C12 0.0301 (8) 0.0306 (8) 0.0515 (11) 0.0036 (6) 0.0035 (7) 0.0012 (7)
N1B 0.0271 (6) 0.0304 (6) 0.0407 (8) 0.0020 (5) 0.0013 (5) 0.0014 (5)
N2B 0.0306 (7) 0.0301 (7) 0.0675 (11) −0.0003 (5) 0.0044 (7) 0.0042 (7)
N3B 0.0304 (7) 0.0296 (7) 0.1174 (17) 0.0005 (6) −0.0046 (8) 0.0034 (8)
N4B 0.0302 (7) 0.0396 (8) 0.0866 (13) 0.0031 (6) 0.0030 (8) −0.0004 (8)
C1B 0.0276 (7) 0.0283 (7) 0.0346 (9) 0.0028 (6) 0.0008 (6) 0.0017 (6)
C2B 0.0276 (7) 0.0343 (8) 0.0485 (10) 0.0038 (6) 0.0022 (7) 0.0033 (7)
C3B 0.0324 (8) 0.0307 (8) 0.0859 (16) 0.0071 (7) 0.0016 (9) 0.0053 (9)
C4B 0.0365 (9) 0.0276 (8) 0.0789 (15) 0.0030 (7) 0.0010 (9) 0.0052 (8)
C5B 0.0309 (7) 0.0281 (7) 0.0403 (9) 0.0005 (6) 0.0010 (7) 0.0028 (6)
C6B 0.0312 (7) 0.0296 (7) 0.0367 (9) −0.0006 (6) 0.0026 (6) 0.0033 (6)
C7B 0.0369 (8) 0.0294 (7) 0.0426 (10) −0.0004 (6) 0.0009 (7) 0.0019 (7)
C8B 0.0403 (9) 0.0318 (8) 0.0421 (10) −0.0063 (7) 0.0026 (7) 0.0005 (7)
C9B 0.0324 (8) 0.0414 (9) 0.0381 (9) −0.0054 (7) 0.0048 (7) 0.0006 (7)
C10B 0.0311 (8) 0.0365 (9) 0.0589 (12) 0.0004 (6) 0.0051 (8) 0.0026 (8)
C11B 0.0258 (7) 0.0299 (8) 0.0628 (12) −0.0014 (6) −0.0004 (7) −0.0010 (7)
C12B 0.0326 (8) 0.0313 (8) 0.0584 (12) 0.0066 (6) 0.0022 (8) 0.0019 (7)
N1C 0.0265 (6) 0.0347 (7) 0.0373 (8) −0.0035 (5) 0.0023 (5) 0.0045 (6)
N2C 0.0299 (7) 0.0340 (8) 0.0930 (14) −0.0011 (6) 0.0061 (8) −0.0108 (8)
N3C 0.0309 (7) 0.0359 (8) 0.1179 (17) −0.0034 (6) 0.0041 (9) 0.0105 (9)
N4C 0.0310 (7) 0.0441 (9) 0.0810 (13) −0.0046 (6) 0.0042 (7) 0.0110 (8)
C1C 0.0274 (7) 0.0320 (7) 0.0327 (8) −0.0036 (6) 0.0021 (6) 0.0008 (6)
C2C 0.0274 (7) 0.0362 (8) 0.0384 (9) −0.0044 (6) 0.0022 (6) 0.0024 (7)
C3C 0.0317 (8) 0.0364 (9) 0.0607 (12) −0.0098 (7) 0.0035 (8) −0.0051 (8)
C4C 0.0351 (8) 0.0315 (8) 0.0605 (12) −0.0036 (6) 0.0051 (8) −0.0065 (8)
C5C 0.0302 (7) 0.0321 (7) 0.0353 (9) −0.0025 (6) 0.0029 (6) −0.0029 (6)
C6C 0.0304 (7) 0.0322 (8) 0.0344 (9) −0.0009 (6) 0.0048 (6) −0.0023 (6)
C7C 0.0356 (8) 0.0345 (8) 0.0554 (12) −0.0010 (7) −0.0009 (8) −0.0032 (8)
C8C 0.0389 (9) 0.0346 (8) 0.0599 (12) 0.0052 (7) 0.0024 (8) −0.0014 (8)
C9C 0.0315 (8) 0.0403 (9) 0.0491 (11) 0.0026 (7) 0.0050 (7) 0.0010 (8)
C10C 0.0287 (8) 0.0405 (10) 0.0892 (16) −0.0020 (7) 0.0051 (9) −0.0084 (10)
C11C 0.0261 (7) 0.0348 (8) 0.0592 (12) 0.0004 (6) 0.0035 (7) 0.0040 (8)
C12C 0.0310 (8) 0.0367 (8) 0.0512 (11) −0.0067 (6) 0.0021 (7) 0.0064 (7)
N1D 0.0237 (6) 0.0334 (6) 0.0364 (8) −0.0002 (5) 0.0019 (5) 0.0001 (5)
N2D 0.0270 (6) 0.0299 (6) 0.0414 (8) −0.0011 (5) 0.0003 (5) 0.0011 (6)
N3D 0.0279 (6) 0.0343 (7) 0.0671 (11) 0.0000 (5) 0.0006 (7) 0.0067 (7)
N4D 0.0283 (7) 0.0475 (9) 0.0878 (14) 0.0010 (6) 0.0033 (8) 0.0088 (8)
C1D 0.0248 (7) 0.0286 (7) 0.0286 (8) 0.0018 (5) −0.0001 (6) −0.0009 (6)
C2D 0.0241 (7) 0.0347 (8) 0.0384 (9) 0.0023 (6) 0.0003 (6) −0.0026 (7)
C3D 0.0285 (7) 0.0330 (8) 0.0526 (11) 0.0054 (6) −0.0042 (7) −0.0016 (7)
C4D 0.0328 (8) 0.0280 (7) 0.0464 (10) 0.0016 (6) −0.0050 (7) 0.0006 (7)
C5D 0.0268 (7) 0.0298 (7) 0.0276 (8) −0.0001 (6) −0.0006 (6) −0.0030 (6)
C6D 0.0268 (7) 0.0294 (7) 0.0256 (8) −0.0007 (5) −0.0011 (6) −0.0008 (6)
C7D 0.0323 (7) 0.0309 (7) 0.0304 (8) −0.0016 (6) 0.0010 (6) −0.0004 (6)
C8D 0.0362 (8) 0.0314 (7) 0.0330 (9) −0.0073 (6) 0.0007 (6) 0.0010 (6)
C9D 0.0284 (7) 0.0386 (8) 0.0332 (9) −0.0053 (6) 0.0000 (6) 0.0008 (7)
C10D 0.0260 (7) 0.0361 (8) 0.0438 (10) −0.0009 (6) 0.0008 (7) 0.0009 (7)
C11D 0.0234 (7) 0.0313 (8) 0.0401 (9) −0.0036 (6) 0.0011 (6) 0.0007 (6)
C12D 0.0291 (8) 0.0388 (9) 0.0545 (11) 0.0043 (7) 0.0019 (7) 0.0028 (8)

