Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Aug 21;74(Pt 9):1302–1308. doi: 10.1107/S2056989018011131

Crystal structure and theoretical studies of two π-conjugated fused-ring chalcones: (E)-1-(anthra­cen-9-yl)-3-(9-ethyl-9H-carbazol-3-yl)prop-2-en-1-one and (E)-1-(anthracen-9-yl)-3-[4-(9H-carbazol-9-yl)phen­yl]prop-2-en-1-one

Dian Alwani Zainuri a, Ibrahim Abdul Razak a, Suhana Arshad a,*
PMCID: PMC6127721  PMID: 30225122

Two chalcones were synthesized in Claisen–Schmidt condensation reactions. In the crystals, π–π inter­actions and weak C—H⋯O and C—H⋯π inter­actions are observed. The effect of these inter­molecular inter­actions in the solid state can be seen inthe difference between the experimental and theoretical optimized geometrical parameters.

Keywords: chalcone, anthracene, crystal structure, DFT

Abstract

The title chalcones, C31H23NO and C35H23NO, were synthesized via Claisen–Schmidt condensation reactions. Both structures were solved and refined using single-crystal X-ray diffraction data and optimized at the ground state using the density functional theory (DFT) method with the B3LYP/6-311++G(d,p) level. In the crystals, π–π inter­ations and weak C—H⋯O and C—H⋯π inter­actions are observed. The effect of these inter­molecular inter­actions in the solid state can be seen by the difference between the experimental and theoretical optimized geometrical parameters. The structures have also been characterized by UV–Vis spectroscopy. The smallest energy gaps of 2.86 and 2.96 eV enhance the nonlinear responses of such mol­ecular systems. Hirshfeld surface analyses and 2D (two-dimensional) fingerprint plots were used to qu­antify the inter­molecular inter­actions present in the crystal, indicating that these are the most important contribution to the crystal packing.

Chemical context  

Chalcones satisfy the criteria of three features essential for high nonlinear activity in an organic compound, which are: a strong electron donor, a highly polarizable π-conjugated bridge and a strong π-electron acceptor. A chalcone mol­ecule with a π-conjugated system provides a large charge-transfer axis with appropriate substituent groups on the terminal aromatic rings. Polyaromatic hydro­carbons or π-conjugated materials such as anthracenyl chalcone provide the significant property for conductivity that led to tremendous advances in the field of organic electronics (Li et al., 2016). These conjugated materials modifications on the anthracenyl chalcone decrease the HOMO–LUMO energy gap (HOMO is the highest occupied molecular orbital and LUMO is the lowest unoccupied mol­ecular orbital), enhancing the nonlinear responses of such mol­ecular systems. In this work, we report the synthesis and combined experimental and theoretical studies of the anthracene chalcones (E)-1-(anthracen-9-yl)-3-(9-ethyl-9H-carbazol-3-yl)prop-2-en-1-one, I, and (E)-1-(anthracen-9-yl)-3-[4-(9H-carbazol-9-yl)phen­yl]prop-2-en-1-one, II. Additionally, the UV–vis absorption and Hirshfeld surface analyses are discussed.

Structural commentary  

The mol­ecular structures and optimized geometries of compounds I and II are shown in Fig. 1. The optimization of the mol­ecular geometries leading to energy minima was achieved using DFT with a 6-311++G(d,p) basis set, as implemented in the GAUSSIAN09 program package (Frisch et al., 2009). The calculated geometric parameters, such as bond lengths, bond angles and torsion angles, compared to the experimental data are presented in Table S1 in the supporting information and exhibit normal ranges. The theoretical bond lengths, bond angles and torsion angles correlate well with the experimental data.graphic file with name e-74-01302-scheme1.jpg

Figure 1.

Figure 1

(a) The mol­ecular structures of compounds I and II. (b) The optimized structures of compounds I and II at DFT/B3LYP 6-311++G(d,p).

Both I and II comprise a chalcone with an anthracene ring with 9-ethyl-9H-carbazole and 9-phenyl-9H-carbazole substituents, respectively. The asymmetric unit of II contains two crystallographically independent mol­ecules, A and B (Fig. 1 a). The C—C distances in the central ring of the anthracene units show a little variations compared to the other rings (C2—C3, C4—C5, C9—C10 and C11—C12), which are much shorter. These observations are consistent with an electronic structure for the anthracene units where a central ring displaying aromatic delocalization is flanked by two isolated diene units (Glidewell & Lloyd, 1984).

Both theoretical and experimental structures (Fig. 1) exist in an s-trans configuration with respect to the enone moiety, with bond lengths C15=O1 [Exp = 1.220 (2) Å and DFT = 1.22 Å in I; Exp = 1.213 (3) (A) and 1.218 (3) Å (B), and DFT = 1.22 Å in II] and C16=C17 [Exp = 1.329 (2) Å and DFT = 1.35 Å in I; Exp = 1.319 (3) (A) and 1.320 (4) Å (B), and DFT = 1.35 Å in II]. Both I and II (A and B) are twisted at the C14—C15 bond, with C1—C14—C15—C16 torsion angles of −92.6 (2) (in I), 84.8 (3) (in IIA) and 106.3 (3)° (in IIB). The corresponding torsion angles for DFT are −85.84 and 85.63°, respectively. Additionally, in compound II, rings Y and Z (A) and rings Y′ and Z′ (B) are also twisted at the C21—N1 bond, with C20—C21—N1—C24 torsion angles of Exp = 64.1 (4)° (A) and 46.2 (4)° (B), and DFT = 55.03°. The large twist angles are due to the bulkiness of the strong electron-donor anthracene ring system and substituent ring system (Zainuri et al., 2018a ,b ,c ). Meanwhile, compounds I and II are found to be slightly twisted at the C17—C18 bond, with C16—C17—C18—C19 torsion angles of Exp = −16.4 (3)° and DFT = −1.38 for compound I, and Exp = −171.2 (3)° (A) and 11.4 (5)° (B), and DFT = −1.70° for compound II. The slight differences in the torsion angles between the experimental and DFT results in both compounds are due to the formation of inter­molecular C—H⋯O and C—H⋯π inter­actions involving all the fused-ring systems, which are not taken into consideration during the optimization process (Arshad et al., 2018).

The enone moiety in I [O1/C15–C17, maximum deviation = 0.0308 (19) Å at atom C16] makes dihedral angles of 86.93 (19) and 21.21 (19)° with the anthracene ring [maximum deviation = 0.0117 (19) Å at C9] and ring X [maximum deviation = 0.0363 (18) Å at C29], respectively. In compound II, the enone moiety [O1/C15–C17, maximum deviation = 0.017 (3) Å at C15A] for mol­ecule A forms dihedral angles of 84.76 (17), 87.61 (17) and 72.35 (17)° with the anthracene ring [maximum deviation = 0.029 (3) Å at C14A], ring Y [maximum deviation = 0.008 (3) Å at C19A] and ring Z [maximum deviation = 0.043 (3) Å at C34A], respectively. The anthracene ring forms dihedral angles of 89.63 (11) and 62.11 (7)° with rings Y and Z, respectively, and the dihedral angle between rings Y and Z is 61.73 (10)°. In addition, for mol­ecule B, the enone moiety [O1/C15–C17, maximum deviation = 0.036 (3) Å at C16B] forms dihedral angles of 72.2 (3), 13.5 (3) and 87.2 (3)° with the anthracene ring [maximum deviation = 0.018 (4) Å at C10B], ring Y′ [maximum deviation = 0.010 (3) Å at C20B] and ring Z′ [maximum deviation = 1.441 (2) Å at N1B], respectively. The anthracene ring forms dihedral angles of 61.46 (11) and 54.80 (7)° with rings Y′ and Z′, respectively, and the dihedral angle between rings Y′ and Z′ is 48.92 (11)°.

Supra­molecular features  

The crystal packing of I shows weak π–π inter­actions (Fig. 2 a) involving Cg1⋯Cg5 = 3.7267 (11) Å (symmetry code: 1 − x, 1 − y, 1 − z), Cg2⋯Cg4 = 3.6669 (12) Å (symmetry code: 2 − x, 2 − y, 1 − z), Cg3⋯Cg3 = 3.6585 (11) Å (symmetry code: 2 − x, 2 − y, 1 − z) and Cg4⋯Cg4 = 3.6790 (12) Å (symmetry code: 1 − x, 2 − y, 1 − z), where Cg1, Cg2, Cg3, Cg4 and Cg5 are the centroids of rings N1/C20/C21/C26/C27, C1–C6, C1/C6–C8/C13/C14, C8–C13, C18–C20/C27-C29, respectively. The packing is further linked into an infinite three-dimensional supra­molecular network.

Figure 2.

Figure 2

The crystal packing showing (a) weak π–π inter­actions in compound I and (b) weak C—H⋯O and C—H⋯π inter­actions of compound II.

Lists of weak hydrogen-bond inter­molecular inter­actions are shown in Table 1. The crystal packing of II (Fig. 1 b) shows weak C12B—H12B⋯O1 inter­molecular hydrogen bonds connecting the mol­ecules into an infinite one-dimensional chain along the c axis. In addition, weak inter­molecular C5B—H5BACg6, C27B—H27BCg7, C28B—H28BCg8, C11A—H11ACg9 and C7B—H7BCg10 inter­actions are also observed in the crystal packing and further stabilize the crystal structure, where Cg6, Cg7, Cg8, Cg9 and Cg10 are the centroids of rings N1A/C24A/C29A/C30A/C35A, C1A–C6A, C1A/C6A–C8A/C13A/C14A, C18A–C23A and C24A–C29A, respectively. These weak inter­molecular C—H⋯O and C—H⋯π inter­actions bridge the mol­ecules into an infinite one-dimensional column along the c axis.

Table 1. Hydrogen-bond geometry (Å, °) for II .

D—H⋯A D—H H⋯A DA D—H⋯A
C12B—H12B⋯O1B i 0.93 2.51 3.266 (4) 138
C5B—H5BACg6ii 0.93 2.79 3.585 (4) 144
C27B—H27BCg7 0.93 2.85 3.577 (4) 136
C28B—H28BCg8 0.93 2.70 3.382 (4) 130
C11A—H11ACg9iii 0.93 2.85 3.742 (4) 161
C7B—H7BACg10ii 0.93 2.90 3.704 (3) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

UV–Vis absorption analysis  

The electronic absorption spectra of I and II have been calculated using time-dependent DFT at the B3LYP/6-311++G(d,p) level in the gas phase and give values of 396 (I) and 383 nm (II). The absorption characteristics of I and II are observed in the UV region at 393 and 388 nm, as shown in Fig. 3. The theoretical wavelengths are shifted to higher values and are due to the fact that the calculations are confined to the gaseous medium, whereas the observations are from the solution state, using DMSO as solvent (Zainuri et al., 2017).

Figure 3.

Figure 3

The UV–Vis absorption spectra of compounds I and II.

According to an investigation on the frontier mol­ecular orbital (FMO) energy levels of the title compounds, the corresponding electronic transfer are found to happen between the HOMO and LUMO orbitals, as shown in Fig. 4. The positive phase is red and the negative is green. In Fig. 4, the charge densities in the ground state (HOMO) are mainly delocalized over the anthracenyl donor ring, while in the excited state (LUMO), the charge densities were accumulated on the π-conjugated enone bridge and the terminal electron acceptor group. The values of the energy separations between the HOMO and LUMO are 2.98 and 3.12 eV for compounds I and II, respectively. Through an extrapolation of the linear trend observed in the optical spectra, the experimental energy band gaps in I and II are 2.86 and 2.96 eV, respectively. These optical band-gap values indicate the suitability of this compound for optoelectronic applications, as was also reported previously for a chalcone structure by Tejkiran et al. (2016). In addition, Konkol et al. (2016) studied the structural and optical properties of fused rings where the results showed that fused rings have a lower energy band gap.

Figure 4.

Figure 4

The electron distribution of the HOMO and LUMO energy levels of compounds I and II.

Hirshfeld surface (HS) analysis  

The program CrystalExplorer (Wolff et al., 2012) was used to analyse the inter­actions in the crystal. Fig. 5(a) show the HS mapped over d norm, where the red spots indicate the regions of donor–acceptor inter­actions. The C—H⋯O contacts are only present in compound II. In addition, the presence of C—H⋯π inter­actions only occurs in compound II, indicated through a combination of pale-orange bright-red spots which are present on the HS mapped over shape index surface, identified with black arrows (Fig. 5 b). The large flat region delineated by a blue outline refers to the π–π stacking inter­actions. The curved nature of the compound reveals that π–π stacking inter­actions are present in compound I. Meanwhile, these inter­actions are absent in compound II.

Figure 5.

Figure 5

View of the Hirshfeld surfaces for the title compounds, showing (a) d norm with the red spots showing the involvement of the C—H⋯O inter­actions in II, (b) mapped over d e with the pale-orange spots within the black arrows indicating the C—H⋯π inter­actions in II and (c) mapped over curvedness with the black arrows indicating the π–π inter­actions in I.

The fingerprint plot shown in Fig. 6 indicates the H⋯H, H⋯O, C⋯H and C⋯C inter­actions with their relative percentage contributions. The H⋯H contacts have the largest overall contribution to the HS, and these inter­actions dominate in the crystal structure. The contribution from H⋯O/O⋯H contacts to the HS showing two narrow spikes provides evidence for the presence of inter­molecular C—H⋯O inter­actions in Fig. 6 for compound II. Meanwhile, there is no spike in the fingerprint of compound I. The 7.5% O⋯H contribution shown in compound I is the average percentage interaction from the total interactions presence in I. In compound I, there are no interactions other than the π–π interactions, which makes the percentage of the O⋯H contribution is slightly higher. Hence, a discussion on the percentage difference between I. and II. is invalid. The significant C—H⋯π inter­actions for compound II are indicated by the wings d e + d i ∼ 2.6 Å.

Figure 6.

Figure 6

Fingerprint plots of the H⋯H, H⋯O, C⋯H and C⋯C inter­actions showing the relative contributions to the total Hirshfeld surface.

Database survey  

A survey of the Cambridge Structural Database (CSD, Version 5.39, last update November 2017; Groom et al., 2016) revealed several fused-ring-substituted chalcones similar to I and II. There are four compounds which have an anthrancene ketone subtituent on the chalcone, including 9-anthryl styryl ketone and 9,10-anthryl bis­(styryl ketone) reported by Harlow et al. (1975). (2E)-1-(Anthracen-9-yl)-3-[4-(propan-2-yl)phen­yl]prop-2-en-1-one was reported by Girisha et al. (2016), while (E)-1-(anthracen-9-yl)-3-(2-chloro-6-fluoro­phen­yl)prop-2-en-1-one was reported by Abdullah et al. (2016). Zainuri et al. (2018a ) reported both anthrancene substituents on chalcone (E)-1,3-bis­(anthracen-9-yl)prop-2-en-1-one. Other related compounds include 1-(anthracen-9-yl)-2-methyl­prop-2-en-1-one (Agrahari et al., 2015), 9-anthroylacetone (Cicogna et al., 2004), (E)-1-(anthracen-9-yl)-3-[4-(piperidin-1-yl)phen­yl]prop-2-en-1-one and (E)-1-(anthracen-9-yl)-3-[4-(di­phenyl­amino)­phen­yl]prop-2-en-1-one (Zainuri et al., 2018b ,c ).

Synthesis and crystallization  

A mixture of 9-acetyl­anthrancene (0.5 mmol) and 9-ethylcarbazole-3-carbaldehyde (0.5 mmol) and 4-(9H-carbazol-9-yl)benzaldehyde (0.5 mmol) for compounds I and II, respectively, was dissolved in methanol (20 ml). A catalytic amount of NaOH (5 ml, 20%) was added to the solution dropwise under vigorous stirring. The reaction mixture was stirred for about 5–6 h at room temperature. After stirring, the contents of the flask were poured into ice-cold water (50 ml). The resultant crude products were filtered, washed successively with distilled water and recrystallized from acetone to give the corresponding chalcones (Scheme 1). Single crystals of I and II suitable for X-ray diffraction were obtained by slow evaporation from acetone solutions.

Refinement  

Crystal data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically (C—H = 0.93, 0.96 and 0.97 Å in I, and 0.93 Å in II) and refined using a riding model, with U iso(H) = 1.2 or 1.5U eq(C). A rotating group model was applied to the methyl group in I.

Table 2. Experimental details.

  I II
Crystal data
Chemical formula C31H23NO C35H23NO
M r 425.50 473.54
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 296 296
a, b, c (Å) 9.3038 (11), 15.0166 (18), 16.1170 (19) 18.019 (3), 29.214 (4), 9.5503 (13)
β (°) 99.286 (2) 97.637 (2)
V3) 2222.2 (5) 4982.9 (12)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.08 0.08
Crystal size (mm) 0.63 × 0.38 × 0.29 0.50 × 0.19 × 0.13
 
Data collection
Diffractometer Bruker SMART APEXII DUO CCD area-detector Bruker SMART APEXII DUO CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2009) Multi-scan (SADABS; Bruker, 2009)
No. of measured, independent and observed [I > 2σ(I)] reflections 44210, 5653, 3479 80460, 12643, 5265
R int 0.047 0.108
(sin θ/λ)max−1) 0.673 0.672
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.056, 0.142, 1.03 0.084, 0.169, 1.02
No. of reflections 5653 12643
No. of parameters 298 667
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.18 0.15, −0.15

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXL2014 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) mo_DA20_0m, mo_DA21e_0m, global. DOI: 10.1107/S2056989018011131/lh5878sup1.cif

e-74-01302-sup1.cif (3.6MB, cif)

Structure factors: contains datablock(s) mo_DA20_0m. DOI: 10.1107/S2056989018011131/lh5878mo_DA20_0msup2.hkl

Supporting information file. DOI: 10.1107/S2056989018011131/lh5878mo_DA20_0msup4.cml

Structure factors: contains datablock(s) mo_DA21e_0m. DOI: 10.1107/S2056989018011131/lh5878mo_DA21e_0msup3.hkl

Supporting information file. DOI: 10.1107/S2056989018011131/lh5878sup5.pdf

e-74-01302-sup5.pdf (166.8KB, pdf)

CCDC references: 1827021, 1827019

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Universiti Sains Malaysia (USM) for research facilities. DAZ thanks the Malaysian Government for the My Brain15 scholarship.

supplementary crystallographic information

(E)-1-(Anthracen-9-yl)-3-(9-ethyl-9H-carbazol-3-yl)prop-2-en-1-one (mo_DA20_0m) . Crystal data

C31H23NO F(000) = 896
Mr = 425.50 Dx = 1.272 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 9.3038 (11) Å Cell parameters from 5727 reflections
b = 15.0166 (18) Å θ = 2.2–22.9°
c = 16.1170 (19) Å µ = 0.08 mm1
β = 99.286 (2)° T = 296 K
V = 2222.2 (5) Å3 Block, yellow
Z = 4 0.63 × 0.38 × 0.29 mm

(E)-1-(Anthracen-9-yl)-3-(9-ethyl-9H-carbazol-3-yl)prop-2-en-1-one (mo_DA20_0m) . Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer 3479 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.047
φ and ω scans θmax = 28.6°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −12→11
k = −20→20
44210 measured reflections l = −21→21
5653 independent reflections

(E)-1-(Anthracen-9-yl)-3-(9-ethyl-9H-carbazol-3-yl)prop-2-en-1-one (mo_DA20_0m) . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056 H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.047P)2 + 0.6503P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
5653 reflections Δρmax = 0.20 e Å3
298 parameters Δρmin = −0.18 e Å3