Geometric parameters (Å, º)

N1—C2 1.3338 (18) N1C—C2C 1.3290 (19)
N1—C1 1.3410 (18) N1C—C1C 1.3454 (19)
N2—C6 1.3384 (18) N2C—C6C 1.333 (2)
N2—C10 1.3392 (19) N2C—C10C 1.341 (2)
N3—C11 1.1416 (19) N3C—C11C 1.142 (2)
N4—C12 1.141 (2) N4C—C12C 1.144 (2)
C1—C5 1.4077 (19) C1C—C5C 1.409 (2)
C1—C11 1.4540 (19) C1C—C11C 1.448 (2)
C2—C3 1.392 (2) C2C—C3C 1.383 (2)
C2—C12 1.449 (2) C2C—C12C 1.452 (2)
C3—C4 1.373 (2) C3C—C4C 1.380 (2)
C3—H3 0.9500 C3C—H3C 0.9500
C4—C5 1.393 (2) C4C—C5C 1.392 (2)
C4—H4 0.9500 C4C—H4C 0.9500
C5—C6 1.486 (2) C5C—C6C 1.486 (2)
C6—C7 1.394 (2) C6C—C7C 1.386 (2)
C7—C8 1.384 (2) C7C—C8C 1.383 (2)
C7—H7 0.9500 C7C—H7C 0.9500
C8—C9 1.376 (2) C8C—C9C 1.371 (2)
C8—H8 0.9500 C8C—H8C 0.9500
C9—C10 1.381 (2) C9C—C10C 1.371 (2)
C9—H9 0.9500 C9C—H9C 0.9500
C10—H10 0.9500 C10C—H10C 0.9500
N1B—C2B 1.3301 (19) N1D—C2D 1.3342 (18)
N1B—C1B 1.3424 (18) N1D—C1D 1.3437 (18)
N2B—C6B 1.336 (2) N2D—C6D 1.3403 (19)
N2B—C10B 1.337 (2) N2D—C10D 1.3424 (19)
N3B—C11B 1.142 (2) N3D—C11D 1.1443 (19)
N4B—C12B 1.140 (2) N4D—C12D 1.140 (2)
C1B—C5B 1.405 (2) C1D—C5D 1.404 (2)
C1B—C11B 1.452 (2) C1D—C11D 1.454 (2)
C2B—C3B 1.384 (2) C2D—C3D 1.383 (2)
C2B—C12B 1.451 (2) C2D—C12D 1.454 (2)
C3B—C4B 1.373 (2) C3D—C4D 1.378 (2)
C3B—H3B 0.9500 C3D—H3D 0.9500
C4B—C5B 1.393 (2) C4D—C5D 1.394 (2)
C4B—H4B 0.9500 C4D—H4D 0.9500
C5B—C6B 1.484 (2) C5D—C6D 1.4879 (19)
C6B—C7B 1.390 (2) C6D—C7D 1.394 (2)
C7B—C8B 1.382 (2) C7D—C8D 1.385 (2)
C7B—H7B 0.9500 C7D—H7D 0.9500
C8B—C9B 1.373 (2) C8D—C9D 1.378 (2)
C8B—H8B 0.9500 C8D—H8D 0.9500
C9B—C10B 1.381 (2) C9D—C10D 1.386 (2)
C9B—H9B 0.9500 C9D—H9D 0.9500
C10B—H10B 0.9500 C10D—H10D 0.9500
C2—N1—C1 116.28 (12) C2C—N1C—C1C 116.78 (13)
C6—N2—C10 117.29 (13) C6C—N2C—C10C 117.86 (14)
N1—C1—C5 124.69 (13) N1C—C1C—C5C 124.31 (13)
N1—C1—C11 112.09 (12) N1C—C1C—C11C 111.17 (13)