(E)-1-(Anthracen-9-yl)-3-(9-ethyl-9H-carbazol-3-yl)prop-2-en-1-one (mo_DA20_0m) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(E)-1-(Anthracen-9-yl)-3-(9-ethyl-9H-carbazol-3-yl)prop-2-en-1-one (mo_DA20_0m) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.30258 (17) 0.43671 (10) 0.60520 (10) 0.0541 (4)
O1 1.00894 (17) 0.82396 (12) 0.67889 (10) 0.0940 (6)
C1 0.92274 (19) 0.86663 (11) 0.48174 (11) 0.0484 (4)
C2 1.0196 (2) 0.79632 (13) 0.46961 (14) 0.0628 (5)
H2A 1.0445 0.7544 0.5119 0.075*
C3 1.0762 (2) 0.78928 (16) 0.39769 (16) 0.0734 (6)
H3A 1.1383 0.7423 0.3909 0.088*
C4 1.0418 (3) 0.85254 (18) 0.33286 (14) 0.0760 (7)
H4A 1.0812 0.8469 0.2836 0.091*
C5 0.9521 (2) 0.92119 (15) 0.34183 (12) 0.0661 (6)
H5A 0.9315 0.9629 0.2989 0.079*
C6 0.8883 (2) 0.93085 (12) 0.41595 (11) 0.0509 (4)
C7 0.7968 (2) 1.00127 (12) 0.42694 (11) 0.0527 (5)
H7A 0.7763 1.0435 0.3845 0.063*
C8 0.73470 (19) 1.01073 (11) 0.49924 (11) 0.0476 (4)
C9 0.6398 (2) 1.08243 (12) 0.51020 (13) 0.0578 (5)
H9A 0.6192 1.1250 0.4680 0.069*
C10 0.5788 (2) 1.09027 (14) 0.58016 (14) 0.0659 (5)
H10A 0.5173 1.1379 0.5859 0.079*
C11 0.6082 (2) 1.02632 (15) 0.64463 (13) 0.0664 (5)
H11A 0.5654 1.0320 0.6927 0.080*
C12 0.6979 (2) 0.95678 (14) 0.63762 (12) 0.0578 (5)
H12A 0.7153 0.9151 0.6808 0.069*
C13 0.76632 (18) 0.94624 (11) 0.56498 (10) 0.0464 (4)
C14 0.86110 (18) 0.87608 (11) 0.55531 (10) 0.0474 (4)
C15 0.9024 (2) 0.81029 (13) 0.62560 (12) 0.0572 (5)
C16 0.8125 (2) 0.73143 (12) 0.62919 (12) 0.0567 (5)
H16A 0.8441 0.6888 0.6699 0.068*
C17 0.6880 (2) 0.71662 (11) 0.57782 (11) 0.0511 (4)
H17A 0.6618 0.7581 0.5352 0.061*
C18 0.5880 (2) 0.64229 (11) 0.58115 (11) 0.0484 (4)
C19 0.6285 (2) 0.56538 (11) 0.62652 (11) 0.0494 (4)
H19A 0.7240 0.5585 0.6536 0.059*
C20 0.52804 (19) 0.49902 (11) 0.63166 (10) 0.0458 (4)
C21 0.5346 (2) 0.41144 (11) 0.67115 (11) 0.0496 (4)
C22 0.6445 (2) 0.36261 (13) 0.71850 (12) 0.0609 (5)
H22A 0.7386 0.3852 0.7306 0.073*
C23 0.6120 (3) 0.28028 (14) 0.74725 (14) 0.0720 (6)
H23A 0.6849 0.2471 0.7796 0.086*
C24 0.4721 (3) 0.24555 (14) 0.72885 (14) 0.0764 (7)
H24A 0.4536 0.1894 0.7491 0.092*
C25 0.3595 (3) 0.29223 (13) 0.68122 (13) 0.0644 (5)
H25A 0.2661 0.2686 0.6686 0.077*
C26 0.3929 (2) 0.37631 (11) 0.65312 (11) 0.0504 (4)
C27 0.38240 (19) 0.51092 (11) 0.59169 (11) 0.0481 (4)
C28 0.3391 (2) 0.58737 (12) 0.54582 (12) 0.0565 (5)
H28A 0.2431 0.5951 0.5199 0.068*
C29 0.4432 (2) 0.65129 (12) 0.54014 (11) 0.0555 (5)
H29A 0.4170 0.7020 0.5082 0.067*
C30 0.1472 (2) 0.42573 (14) 0.57684 (13) 0.0654 (5)
H30A 0.1256 0.3628 0.5693 0.079*
H30B 0.1209 0.4546 0.5227 0.079*
C31 0.0561 (3) 0.4638 (2) 0.63703 (16) 0.0956 (8)
H31A −0.0451 0.4547 0.6153 0.143*
H31B 0.0799 0.4345 0.6905 0.143*
H31C 0.0752 0.5264 0.6439 0.143*

(E)-1-(Anthracen-9-yl)-3-(9-ethyl-9H-carbazol-3-yl)prop-2-en-1-one (mo_DA20_0m) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0529 (9) 0.0477 (8) 0.0619 (9) −0.0090 (7) 0.0099 (7) 0.0009 (7)
O1 0.0803 (11) 0.0948 (12) 0.0924 (11) −0.0320 (9) −0.0302 (9) 0.0327 (9)
C1 0.0446 (10) 0.0435 (9) 0.0558 (10) −0.0163 (8) 0.0040 (8) −0.0043 (8)
C2 0.0587 (12) 0.0521 (11) 0.0777 (14) −0.0129 (9) 0.0110 (10) −0.0071 (10)
C3 0.0608 (13) 0.0662 (14) 0.0950 (17) −0.0117 (11) 0.0176 (12) −0.0257 (13)
C4 0.0717 (15) 0.0934 (18) 0.0668 (13) −0.0241 (13) 0.0226 (11) −0.0256 (13)
C5 0.0686 (14) 0.0778 (15) 0.0533 (11) −0.0207 (12) 0.0139 (10) −0.0083 (10)
C6 0.0512 (11) 0.0537 (11) 0.0473 (9) −0.0191 (9) 0.0062 (8) −0.0035 (8)
C7 0.0568 (11) 0.0516 (11) 0.0477 (10) −0.0154 (9) 0.0024 (8) 0.0071 (8)
C8 0.0474 (10) 0.0439 (9) 0.0498 (9) −0.0146 (8) 0.0028 (8) 0.0021 (7)
C9 0.0583 (12) 0.0476 (10) 0.0651 (12) −0.0085 (9) 0.0028 (9) 0.0028 (9)
C10 0.0599 (13) 0.0615 (13) 0.0763 (14) −0.0026 (10) 0.0110 (11) −0.0084 (11)
C11 0.0655 (13) 0.0744 (14) 0.0618 (12) −0.0089 (11) 0.0179 (10) −0.0092 (11)
C12 0.0590 (12) 0.0634 (12) 0.0512 (10) −0.0144 (10) 0.0095 (9) 0.0046 (9)
C13 0.0432 (10) 0.0470 (10) 0.0476 (9) −0.0157 (8) 0.0034 (7) 0.0011 (8)
C14 0.0454 (10) 0.0460 (9) 0.0488 (9) −0.0169 (8) 0.0010 (7) 0.0036 (7)
C15 0.0531 (11) 0.0562 (11) 0.0595 (11) −0.0106 (9) 0.0006 (9) 0.0092 (9)
C16 0.0616 (12) 0.0474 (10) 0.0588 (11) −0.0067 (9) 0.0027 (9) 0.0122 (8)
C17 0.0599 (11) 0.0419 (9) 0.0523 (10) −0.0042 (8) 0.0121 (8) 0.0030 (8)
C18 0.0539 (11) 0.0438 (9) 0.0484 (9) −0.0072 (8) 0.0108 (8) −0.0023 (8)
C19 0.0507 (10) 0.0461 (10) 0.0519 (10) −0.0002 (8) 0.0102 (8) −0.0037 (8)
C20 0.0524 (10) 0.0406 (9) 0.0461 (9) −0.0039 (8) 0.0134 (8) −0.0059 (7)
C21 0.0612 (12) 0.0428 (9) 0.0474 (9) 0.0001 (8) 0.0164 (8) −0.0041 (8)
C22 0.0721 (13) 0.0532 (11) 0.0591 (11) 0.0054 (10) 0.0154 (10) 0.0005 (9)
C23 0.0931 (17) 0.0574 (13) 0.0679 (13) 0.0149 (12) 0.0200 (12) 0.0102 (10)
C24 0.121 (2) 0.0447 (11) 0.0717 (14) 0.0014 (13) 0.0411 (14) 0.0078 (10)
C25 0.0860 (15) 0.0480 (11) 0.0656 (12) −0.0126 (11) 0.0313 (11) −0.0029 (10)
C26 0.0640 (12) 0.0420 (9) 0.0486 (9) −0.0047 (9) 0.0188 (8) −0.0045 (8)
C27 0.0526 (11) 0.0425 (9) 0.0494 (9) −0.0056 (8) 0.0090 (8) −0.0042 (8)
C28 0.0537 (11) 0.0521 (11) 0.0602 (11) −0.0056 (9) −0.0015 (9) −0.0002 (9)
C29 0.0676 (12) 0.0415 (9) 0.0551 (10) −0.0030 (9) 0.0026 (9) 0.0036 (8)
C30 0.0596 (13) 0.0633 (13) 0.0716 (13) −0.0168 (10) 0.0052 (10) 0.0008 (10)
C31 0.0596 (15) 0.146 (3) 0.0823 (16) 0.0084 (15) 0.0128 (12) −0.0006 (17)

(E)-1-(Anthracen-9-yl)-3-(9-ethyl-9H-carbazol-3-yl)prop-2-en-1-one (mo_DA20_0m) . Geometric parameters (Å, º)