C5—C1—C11 123.20 (12) C5C—C1C—C11C 124.51 (13)
N1—C2—C3 124.35 (13) N1C—C2C—C3C 124.24 (14)
N1—C2—C12 115.62 (13) N1C—C2C—C12C 115.38 (14)
C3—C2—C12 120.02 (13) C3C—C2C—C12C 120.38 (14)
C4—C3—C2 117.93 (13) C4C—C3C—C2C 118.04 (15)
C4—C3—H3 121.0 C4C—C3C—H3C 121.0
C2—C3—H3 121.0 C2C—C3C—H3C 121.0
C3—C4—C5 120.52 (14) C3C—C4C—C5C 120.61 (15)
C3—C4—H4 119.7 C3C—C4C—H4C 119.7
C5—C4—H4 119.7 C5C—C4C—H4C 119.7
C4—C5—C1 116.21 (13) C4C—C5C—C1C 115.99 (14)
C4—C5—C6 121.87 (13) C4C—C5C—C6C 121.63 (14)
C1—C5—C6 121.92 (12) C1C—C5C—C6C 122.35 (13)
N2—C6—C7 122.78 (13) N2C—C6C—C7C 122.05 (14)
N2—C6—C5 116.04 (13) N2C—C6C—C5C 116.17 (14)
C7—C6—C5 121.18 (13) C7C—C6C—C5C 121.75 (14)
C8—C7—C6 118.58 (14) C8C—C7C—C6C 118.90 (15)
C8—C7—H7 120.7 C8C—C7C—H7C 120.6
C6—C7—H7 120.7 C6C—C7C—H7C 120.6
C9—C8—C7 119.12 (15) C9C—C8C—C7C 119.33 (16)
C9—C8—H8 120.4 C9C—C8C—H8C 120.3
C7—C8—H8 120.4 C7C—C8C—H8C 120.3
C8—C9—C10 118.45 (14) C8C—C9C—C10C 118.14 (15)
C8—C9—H9 120.8 C8C—C9C—H9C 120.9
C10—C9—H9 120.8 C10C—C9C—H9C 120.9
N2—C10—C9 123.76 (15) N2C—C10C—C9C 123.71 (16)
N2—C10—H10 118.1 N2C—C10C—H10C 118.1
C9—C10—H10 118.1 C9C—C10C—H10C 118.1
N3—C11—C1 172.44 (15) N3C—C11C—C1C 170.50 (17)
N4—C12—C2 178.2 (2) N4C—C12C—C2C 178.75 (19)
C2B—N1B—C1B 116.69 (13) C2D—N1D—C1D 116.55 (13)
C6B—N2B—C10B 118.18 (14) C6D—N2D—C10D 117.67 (13)
N1B—C1B—C5B 124.70 (13) N1D—C1D—C5D 124.58 (13)
N1B—C1B—C11B 111.34 (13) N1D—C1D—C11D 111.24 (12)
C5B—C1B—C11B 123.95 (13) C5D—C1D—C11D 124.17 (12)
N1B—C2B—C3B 124.03 (14) N1D—C2D—C3D 124.30 (13)
N1B—C2B—C12B 116.38 (14) N1D—C2D—C12D 115.07 (14)
C3B—C2B—C12B 119.59 (14) C3D—C2D—C12D 120.63 (14)
C4B—C3B—C2B 118.00 (15) C4D—C3D—C2D 117.84 (14)
C4B—C3B—H3B 121.0 C4D—C3D—H3D 121.1
C2B—C3B—H3B 121.0 C2D—C3D—H3D 121.1
C3B—C4B—C5B 120.98 (15) C3D—C4D—C5D 120.75 (14)
C3B—C4B—H4B 119.5 C3D—C4D—H4D 119.6
C5B—C4B—H4B 119.5 C5D—C4D—H4D 119.6
C4B—C5B—C1B 115.57 (14) C4D—C5D—C1D 115.97 (13)
C4B—C5B—C6B 121.77 (14) C4D—C5D—C6D 121.10 (13)
C1B—C5B—C6B 122.64 (13) C1D—C5D—C6D 122.91 (13)
N2B—C6B—C7B 121.87 (14) N2D—C6D—C7D 122.40 (13)
N2B—C6B—C5B 115.92 (13) N2D—C6D—C5D 116.34 (12)
C7B—C6B—C5B 122.20 (14) C7D—C6D—C5D 121.25 (13)
C8B—C7B—C6B 119.04 (15) C8D—C7D—C6D 118.96 (14)
C8B—C7B—H7B 120.5 C8D—C7D—H7D 120.5
C6B—C7B—H7B 120.5 C6D—C7D—H7D 120.5
C9B—C8B—C7B 119.30 (15) C9D—C8D—C7D 119.06 (14)
C9B—C8B—H8B 120.3 C9D—C8D—H8D 120.5
C7B—C8B—H8B 120.3 C7D—C8D—H8D 120.5
C8B—C9B—C10B 118.17 (15) C8D—C9D—C10D 118.44 (14)
C8B—C9B—H9B 120.9 C8D—C9D—H9D 120.8
C10B—C9B—H9B 120.9 C10D—C9D—H9D 120.8
N2B—C10B—C9B 123.44 (15) N2D—C10D—C9D 123.43 (14)
N2B—C10B—H10B 118.3 N2D—C10D—H10D 118.3
C9B—C10B—H10B 118.3 C9D—C10D—H10D 118.3
N3B—C11B—C1B 170.85 (17) N3D—C11D—C1D 170.90 (15)
N4B—C12B—C2B 177.79 (17) N4D—C12D—C2D 179.5 (2)
C2—N1—C1—C5 −0.7 (2) C2C—N1C—C1C—C5C 1.1 (2)
C2—N1—C1—C11 −178.87 (13) C2C—N1C—C1C—C11C −178.13 (15)
C1—N1—C2—C3 1.5 (2) C1C—N1C—C2C—C3C 0.6 (3)
C1—N1—C2—C12 −177.60 (14) C1C—N1C—C2C—C12C −178.59 (14)
N1—C2—C3—C4 −1.2 (3) N1C—C2C—C3C—C4C −1.6 (3)
C12—C2—C3—C4 177.83 (15) C12C—C2C—C3C—C4C 177.56 (17)
C2—C3—C4—C5 0.2 (2) C2C—C3C—C4C—C5C 0.9 (3)
C3—C4—C5—C1 0.5 (2) C3C—C4C—C5C—C1C 0.5 (3)
C3—C4—C5—C6 −179.31 (15) C3C—C4C—C5C—C6C −177.69 (17)
N1—C1—C5—C4 −0.2 (2) N1C—C1C—C5C—C4C −1.6 (2)
C11—C1—C5—C4 177.73 (14) C11C—C1C—C5C—C4C 177.49 (17)
N1—C1—C5—C6 179.60 (14) N1C—C1C—C5C—C6C 176.61 (15)
C11—C1—C5—C6 −2.5 (2) C11C—C1C—C5C—C6C −4.3 (3)
C10—N2—C6—C7 −1.6 (2) C10C—N2C—C6C—C7C −0.4 (3)
C10—N2—C6—C5 178.21 (14) C10C—N2C—C6C—C5C −178.60 (18)
C4—C5—C6—N2 154.51 (15) C4C—C5C—C6C—N2C 167.51 (17)
C1—C5—C6—N2 −25.3 (2) C1C—C5C—C6C—N2C −10.6 (2)
C4—C5—C6—C7 −25.7 (2) C4C—C5C—C6C—C7C −10.7 (3)
C1—C5—C6—C7 154.52 (15) C1C—C5C—C6C—C7C 171.18 (17)