N1—C27 1.376 (2) C16—C17 1.329 (2)
N1—C26 1.384 (2) C16—H16A 0.9300
N1—C30 1.454 (2) C17—C18 1.459 (2)
O1—C15 1.220 (2) C17—H17A 0.9300
C1—C14 1.405 (2) C18—C19 1.386 (2)
C1—C2 1.422 (3) C18—C29 1.409 (3)
C1—C6 1.431 (2) C19—C20 1.378 (2)
C2—C3 1.352 (3) C19—H19A 0.9300
C2—H2A 0.9300 C20—C27 1.415 (2)
C3—C4 1.410 (3) C20—C21 1.458 (2)
C3—H3A 0.9300 C21—C22 1.383 (3)
C4—C5 1.349 (3) C21—C26 1.406 (3)
C4—H4A 0.9300 C22—C23 1.371 (3)
C5—C6 1.424 (3) C22—H22A 0.9300
C5—H5A 0.9300 C23—C24 1.389 (3)
C6—C7 1.387 (3) C23—H23A 0.9300
C7—C8 1.389 (2) C24—C25 1.385 (3)
C7—H7A 0.9300 C24—H24A 0.9300
C8—C9 1.422 (3) C25—C26 1.393 (2)
C8—C13 1.431 (2) C25—H25A 0.9300
C9—C10 1.347 (3) C27—C28 1.390 (2)
C9—H9A 0.9300 C28—C29 1.377 (3)
C10—C11 1.409 (3) C28—H28A 0.9300
C10—H10A 0.9300 C29—H29A 0.9300
C11—C12 1.353 (3) C30—C31 1.500 (3)
C11—H11A 0.9300 C30—H30A 0.9700
C12—C13 1.429 (2) C30—H30B 0.9700
C12—H12A 0.9300 C31—H31A 0.9600
C13—C14 1.399 (2) C31—H31B 0.9600
C14—C15 1.505 (2) C31—H31C 0.9600
C15—C16 1.457 (3)
C27—N1—C26 108.92 (15) C16—C17—C18 126.96 (17)
C27—N1—C30 125.24 (16) C16—C17—H17A 116.5
C26—N1—C30 125.78 (15) C18—C17—H17A 116.5
C14—C1—C2 123.03 (17) C19—C18—C29 119.05 (16)
C14—C1—C6 118.96 (17) C19—C18—C17 122.42 (17)
C2—C1—C6 118.02 (17) C29—C18—C17 118.45 (16)
C3—C2—C1 121.3 (2) C20—C19—C18 120.33 (17)
C3—C2—H2A 119.4 C20—C19—H19A 119.8
C1—C2—H2A 119.4 C18—C19—H19A 119.8
C2—C3—C4 120.6 (2) C19—C20—C27 119.38 (16)
C2—C3—H3A 119.7 C19—C20—C21 134.24 (17)
C4—C3—H3A 119.7 C27—C20—C21 106.38 (15)
C5—C4—C3 120.4 (2) C22—C21—C26 120.01 (17)
C5—C4—H4A 119.8 C22—C21—C20 133.93 (18)
C3—C4—H4A 119.8 C26—C21—C20 106.06 (16)
C4—C5—C6 121.1 (2) C23—C22—C21 118.7 (2)
C4—C5—H5A 119.5 C23—C22—H22A 120.6
C6—C5—H5A 119.5 C21—C22—H22A 120.6
C7—C6—C5 122.16 (18) C22—C23—C24 121.1 (2)
C7—C6—C1 119.20 (16) C22—C23—H23A 119.5
C5—C6—C1 118.62 (19) C24—C23—H23A 119.5
C6—C7—C8 122.16 (17) C25—C24—C23 121.8 (2)
C6—C7—H7A 118.9 C25—C24—H24A 119.1
C8—C7—H7A 118.9 C23—C24—H24A 119.1
C7—C8—C9 122.18 (17) C24—C25—C26 116.7 (2)
C7—C8—C13 119.25 (17) C24—C25—H25A 121.6
C9—C8—C13 118.58 (17) C26—C25—H25A 121.6
C10—C9—C8 121.62 (19) N1—C26—C25 128.88 (19)
C10—C9—H9A 119.2 N1—C26—C21 109.52 (15)
C8—C9—H9A 119.2 C25—C26—C21 121.60 (19)
C9—C10—C11 120.0 (2) N1—C27—C28 129.47 (17)
C9—C10—H10A 120.0 N1—C27—C20 109.11 (15)
C11—C10—H10A 120.0 C28—C27—C20 121.40 (16)
C12—C11—C10 120.90 (19) C29—C28—C27 117.68 (17)
C12—C11—H11A 119.6 C29—C28—H28A 121.2
C10—C11—H11A 119.5 C27—C28—H28A 121.2
C11—C12—C13 121.09 (18) C28—C29—C18 122.13 (17)
C11—C12—H12A 119.5 C28—C29—H29A 118.9
C13—C12—H12A 119.5 C18—C29—H29A 118.9
C14—C13—C12 123.17 (16) N1—C30—C31 112.98 (17)
C14—C13—C8 119.04 (16) N1—C30—H30A 109.0
C12—C13—C8 117.79 (17) C31—C30—H30A 109.0
C13—C14—C1 121.38 (16) N1—C30—H30B 109.0
C13—C14—C15 119.96 (16) C31—C30—H30B 109.0
C1—C14—C15 118.64 (17) H30A—C30—H30B 107.8
O1—C15—C16 121.04 (18) C30—C31—H31A 109.5
O1—C15—C14 119.96 (17) C30—C31—H31B 109.5
C16—C15—C14 119.00 (16) H31A—C31—H31B 109.5
C17—C16—C15 124.03 (17) C30—C31—H31C 109.5
C17—C16—H16A 118.0 H31A—C31—H31C 109.5
C15—C16—H16A 118.0 H31B—C31—H31C 109.5
C14—C1—C2—C3 179.71 (17) C16—C17—C18—C19 −16.4 (3)
C6—C1—C2—C3 −0.9 (3) C16—C17—C18—C29 160.28 (19)
C1—C2—C3—C4 0.8 (3) C29—C18—C19—C20 −0.3 (3)
C2—C3—C4—C5 0.2 (3) C17—C18—C19—C20 176.35 (16)
C3—C4—C5—C6 −1.0 (3) C18—C19—C20—C27 −1.3 (2)
C4—C5—C6—C7 179.43 (18) C18—C19—C20—C21 178.28 (17)
C4—C5—C6—C1 0.8 (3) C19—C20—C21—C22 0.3 (3)
C14—C1—C6—C7 0.9 (2) C27—C20—C21—C22 179.94 (19)
C2—C1—C6—C7 −178.54 (16) C19—C20—C21—C26 179.98 (18)
C14—C1—C6—C5 179.53 (15) C27—C20—C21—C26 −0.37 (18)
C2—C1—C6—C5 0.1 (2) C26—C21—C22—C23 −0.2 (3)
C5—C6—C7—C8 −179.93 (16) C20—C21—C22—C23 179.44 (18)
C1—C6—C7—C8 −1.3 (3) C21—C22—C23—C24 0.6 (3)
C6—C7—C8—C9 −179.38 (16) C22—C23—C24—C25 −0.2 (3)
C6—C7—C8—C13 0.3 (2) C23—C24—C25—C26 −0.5 (3)
C7—C8—C9—C10 179.15 (18) C27—N1—C26—C25 −179.43 (17)
C13—C8—C9—C10 −0.6 (3) C30—N1—C26—C25 3.2 (3)
C8—C9—C10—C11 −0.2 (3) C27—N1—C26—C21 −0.17 (19)
C9—C10—C11—C12 0.3 (3) C30—N1—C26—C21 −177.55 (16)
C10—C11—C12—C13 0.4 (3) C24—C25—C26—N1 −179.86 (18)
C11—C12—C13—C14 179.25 (17) C24—C25—C26—C21 1.0 (3)
C11—C12—C13—C8 −1.2 (3) C22—C21—C26—N1 −179.92 (16)
C7—C8—C13—C14 1.1 (2) C20—C21—C26—N1 0.33 (18)
C9—C8—C13—C14 −179.17 (15) C22—C21—C26—C25 −0.6 (3)
C7—C8—C13—C12 −178.51 (15) C20—C21—C26—C25 179.66 (16)
C9—C8—C13—C12 1.2 (2) C26—N1—C27—C28 178.40 (18)
C12—C13—C14—C1 178.05 (16) C30—N1—C27—C28 −4.2 (3)
C8—C13—C14—C1 −1.5 (2) C26—N1—C27—C20 −0.08 (19)
C12—C13—C14—C15 −3.8 (2) C30—N1—C27—C20 177.32 (16)
C8—C13—C14—C15 176.65 (15) C19—C20—C27—N1 180.00 (15)
C2—C1—C14—C13 179.93 (16) C21—C20—C27—N1 0.28 (18)
C6—C1—C14—C13 0.6 (2) C19—C20—C27—C28 1.4 (3)
C2—C1—C14—C15 1.7 (2) C21—C20—C27—C28 −178.35 (16)
C6—C1—C14—C15 −177.65 (15) N1—C27—C28—C29 −178.00 (17)
C13—C14—C15—O1 −90.0 (2) C20—C27—C28—C29 0.3 (3)
C1—C14—C15—O1 88.2 (2) C27—C28—C29—C18 −2.1 (3)
C13—C14—C15—C16 89.2 (2) C19—C18—C29—C28 2.1 (3)
C1—C14—C15—C16 −92.6 (2) C17—C18—C29—C28 −174.70 (17)
O1—C15—C16—C17 173.6 (2) C27—N1—C30—C31 −85.7 (2)
C14—C15—C16—C17 −5.6 (3) C26—N1—C30—C31 91.2 (2)
C15—C16—C17—C18 −175.80 (18)

(E)-1-(Anthracen-9-yl)-3-[4-(9H-carbazol-9-yl)phenyl]prop-2-en-1-one (mo_DA21e_0m) . Crystal data

C35H23NO F(000) = 1984
Mr = 473.54 Dx = 1.262 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 18.019 (3) Å Cell parameters from 3880 reflections
b = 29.214 (4) Å θ = 2.3–20.0°
c = 9.5503 (13) Å µ = 0.08 mm1
β = 97.637 (2)° T = 296 K
V = 4982.9 (12) Å3 Plate, yellow
Z = 8 0.50 × 0.19 × 0.13 mm

(E)-1-(Anthracen-9-yl)-3-[4-(9H-carbazol-9-yl)phenyl]prop-2-en-1-one (mo_DA21e_0m) . Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer 5265 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.108
φ and ω scans θmax = 28.5°, θmin = 1.1°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −24→24
k = −39→39
80460 measured reflections l = −12→12
12643 independent reflections

(E)-1-(Anthracen-9-yl)-3-[4-(9H-carbazol-9-yl)phenyl]prop-2-en-1-one (mo_DA21e_0m) . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.084 H-atom parameters constrained
wR(F2) = 0.169 w = 1/[σ2(Fo2) + (0.0387P)2 + 2.1214P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
12643 reflections Δρmax = 0.15 e Å3
667 parameters Δρmin = −0.15 e Å3

(E)-1-(Anthracen-9-yl)-3-[4-(9H-carbazol-9-yl)phenyl]prop-2-en-1-one (mo_DA21e_0m) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(E)-1-(Anthracen-9-yl)-3-[4-(9H-carbazol-9-yl)phenyl]prop-2-en-1-one (mo_DA21e_0m) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1A 0.70771 (12) 0.46409 (8) 0.2628 (2) 0.0562 (6)
O1A 1.07380 (14) 0.46983 (8) 0.9167 (3) 0.1060 (9)
C1A 1.11780 (15) 0.36157 (10) 0.9308 (3) 0.0550 (7)
C2A 1.14020 (18) 0.36671 (12) 0.7943 (4) 0.0746 (9)
H2AA 1.1228 0.3914 0.7378 0.090*
C3A 1.1869 (2) 0.33565 (16) 0.7463 (4) 0.0971 (12)
H3AA 1.2003 0.3390 0.6561 0.117*
C4A 1.2152 (2) 0.29859 (16) 0.8298 (5) 0.0997 (13)
H4AA 1.2483 0.2783 0.7958 0.120*
C5A 1.19497 (19) 0.29218 (12) 0.9589 (5) 0.0857 (11)
H5AA 1.2139 0.2672 1.0128 0.103*
C6A 1.14504 (16) 0.32293 (10) 1.0144 (3) 0.0630 (8)
C7A 1.12271 (18) 0.31728 (11) 1.1474 (3) 0.0716 (9)
H7AA 1.1408 0.2923 1.2021 0.086*
C8A 1.07435 (17) 0.34759 (10) 1.2011 (3) 0.0618 (8)
C9A 1.0514 (2) 0.34237 (12) 1.3384 (3) 0.0852 (11)
H9AA 1.0695 0.3179 1.3952 0.102*
C10A 1.0038 (2) 0.37244 (14) 1.3864 (4) 0.0945 (12)
H10A 0.9897 0.3685 1.4759 0.113*
C11A 0.9754 (2) 0.40949 (12) 1.3031 (4) 0.0855 (11)
H11A 0.9417 0.4295 1.3369 0.103*
C12A 0.99626 (18) 0.41645 (10) 1.1742 (3) 0.0669 (8)
H12A 0.9772 0.4415 1.1210 0.080*
C13A 1.04704 (15) 0.38610 (9) 1.1177 (3) 0.0531 (7)
C14A 1.06970 (14) 0.39254 (9) 0.9843 (3) 0.0490 (7)
C15A 1.04172 (16) 0.43341 (10) 0.8980 (3) 0.0575 (7)
C16A 0.97565 (15) 0.42839 (10) 0.7923 (3) 0.0572 (7)
H16A 0.9504 0.4005 0.7855 0.069*
C17A 0.95048 (14) 0.46190 (9) 0.7064 (3) 0.0517 (7)
H17A 0.9775 0.4891 0.7176 0.062*
C18A 0.88611 (14) 0.46221 (9) 0.5960 (2) 0.0461 (6)
C19A 0.87537 (15) 0.49921 (9) 0.5044 (3) 0.0582 (8)
H19A 0.9082 0.5239 0.5170 0.070*
C20A 0.81701 (16) 0.50011 (10) 0.3950 (3) 0.0629 (8)
H20A 0.8113 0.5250 0.3337 0.075*
C21A 0.76707 (14) 0.46405 (9) 0.3766 (3) 0.0486 (7)
C22A 0.77644 (15) 0.42742 (9) 0.4683 (3) 0.0524 (7)
H22A 0.7428 0.4031 0.4571 0.063*
C23A 0.83510 (15) 0.42646 (9) 0.5763 (3) 0.0522 (7)
H23A 0.8407 0.4015 0.6370 0.063*
C24A 0.71655 (16) 0.46292 (9) 0.1192 (3) 0.0527 (7)
C25A 0.78105 (17) 0.46512 (10) 0.0569 (3) 0.0629 (8)
H25A 0.8278 0.4673 0.1110 0.075*
C26A 0.7740 (2) 0.46406 (11) −0.0876 (3) 0.0766 (9)
H26A 0.8169 0.4656 −0.1320 0.092*
C27A 0.7054 (2) 0.46071 (11) −0.1686 (3) 0.0818 (10)
H27A 0.7028 0.4605 −0.2665 0.098*
C28A 0.6409 (2) 0.45763 (10) −0.1087 (3) 0.0736 (9)
H28A 0.5947 0.4549 −0.1645 0.088*
C29A 0.64597 (16) 0.45865 (9) 0.0391 (3) 0.0562 (7)
C30A 0.59190 (16) 0.45608 (9) 0.1376 (3) 0.0596 (8)
C31A 0.51464 (19) 0.45214 (11) 0.1233 (4) 0.0817 (10)
H31A 0.4871 0.4494 0.0341 0.098*
C32A 0.4791 (2) 0.45237 (11) 0.2415 (5) 0.0918 (12)
H32A 0.4274 0.4490 0.2318 0.110*
C33A 0.5186 (2) 0.45750 (11) 0.3751 (5) 0.0856 (11)
H33A 0.4929 0.4581 0.4532 0.103*
C34A 0.59657 (18) 0.46183 (10) 0.3946 (4) 0.0707 (9)
H34A 0.6235 0.4658 0.4838 0.085*
C35A 0.63152 (16) 0.45997 (9) 0.2741 (3) 0.0573 (7)
N1B 0.75504 (13) 0.31672 (7) 0.7498 (2) 0.0545 (6)
O1B 0.39724 (14) 0.25060 (8) 0.0493 (3) 0.1037 (9)
C1B 0.38794 (16) 0.35263 (10) −0.0405 (3) 0.0588 (8)
C2B 0.4305 (2) 0.33541 (13) −0.1434 (4) 0.0877 (11)
H2BA 0.4566 0.3081 −0.1266 0.105*
C3B 0.4336 (3) 0.35821 (17) −0.2660 (4) 0.1139 (14)
H3BA 0.4606 0.3459 −0.3334 0.137*
C4B 0.3965 (3) 0.40018 (16) −0.2928 (4) 0.1061 (13)
H4BA 0.4003 0.4158 −0.3763 0.127*
C5B 0.3555 (2) 0.41782 (12) −0.1987 (4) 0.0840 (10)
H5BA 0.3311 0.4456 −0.2181 0.101*
C6B 0.34842 (17) 0.39491 (10) −0.0695 (3) 0.0614 (8)
C7B 0.30545 (17) 0.41207 (10) 0.0289 (3) 0.0661 (8)
H7BA 0.2797 0.4394 0.0095 0.079*
C8B 0.29961 (16) 0.38992 (10) 0.1545 (3) 0.0600 (8)
C9B 0.25652 (18) 0.40812 (12) 0.2558 (4) 0.0821 (10)
H9BA 0.2306 0.4355 0.2373 0.099*
C10B 0.2529 (2) 0.38588 (15) 0.3791 (4) 0.0962 (12)
H10B 0.2253 0.3984 0.4452 0.115*
C11B 0.2903 (2) 0.34412 (14) 0.4084 (4) 0.0887 (11)
H11B 0.2870 0.3293 0.4935 0.106*
C12B 0.33094 (17) 0.32540 (11) 0.3147 (3) 0.0686 (8)
H12B 0.3545 0.2974 0.3352 0.082*
C13B 0.33845 (15) 0.34761 (9) 0.1845 (3) 0.0533 (7)
C14B 0.38207 (15) 0.32977 (9) 0.0867 (3) 0.0530 (7)
C15B 0.42182 (17) 0.28463 (10) 0.1130 (3) 0.0627 (8)
C16B 0.48985 (16) 0.28167 (10) 0.2149 (3) 0.0619 (8)
H16B 0.5164 0.2543 0.2208 0.074*
C17B 0.51593 (15) 0.31550 (10) 0.2990 (3) 0.0565 (7)
H17B 0.4913 0.3434 0.2839 0.068*
C18B 0.57872 (15) 0.31449 (9) 0.4128 (3) 0.0525 (7)
C19B 0.62943 (16) 0.27845 (10) 0.4343 (3) 0.0636 (8)
H19B 0.6250 0.2537 0.3724 0.076*
C20B 0.68616 (16) 0.27895 (9) 0.5463 (3) 0.0609 (8)
H20B 0.7189 0.2543 0.5606 0.073*
C21B 0.69482 (15) 0.31594 (9) 0.6380 (3) 0.0513 (7)
C22B 0.64470 (16) 0.35165 (9) 0.6181 (3) 0.0586 (8)
H22B 0.6495 0.3765 0.6796 0.070*
C23B 0.58778 (15) 0.35067 (9) 0.5079 (3) 0.0586 (8)
H23B 0.5542 0.3750 0.4963 0.070*
C24B 0.82957 (16) 0.30586 (9) 0.7360 (3) 0.0538 (7)
C25B 0.86218 (18) 0.29651 (10) 0.6159 (3) 0.0651 (8)
H25B 0.8338 0.2960 0.5271 0.078*
C26B 0.93814 (19) 0.28801 (10) 0.6323 (4) 0.0746 (9)
H26B 0.9611 0.2813 0.5530 0.089*
C27B 0.98123 (19) 0.28918 (10) 0.7642 (4) 0.0788 (10)
H27B 1.0322 0.2829 0.7722 0.095*
C28B 0.94911 (19) 0.29957 (10) 0.8828 (4) 0.0728 (9)
H28B 0.9781 0.3008 0.9708 0.087*
C29B 0.87234 (17) 0.30820 (9) 0.8695 (3) 0.0584 (8)
C30B 0.82245 (18) 0.32079 (9) 0.9691 (3) 0.0606 (8)
C31B 0.8318 (2) 0.32666 (11) 1.1151 (3) 0.0823 (10)
H31B 0.8786 0.3231 1.1679 0.099*
C32B 0.7706 (3) 0.33779 (12) 1.1797 (4) 0.0923 (12)
H32B 0.7765 0.3415 1.2773 0.111*
C33B 0.7005 (2) 0.34362 (11) 1.1031 (4) 0.0844 (11)
H33B 0.6603 0.3516 1.1500 0.101*
C34B 0.68903 (19) 0.33782 (9) 0.9578 (3) 0.0667 (8)
H34B 0.6419 0.3416 0.9060 0.080*
C35B 0.75101 (17) 0.32615 (9) 0.8929 (3) 0.0559 (7)