N2—C6—C7—C8 0.6 (2) N2C—C6C—C7C—C8C −0.3 (3)
C5—C6—C7—C8 −179.14 (14) C5C—C6C—C7C—C8C 177.86 (17)
C6—C7—C8—C9 0.9 (2) C6C—C7C—C8C—C9C 0.4 (3)
C7—C8—C9—C10 −1.3 (3) C7C—C8C—C9C—C10C 0.1 (3)
C6—N2—C10—C9 1.1 (3) C6C—N2C—C10C—C9C 1.0 (3)
C8—C9—C10—N2 0.4 (3) C8C—C9C—C10C—N2C −0.8 (3)
C2B—N1B—C1B—C5B 0.3 (2) C2D—N1D—C1D—C5D −0.5 (2)
C2B—N1B—C1B—C11B −178.58 (15) C2D—N1D—C1D—C11D 178.94 (14)
C1B—N1B—C2B—C3B 1.1 (3) C1D—N1D—C2D—C3D 0.0 (2)
C1B—N1B—C2B—C12B −178.75 (15) C1D—N1D—C2D—C12D −179.83 (15)
N1B—C2B—C3B—C4B −1.2 (3) N1D—C2D—C3D—C4D 0.3 (3)
C12B—C2B—C3B—C4B 178.61 (19) C12D—C2D—C3D—C4D −179.86 (16)
C2B—C3B—C4B—C5B −0.1 (3) C2D—C3D—C4D—C5D −0.2 (3)
C3B—C4B—C5B—C1B 1.3 (3) C3D—C4D—C5D—C1D −0.2 (2)
C3B—C4B—C5B—C6B −177.33 (18) C3D—C4D—C5D—C6D 178.30 (15)
N1B—C1B—C5B—C4B −1.5 (3) N1D—C1D—C5D—C4D 0.6 (2)
C11B—C1B—C5B—C4B 177.32 (18) C11D—C1D—C5D—C4D −178.73 (15)
N1B—C1B—C5B—C6B 177.12 (15) N1D—C1D—C5D—C6D −177.91 (14)
C11B—C1B—C5B—C6B −4.1 (3) C11D—C1D—C5D—C6D 2.8 (2)
C10B—N2B—C6B—C7B −0.1 (3) C10D—N2D—C6D—C7D −0.4 (2)
C10B—N2B—C6B—C5B −179.15 (16) C10D—N2D—C6D—C5D 178.54 (14)
C4B—C5B—C6B—N2B 174.30 (17) C4D—C5D—C6D—N2D −162.62 (15)
C1B—C5B—C6B—N2B −4.2 (2) C1D—C5D—C6D—N2D 15.8 (2)
C4B—C5B—C6B—C7B −4.7 (3) C4D—C5D—C6D—C7D 16.4 (2)
C1B—C5B—C6B—C7B 176.74 (16) C1D—C5D—C6D—C7D −165.21 (15)
N2B—C6B—C7B—C8B −0.7 (3) N2D—C6D—C7D—C8D 1.5 (2)
C5B—C6B—C7B—C8B 178.25 (16) C5D—C6D—C7D—C8D −177.44 (14)
C6B—C7B—C8B—C9B 0.9 (3) C6D—C7D—C8D—C9D −0.8 (2)
C7B—C8B—C9B—C10B −0.3 (3) C7D—C8D—C9D—C10D −0.8 (2)
C6B—N2B—C10B—C9B 0.8 (3) C6D—N2D—C10D—C9D −1.3 (2)
C8B—C9B—C10B—N2B −0.6 (3) C8D—C9D—C10D—N2D 1.9 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3···N3i 0.95 2.42 3.343 (2) 164
C3B—H3B···N3Bii 0.95 2.34 3.281 (2) 169
C10B—H10B···N3 0.95 2.57 3.269 (2) 130
C3C—H3C···N3Diii 0.95 2.46 3.379 (2) 164
C3D—H3D···N3C 0.95 2.56 3.397 (2) 145