(E)-1-(Anthracen-9-yl)-3-[4-(9H-carbazol-9-yl)phenyl]prop-2-en-1-one (mo_DA21e_0m) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1A 0.0463 (14) 0.0716 (16) 0.0486 (14) −0.0026 (12) −0.0021 (11) 0.0073 (12)
O1A 0.1001 (19) 0.0713 (16) 0.130 (2) −0.0338 (14) −0.0479 (15) 0.0325 (14)
C1A 0.0367 (16) 0.0623 (19) 0.0628 (19) −0.0078 (14) −0.0048 (14) −0.0074 (15)
C2A 0.058 (2) 0.088 (3) 0.079 (2) −0.0115 (18) 0.0133 (18) −0.0093 (19)
C3A 0.073 (3) 0.121 (4) 0.102 (3) −0.020 (3) 0.031 (2) −0.029 (3)
C4A 0.054 (2) 0.107 (3) 0.138 (4) 0.000 (2) 0.013 (3) −0.043 (3)
C5A 0.056 (2) 0.079 (3) 0.116 (3) 0.0077 (19) −0.015 (2) −0.016 (2)
C6A 0.0424 (18) 0.060 (2) 0.080 (2) 0.0045 (15) −0.0160 (16) −0.0102 (17)
C7A 0.072 (2) 0.060 (2) 0.074 (2) 0.0050 (17) −0.0213 (18) 0.0111 (17)
C8A 0.068 (2) 0.0567 (19) 0.0560 (19) −0.0047 (16) −0.0090 (15) 0.0053 (15)
C9A 0.118 (3) 0.073 (2) 0.061 (2) −0.010 (2) −0.002 (2) 0.0162 (18)
C10A 0.129 (4) 0.091 (3) 0.067 (2) −0.017 (3) 0.025 (2) −0.005 (2)
C11A 0.108 (3) 0.075 (2) 0.079 (2) −0.007 (2) 0.031 (2) −0.012 (2)
C12A 0.076 (2) 0.058 (2) 0.066 (2) −0.0043 (17) 0.0100 (17) −0.0042 (16)
C13A 0.0508 (18) 0.0528 (18) 0.0524 (17) −0.0060 (14) −0.0055 (14) −0.0015 (14)
C14A 0.0402 (16) 0.0515 (17) 0.0515 (17) −0.0037 (13) −0.0076 (13) 0.0024 (13)
C15A 0.0518 (18) 0.0578 (19) 0.0601 (18) −0.0069 (15) −0.0035 (14) 0.0063 (15)
C16A 0.0577 (19) 0.0539 (18) 0.0558 (17) −0.0051 (14) −0.0077 (14) 0.0059 (14)
C17A 0.0538 (17) 0.0520 (17) 0.0475 (16) −0.0033 (14) 0.0003 (13) 0.0027 (13)
C18A 0.0504 (16) 0.0469 (16) 0.0397 (14) 0.0011 (13) 0.0019 (12) 0.0006 (12)
C19A 0.0564 (18) 0.0504 (17) 0.0632 (18) −0.0088 (14) −0.0093 (15) 0.0103 (14)
C20A 0.061 (2) 0.0593 (19) 0.0646 (19) −0.0017 (16) −0.0059 (15) 0.0182 (15)
C21A 0.0454 (16) 0.0554 (17) 0.0433 (15) 0.0017 (14) −0.0006 (12) 0.0038 (13)
C22A 0.0547 (18) 0.0533 (18) 0.0478 (16) −0.0077 (13) 0.0017 (14) 0.0024 (13)
C23A 0.0621 (19) 0.0489 (17) 0.0438 (15) −0.0030 (14) 0.0004 (14) 0.0059 (12)
C24A 0.0521 (18) 0.0509 (17) 0.0523 (17) 0.0012 (14) −0.0039 (14) 0.0026 (13)
C25A 0.057 (2) 0.072 (2) 0.0572 (19) −0.0008 (16) 0.0004 (15) 0.0037 (15)
C26A 0.090 (3) 0.080 (2) 0.060 (2) 0.0094 (19) 0.0113 (19) −0.0016 (17)
C27A 0.110 (3) 0.077 (2) 0.056 (2) 0.013 (2) 0.002 (2) −0.0061 (17)
C28A 0.086 (3) 0.058 (2) 0.067 (2) 0.0068 (18) −0.0259 (19) −0.0079 (16)
C29A 0.0574 (19) 0.0443 (17) 0.0625 (19) 0.0033 (14) −0.0083 (15) 0.0012 (14)
C30A 0.0451 (18) 0.0448 (17) 0.083 (2) 0.0002 (13) −0.0147 (16) 0.0057 (15)
C31A 0.060 (2) 0.060 (2) 0.119 (3) −0.0025 (17) −0.013 (2) 0.008 (2)
C32A 0.049 (2) 0.067 (2) 0.157 (4) −0.0054 (18) 0.002 (3) 0.020 (3)
C33A 0.067 (2) 0.066 (2) 0.129 (3) 0.0064 (19) 0.032 (2) 0.024 (2)
C34A 0.058 (2) 0.073 (2) 0.082 (2) 0.0024 (17) 0.0120 (18) 0.0180 (17)
C35A 0.0462 (18) 0.0521 (18) 0.072 (2) 0.0016 (14) 0.0019 (16) 0.0111 (15)
N1B 0.0536 (16) 0.0558 (14) 0.0519 (14) −0.0008 (12) −0.0010 (12) 0.0017 (11)
O1B 0.126 (2) 0.0615 (15) 0.1070 (19) 0.0105 (14) −0.0459 (16) −0.0209 (14)
C1B 0.0581 (19) 0.0586 (19) 0.0557 (18) −0.0037 (15) −0.0066 (15) −0.0021 (15)
C2B 0.097 (3) 0.092 (3) 0.076 (2) 0.011 (2) 0.019 (2) 0.004 (2)
C3B 0.137 (4) 0.124 (4) 0.087 (3) 0.010 (3) 0.039 (3) 0.009 (3)
C4B 0.135 (4) 0.111 (4) 0.073 (3) −0.015 (3) 0.015 (3) 0.022 (2)
C5B 0.096 (3) 0.073 (2) 0.078 (2) −0.011 (2) −0.007 (2) 0.017 (2)
C6B 0.061 (2) 0.0554 (19) 0.0617 (19) −0.0103 (16) −0.0148 (16) 0.0044 (16)
C7B 0.059 (2) 0.0495 (18) 0.083 (2) 0.0007 (15) −0.0130 (18) 0.0011 (17)
C8B 0.0497 (18) 0.0560 (19) 0.071 (2) −0.0037 (15) −0.0048 (15) −0.0027 (16)
C9B 0.064 (2) 0.074 (2) 0.108 (3) 0.0090 (18) 0.011 (2) −0.006 (2)
C10B 0.089 (3) 0.107 (3) 0.098 (3) 0.008 (2) 0.032 (2) −0.008 (3)
C11B 0.089 (3) 0.104 (3) 0.077 (2) 0.002 (2) 0.022 (2) 0.007 (2)
C12B 0.063 (2) 0.072 (2) 0.068 (2) −0.0015 (17) 0.0006 (17) 0.0072 (18)
C13B 0.0456 (17) 0.0513 (17) 0.0591 (18) −0.0038 (14) −0.0082 (14) 0.0009 (14)
C14B 0.0460 (17) 0.0538 (17) 0.0547 (17) 0.0010 (14) −0.0105 (14) −0.0036 (14)
C15B 0.067 (2) 0.0548 (19) 0.0621 (19) 0.0009 (16) −0.0084 (16) −0.0054 (15)
C16B 0.062 (2) 0.0519 (18) 0.067 (2) 0.0092 (15) −0.0061 (16) −0.0007 (15)
C17B 0.0528 (18) 0.0500 (17) 0.0644 (19) 0.0072 (14) −0.0001 (14) 0.0056 (14)
C18B 0.0479 (17) 0.0489 (17) 0.0580 (17) 0.0019 (14) −0.0030 (14) 0.0044 (14)
C19B 0.066 (2) 0.0551 (18) 0.0646 (19) 0.0102 (15) −0.0100 (16) −0.0102 (15)
C20B 0.061 (2) 0.0496 (18) 0.0676 (19) 0.0130 (14) −0.0081 (16) −0.0032 (15)
C21B 0.0539 (18) 0.0463 (17) 0.0516 (16) −0.0017 (14) −0.0002 (14) 0.0035 (13)
C22B 0.062 (2) 0.0451 (17) 0.0659 (19) 0.0014 (15) −0.0013 (16) −0.0038 (14)
C23B 0.0524 (18) 0.0447 (17) 0.076 (2) 0.0069 (13) −0.0035 (15) 0.0026 (15)
C24B 0.0533 (19) 0.0454 (16) 0.0606 (19) −0.0061 (14) −0.0002 (15) 0.0042 (14)
C25B 0.066 (2) 0.0599 (19) 0.068 (2) −0.0054 (16) 0.0038 (17) 0.0018 (15)
C26B 0.068 (2) 0.064 (2) 0.094 (3) −0.0066 (18) 0.020 (2) −0.0039 (18)
C27B 0.059 (2) 0.061 (2) 0.113 (3) −0.0075 (17) −0.001 (2) −0.003 (2)
C28B 0.065 (2) 0.058 (2) 0.087 (2) −0.0115 (17) −0.0179 (19) −0.0019 (18)
C29B 0.060 (2) 0.0478 (17) 0.064 (2) −0.0098 (15) −0.0036 (16) −0.0001 (14)
C30B 0.073 (2) 0.0443 (17) 0.0590 (19) −0.0113 (15) −0.0111 (17) −0.0030 (14)
C31B 0.107 (3) 0.071 (2) 0.062 (2) −0.007 (2) −0.015 (2) −0.0104 (18)
C32B 0.146 (4) 0.073 (2) 0.057 (2) 0.006 (2) 0.010 (3) −0.0099 (18)
C33B 0.124 (3) 0.060 (2) 0.074 (3) 0.011 (2) 0.032 (2) 0.0011 (18)
C34B 0.082 (2) 0.0485 (18) 0.071 (2) 0.0028 (16) 0.0127 (18) 0.0013 (15)
C35B 0.072 (2) 0.0416 (16) 0.0535 (18) −0.0052 (15) 0.0054 (16) −0.0008 (13)

(E)-1-(Anthracen-9-yl)-3-[4-(9H-carbazol-9-yl)phenyl]prop-2-en-1-one (mo_DA21e_0m) . Geometric parameters (Å, º)

N1A—C35A 1.397 (3) N1B—C24B 1.403 (3)
N1A—C24A 1.402 (3) N1B—C35B 1.405 (3)
N1A—C21A 1.420 (3) N1B—C21B 1.418 (3)
O1A—C15A 1.213 (3) O1B—C15B 1.218 (3)
C1A—C14A 1.396 (4) C1B—C14B 1.402 (4)
C1A—C2A 1.423 (4) C1B—C2B 1.416 (4)
C1A—C6A 1.431 (4) C1B—C6B 1.434 (4)
C2A—C3A 1.358 (5) C2B—C3B 1.355 (5)
C2A—H2AA 0.9300 C2B—H2BA 0.9300
C3A—C4A 1.401 (5) C3B—C4B 1.404 (5)
C3A—H3AA 0.9300 C3B—H3BA 0.9300
C4A—C5A 1.344 (5) C4B—C5B 1.340 (5)
C4A—H4AA 0.9300 C4B—H4BA 0.9300
C5A—C6A 1.423 (4) C5B—C6B 1.424 (4)
C5A—H5AA 0.9300 C5B—H5BA 0.9300
C6A—C7A 1.392 (4) C6B—C7B 1.388 (4)
C7A—C8A 1.388 (4) C7B—C8B 1.379 (4)
C7A—H7AA 0.9300 C7B—H7BA 0.9300
C8A—C13A 1.428 (4) C8B—C9B 1.422 (4)
C8A—C9A 1.435 (4) C8B—C13B 1.431 (4)
C9A—C10A 1.350 (5) C9B—C10B 1.354 (5)
C9A—H9AA 0.9300 C9B—H9BA 0.9300
C10A—C11A 1.400 (5) C10B—C11B 1.404 (5)
C10A—H10A 0.9300 C10B—H10B 0.9300
C11A—C12A 1.350 (4) C11B—C12B 1.345 (4)
C11A—H11A 0.9300 C11B—H11B 0.9300
C12A—C13A 1.430 (4) C12B—C13B 1.424 (4)
C12A—H12A 0.9300 C12B—H12B 0.9300
C13A—C14A 1.401 (4) C13B—C14B 1.399 (4)
C14A—C15A 1.500 (4) C14B—C15B 1.506 (4)
C15A—C16A 1.462 (4) C15B—C16B 1.463 (4)
C16A—C17A 1.319 (3) C16B—C17B 1.320 (4)
C16A—H16A 0.9300 C16B—H16B 0.9300
C17A—C18A 1.460 (3) C17B—C18B 1.461 (4)
C17A—H17A 0.9300 C17B—H17B 0.9300
C18A—C23A 1.387 (3) C18B—C23B 1.389 (4)
C18A—C19A 1.388 (3) C18B—C19B 1.391 (4)
C19A—C20A 1.381 (4) C19B—C20B 1.378 (4)
C19A—H19A 0.9300 C19B—H19B 0.9300
C20A—C21A 1.381 (4) C20B—C21B 1.386 (4)
C20A—H20A 0.9300 C20B—H20B 0.9300
C21A—C22A 1.379 (3) C21B—C22B 1.376 (4)
C22A—C23A 1.375 (3) C22B—C23B 1.369 (4)
C22A—H22A 0.9300 C22B—H22B 0.9300
C23A—H23A 0.9300 C23B—H23B 0.9300
C24A—C25A 1.376 (4) C24B—C25B 1.383 (4)
C24A—C29A 1.400 (4) C24B—C29B 1.401 (4)
C25A—C26A 1.369 (4) C25B—C26B 1.379 (4)
C25A—H25A 0.9300 C25B—H25B 0.9300
C26A—C27A 1.371 (4) C26B—C27B 1.390 (4)
C26A—H26A 0.9300 C26B—H26B 0.9300
C27A—C28A 1.366 (4) C27B—C28B 1.372 (4)
C27A—H27A 0.9300 C27B—H27B 0.9300
C28A—C29A 1.403 (4) C28B—C29B 1.395 (4)
C28A—H28A 0.9300 C28B—H28B 0.9300
C29A—C30A 1.443 (4) C29B—C30B 1.441 (4)
C30A—C31A 1.386 (4) C30B—C31B 1.392 (4)
C30A—C35A 1.405 (4) C30B—C35B 1.401 (4)
C31A—C32A 1.370 (5) C31B—C32B 1.371 (5)
C31A—H31A 0.9300 C31B—H31B 0.9300
C32A—C33A 1.384 (5) C32B—C33B 1.384 (5)
C32A—H32A 0.9300 C32B—H32B 0.9300
C33A—C34A 1.398 (4) C33B—C34B 1.386 (4)
C33A—H33A 0.9300 C33B—H33B 0.9300
C34A—C35A 1.385 (4) C34B—C35B 1.390 (4)
C34A—H34A 0.9300 C34B—H34B 0.9300
C35A—N1A—C24A 108.3 (2) C24B—N1B—C35B 108.0 (2)
C35A—N1A—C21A 126.1 (2) C24B—N1B—C21B 124.9 (2)
C24A—N1A—C21A 125.2 (2) C35B—N1B—C21B 127.0 (2)
C14A—C1A—C2A 122.2 (3) C14B—C1B—C2B 122.8 (3)
C14A—C1A—C6A 119.4 (3) C14B—C1B—C6B 119.0 (3)
C2A—C1A—C6A 118.5 (3) C2B—C1B—C6B 118.2 (3)
C3A—C2A—C1A 120.2 (4) C3B—C2B—C1B 120.9 (4)
C3A—C2A—H2AA 119.9 C3B—C2B—H2BA 119.6
C1A—C2A—H2AA 119.9 C1B—C2B—H2BA 119.6
C2A—C3A—C4A 121.3 (4) C2B—C3B—C4B 120.9 (4)
C2A—C3A—H3AA 119.3 C2B—C3B—H3BA 119.5
C4A—C3A—H3AA 119.3 C4B—C3B—H3BA 119.5
C5A—C4A—C3A 120.5 (4) C5B—C4B—C3B 120.3 (4)
C5A—C4A—H4AA 119.8 C5B—C4B—H4BA 119.8
C3A—C4A—H4AA 119.8 C3B—C4B—H4BA 119.8
C4A—C5A—C6A 121.1 (4) C4B—C5B—C6B 121.4 (4)
C4A—C5A—H5AA 119.5 C4B—C5B—H5BA 119.3
C6A—C5A—H5AA 119.5 C6B—C5B—H5BA 119.3
C7A—C6A—C5A 122.6 (3) C7B—C6B—C5B 122.6 (3)
C7A—C6A—C1A 118.9 (3) C7B—C6B—C1B 119.2 (3)
C5A—C6A—C1A 118.5 (3) C5B—C6B—C1B 118.2 (3)
C8A—C7A—C6A 122.2 (3) C8B—C7B—C6B 122.2 (3)
C8A—C7A—H7AA 118.9 C8B—C7B—H7BA 118.9
C6A—C7A—H7AA 118.9 C6B—C7B—H7BA 118.9
C7A—C8A—C13A 118.9 (3) C7B—C8B—C9B 121.9 (3)
C7A—C8A—C9A 122.8 (3) C7B—C8B—C13B 119.2 (3)
C13A—C8A—C9A 118.3 (3) C9B—C8B—C13B 118.9 (3)
C10A—C9A—C8A 121.0 (3) C10B—C9B—C8B 120.4 (3)
C10A—C9A—H9AA 119.5 C10B—C9B—H9BA 119.8
C8A—C9A—H9AA 119.5 C8B—C9B—H9BA 119.8
C9A—C10A—C11A 120.7 (3) C9B—C10B—C11B 120.9 (4)
C9A—C10A—H10A 119.6 C9B—C10B—H10B 119.5
C11A—C10A—H10A 119.6 C11B—C10B—H10B 119.5
C12A—C11A—C10A 120.6 (3) C12B—C11B—C10B 120.6 (3)
C12A—C11A—H11A 119.7 C12B—C11B—H11B 119.7
C10A—C11A—H11A 119.7 C10B—C11B—H11B 119.7
C11A—C12A—C13A 121.4 (3) C11B—C12B—C13B 121.2 (3)
C11A—C12A—H12A 119.3 C11B—C12B—H12B 119.4
C13A—C12A—H12A 119.3 C13B—C12B—H12B 119.4
C14A—C13A—C8A 119.5 (3) C14B—C13B—C12B 122.7 (3)
C14A—C13A—C12A 122.6 (3) C14B—C13B—C8B 119.4 (3)
C8A—C13A—C12A 117.9 (3) C12B—C13B—C8B 117.9 (3)
C1A—C14A—C13A 121.1 (2) C13B—C14B—C1B 121.0 (3)
C1A—C14A—C15A 119.7 (3) C13B—C14B—C15B 120.8 (3)
C13A—C14A—C15A 119.3 (3) C1B—C14B—C15B 118.2 (3)
O1A—C15A—C16A 121.2 (3) O1B—C15B—C16B 120.1 (3)
O1A—C15A—C14A 119.9 (2) O1B—C15B—C14B 119.9 (3)
C16A—C15A—C14A 118.9 (2) C16B—C15B—C14B 120.0 (3)
C17A—C16A—C15A 122.4 (3) C17B—C16B—C15B 124.0 (3)
C17A—C16A—H16A 118.8 C17B—C16B—H16B 118.0
C15A—C16A—H16A 118.8 C15B—C16B—H16B 118.0
C16A—C17A—C18A 129.0 (3) C16B—C17B—C18B 128.0 (3)
C16A—C17A—H17A 115.5 C16B—C17B—H17B 116.0
C18A—C17A—H17A 115.5 C18B—C17B—H17B 116.0
C23A—C18A—C19A 117.8 (2) C23B—C18B—C19B 117.5 (2)
C23A—C18A—C17A 122.8 (2) C23B—C18B—C17B 118.9 (2)
C19A—C18A—C17A 119.4 (2) C19B—C18B—C17B 123.6 (3)
C20A—C19A—C18A 121.3 (3) C20B—C19B—C18B 120.8 (3)
C20A—C19A—H19A 119.3 C20B—C19B—H19B 119.6
C18A—C19A—H19A 119.3 C18B—C19B—H19B 119.6
C19A—C20A—C21A 120.0 (3) C19B—C20B—C21B 120.5 (3)
C19A—C20A—H20A 120.0 C19B—C20B—H20B 119.7
C21A—C20A—H20A 120.0 C21B—C20B—H20B 119.7
C22A—C21A—C20A 119.2 (2) C22B—C21B—C20B 119.1 (2)
C22A—C21A—N1A 120.2 (2) C22B—C21B—N1B 120.9 (2)
C20A—C21A—N1A 120.6 (2) C20B—C21B—N1B 119.9 (2)
C23A—C22A—C21A 120.6 (3) C23B—C22B—C21B 120.1 (3)
C23A—C22A—H22A 119.7 C23B—C22B—H22B 120.0
C21A—C22A—H22A 119.7 C21B—C22B—H22B 120.0
C22A—C23A—C18A 121.0 (2) C22B—C23B—C18B 122.0 (3)
C22A—C23A—H23A 119.5 C22B—C23B—H23B 119.0
C18A—C23A—H23A 119.5 C18B—C23B—H23B 119.0
C25A—C24A—C29A 121.8 (3) C25B—C24B—C29B 121.4 (3)
C25A—C24A—N1A 129.4 (2) C25B—C24B—N1B 129.8 (3)
C29A—C24A—N1A 108.9 (3) C29B—C24B—N1B 108.7 (3)
C26A—C25A—C24A 117.7 (3) C26B—C25B—C24B 117.8 (3)
C26A—C25A—H25A 121.2 C26B—C25B—H25B 121.1
C24A—C25A—H25A 121.2 C24B—C25B—H25B 121.1
C25A—C26A—C27A 121.7 (3) C25B—C26B—C27B 121.6 (3)
C25A—C26A—H26A 119.1 C25B—C26B—H26B 119.2
C27A—C26A—H26A 119.1 C27B—C26B—H26B 119.2
C28A—C27A—C26A 121.5 (3) C28B—C27B—C26B 120.5 (3)
C28A—C27A—H27A 119.3 C28B—C27B—H27B 119.8
C26A—C27A—H27A 119.3 C26B—C27B—H27B 119.8
C27A—C28A—C29A 118.3 (3) C27B—C28B—C29B 119.1 (3)
C27A—C28A—H28A 120.8 C27B—C28B—H28B 120.4
C29A—C28A—H28A 120.8 C29B—C28B—H28B 120.4
C24A—C29A—C28A 119.0 (3) C28B—C29B—C24B 119.5 (3)
C24A—C29A—C30A 107.0 (2) C28B—C29B—C30B 133.2 (3)
C28A—C29A—C30A 134.0 (3) C24B—C29B—C30B 107.3 (3)
C31A—C30A—C35A 118.6 (3) C31B—C30B—C35B 119.1 (3)
C31A—C30A—C29A 134.2 (3) C31B—C30B—C29B 133.6 (3)
C35A—C30A—C29A 107.3 (2) C35B—C30B—C29B 107.2 (3)
C32A—C31A—C30A 119.4 (3) C32B—C31B—C30B 118.9 (3)
C32A—C31A—H31A 120.3 C32B—C31B—H31B 120.6
C30A—C31A—H31A 120.3 C30B—C31B—H31B 120.6
C31A—C32A—C33A 121.4 (3) C31B—C32B—C33B 121.5 (3)
C31A—C32A—H32A 119.3 C31B—C32B—H32B 119.2
C33A—C32A—H32A 119.3 C33B—C32B—H32B 119.2
C32A—C33A—C34A 121.1 (3) C32B—C33B—C34B 121.2 (3)
C32A—C33A—H33A 119.4 C32B—C33B—H33B 119.4
C34A—C33A—H33A 119.4 C34B—C33B—H33B 119.4
C35A—C34A—C33A 116.5 (3) C33B—C34B—C35B 117.1 (3)
C35A—C34A—H34A 121.8 C33B—C34B—H34B 121.5
C33A—C34A—H34A 121.8 C35B—C34B—H34B 121.5
C34A—C35A—N1A 128.4 (3) C34B—C35B—C30B 122.2 (3)
C34A—C35A—C30A 122.9 (3) C34B—C35B—N1B 129.1 (3)
N1A—C35A—C30A 108.6 (3) C30B—C35B—N1B 108.7 (3)
C14A—C1A—C2A—C3A −179.8 (3) C14B—C1B—C2B—C3B 178.8 (3)
C6A—C1A—C2A—C3A −0.6 (4) C6B—C1B—C2B—C3B −0.2 (5)
C1A—C2A—C3A—C4A −1.3 (5) C1B—C2B—C3B—C4B 1.8 (6)
C2A—C3A—C4A—C5A 1.9 (6) C2B—C3B—C4B—C5B −1.9 (7)
C3A—C4A—C5A—C6A −0.6 (5) C3B—C4B—C5B—C6B 0.2 (6)
C4A—C5A—C6A—C7A 179.8 (3) C4B—C5B—C6B—C7B −179.0 (3)
C4A—C5A—C6A—C1A −1.2 (5) C4B—C5B—C6B—C1B 1.4 (5)
C14A—C1A—C6A—C7A 0.0 (4) C14B—C1B—C6B—C7B 0.0 (4)
C2A—C1A—C6A—C7A −179.2 (3) C2B—C1B—C6B—C7B 179.0 (3)
C14A—C1A—C6A—C5A −179.0 (3) C14B—C1B—C6B—C5B 179.5 (3)
C2A—C1A—C6A—C5A 1.8 (4) C2B—C1B—C6B—C5B −1.4 (4)
C5A—C6A—C7A—C8A 179.6 (3) C5B—C6B—C7B—C8B −179.2 (3)
C1A—C6A—C7A—C8A 0.6 (4) C1B—C6B—C7B—C8B 0.3 (4)
C6A—C7A—C8A—C13A −0.5 (4) C6B—C7B—C8B—C9B 178.9 (3)
C6A—C7A—C8A—C9A −179.5 (3) C6B—C7B—C8B—C13B −0.6 (4)
C7A—C8A—C9A—C10A −179.5 (3) C7B—C8B—C9B—C10B −178.9 (3)
C13A—C8A—C9A—C10A 1.5 (5) C13B—C8B—C9B—C10B 0.6 (5)
C8A—C9A—C10A—C11A 0.2 (6) C8B—C9B—C10B—C11B −1.2 (6)
C9A—C10A—C11A—C12A −1.4 (6) C9B—C10B—C11B—C12B 0.3 (6)
C10A—C11A—C12A—C13A 0.8 (5) C10B—C11B—C12B—C13B 1.2 (5)
C7A—C8A—C13A—C14A −0.2 (4) C11B—C12B—C13B—C14B 178.0 (3)
C9A—C8A—C13A—C14A 178.8 (3) C11B—C12B—C13B—C8B −1.8 (4)
C7A—C8A—C13A—C12A 179.0 (3) C7B—C8B—C13B—C14B 0.6 (4)
C9A—C8A—C13A—C12A −2.0 (4) C9B—C8B—C13B—C14B −178.9 (3)
C11A—C12A—C13A—C14A −179.9 (3) C7B—C8B—C13B—C12B −179.6 (3)
C11A—C12A—C13A—C8A 0.9 (4) C9B—C8B—C13B—C12B 0.9 (4)
C2A—C1A—C14A—C13A 178.4 (2) C12B—C13B—C14B—C1B 179.9 (3)
C6A—C1A—C14A—C13A −0.8 (4) C8B—C13B—C14B—C1B −0.3 (4)
C2A—C1A—C14A—C15A −1.6 (4) C12B—C13B—C14B—C15B 2.0 (4)
C6A—C1A—C14A—C15A 179.2 (2) C8B—C13B—C14B—C15B −178.2 (2)
C8A—C13A—C14A—C1A 0.9 (4) C2B—C1B—C14B—C13B −178.9 (3)
C12A—C13A—C14A—C1A −178.3 (2) C6B—C1B—C14B—C13B 0.0 (4)
C8A—C13A—C14A—C15A −179.1 (2) C2B—C1B—C14B—C15B −1.0 (4)
C12A—C13A—C14A—C15A 1.7 (4) C6B—C1B—C14B—C15B 177.9 (2)
C1A—C14A—C15A—O1A −95.2 (4) C13B—C14B—C15B—O1B 104.3 (3)
C13A—C14A—C15A—O1A 84.8 (4) C1B—C14B—C15B—O1B −73.6 (4)
C1A—C14A—C15A—C16A 84.8 (3) C13B—C14B—C15B—C16B −75.7 (4)
C13A—C14A—C15A—C16A −95.2 (3) C1B—C14B—C15B—C16B 106.3 (3)
O1A—C15A—C16A—C17A 4.4 (5) O1B—C15B—C16B—C17B −172.6 (3)
C14A—C15A—C16A—C17A −175.6 (3) C14B—C15B—C16B—C17B 7.4 (5)
C15A—C16A—C17A—C18A 179.7 (3) C15B—C16B—C17B—C18B 173.5 (3)
C16A—C17A—C18A—C23A 7.6 (4) C16B—C17B—C18B—C23B −166.7 (3)
C16A—C17A—C18A—C19A −171.2 (3) C16B—C17B—C18B—C19B 11.4 (5)
C23A—C18A—C19A—C20A −1.6 (4) C23B—C18B—C19B—C20B 0.1 (4)
C17A—C18A—C19A—C20A 177.4 (3) C17B—C18B—C19B—C20B −178.0 (3)
C18A—C19A—C20A—C21A 1.2 (4) C18B—C19B—C20B—C21B −1.5 (5)
C19A—C20A—C21A—C22A −0.1 (4) C19B—C20B—C21B—C22B 1.8 (4)
C19A—C20A—C21A—N1A −178.7 (3) C19B—C20B—C21B—N1B −177.8 (3)
C35A—N1A—C21A—C22A 57.7 (4) C24B—N1B—C21B—C22B −133.4 (3)
C24A—N1A—C21A—C22A −114.5 (3) C35B—N1B—C21B—C22B 49.8 (4)
C35A—N1A—C21A—C20A −123.8 (3) C24B—N1B—C21B—C20B 46.2 (4)
C24A—N1A—C21A—C20A 64.1 (4) C35B—N1B—C21B—C20B −130.6 (3)
C20A—C21A—C22A—C23A −0.6 (4) C20B—C21B—C22B—C23B −0.9 (4)
N1A—C21A—C22A—C23A 178.0 (2) N1B—C21B—C22B—C23B 178.7 (3)
C21A—C22A—C23A—C18A 0.2 (4) C21B—C22B—C23B—C18B −0.5 (4)
C19A—C18A—C23A—C22A 0.9 (4) C19B—C18B—C23B—C22B 0.8 (4)
C17A—C18A—C23A—C22A −178.0 (2) C17B—C18B—C23B—C22B 179.1 (3)
C35A—N1A—C24A—C25A −178.9 (3) C35B—N1B—C24B—C25B −176.2 (3)
C21A—N1A—C24A—C25A −5.6 (5) C21B—N1B—C24B—C25B 6.4 (4)
C35A—N1A—C24A—C29A 0.7 (3) C35B—N1B—C24B—C29B 0.3 (3)
C21A—N1A—C24A—C29A 174.0 (2) C21B—N1B—C24B—C29B −177.1 (2)
C29A—C24A—C25A—C26A 1.5 (4) C29B—C24B—C25B—C26B 2.1 (4)
N1A—C24A—C25A—C26A −178.9 (3) N1B—C24B—C25B—C26B 178.2 (3)
C24A—C25A—C26A—C27A −0.3 (5) C24B—C25B—C26B—C27B −0.7 (4)
C25A—C26A—C27A—C28A −0.9 (5) C25B—C26B—C27B—C28B −0.9 (5)
C26A—C27A—C28A—C29A 0.9 (5) C26B—C27B—C28B—C29B 1.1 (5)
C25A—C24A—C29A—C28A −1.5 (4) C27B—C28B—C29B—C24B 0.4 (4)
N1A—C24A—C29A—C28A 178.8 (2) C27B—C28B—C29B—C30B −178.4 (3)
C25A—C24A—C29A—C30A 178.4 (3) C25B—C24B—C29B—C28B −2.0 (4)
N1A—C24A—C29A—C30A −1.3 (3) N1B—C24B—C29B—C28B −178.8 (2)
C27A—C28A—C29A—C24A 0.2 (4) C25B—C24B—C29B—C30B 177.0 (2)
C27A—C28A—C29A—C30A −179.6 (3) N1B—C24B—C29B—C30B 0.2 (3)
C24A—C29A—C30A—C31A 179.3 (3) C28B—C29B—C30B—C31B −3.8 (6)
C28A—C29A—C30A—C31A −0.9 (6) C24B—C29B—C30B—C31B 177.3 (3)
C24A—C29A—C30A—C35A 1.4 (3) C28B—C29B—C30B—C35B 178.3 (3)
C28A—C29A—C30A—C35A −178.8 (3) C24B—C29B—C30B—C35B −0.6 (3)
C35A—C30A—C31A—C32A 0.3 (4) C35B—C30B—C31B—C32B −0.4 (5)
C29A—C30A—C31A—C32A −177.4 (3) C29B—C30B—C31B—C32B −178.1 (3)
C30A—C31A—C32A—C33A 1.5 (5) C30B—C31B—C32B—C33B −0.5 (5)
C31A—C32A—C33A—C34A −1.2 (5) C31B—C32B—C33B—C34B 0.9 (5)
C32A—C33A—C34A—C35A −1.0 (5) C32B—C33B—C34B—C35B −0.3 (5)
C33A—C34A—C35A—N1A 178.8 (3) C33B—C34B—C35B—C30B −0.6 (4)
C33A—C34A—C35A—C30A 2.9 (4) C33B—C34B—C35B—N1B 177.6 (3)
C24A—N1A—C35A—C34A −176.3 (3) C31B—C30B—C35B—C34B 1.0 (4)
C21A—N1A—C35A—C34A 10.5 (5) C29B—C30B—C35B—C34B 179.2 (2)
C24A—N1A—C35A—C30A 0.1 (3) C31B—C30B—C35B—N1B −177.5 (2)
C21A—N1A—C35A—C30A −173.1 (2) C29B—C30B—C35B—N1B 0.7 (3)
C31A—C30A—C35A—C34A −2.6 (4) C24B—N1B—C35B