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+2, y−1/2, −z+1/2; (iii) x, y+1, z.

Funding Statement

This work was funded by National Research Foundation of Korea grants NRF-2016R1D1A1B01012630 and 2018R1D1A3A03000716.

References

  1. Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  4. Kim, M., Kim, J., Park, K.-M. & Kang, Y. (2018). Bull. Korean Chem. Soc. 39, 703–706.
  5. Lee, C., Kim, J., Choi, J. M., Lee, J. Y. & Kang, Y. (2017). Dyes Pigments, 137, 378–383.
  6. Lee, S. J., Park, K.-M., Yang, K. & Kang, Y. (2009). Inorg. Chem. 48, 1030–1037. [DOI] [PubMed]
  7. Oh, H., Park, K.-M., Hwang, H., Oh, S., Lee, J. H., Lu, J.-S., Wang, S. & Kang, Y. (2013). Organometallics, 32, 6427–6436.
  8. Reddy, M. L. P. & Bejoymohandas, K. S. (2016). J. Photochem. Photobiol. Photochem. Rev. 29, 29–47.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  13. Xu, Q.-L., Liang, X., Jiang, L., Zhao, Y. & Zheng, Y.-X. (2015). RSC Adv. 5, 89218–89225.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989018011532/xu5937sup1.cif

e-74-01272-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018011532/xu5937Isup2.hkl

e-74-01272-Isup2.hkl (529.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018011532/xu5937Isup3.cml

CCDC reference: 1862117

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES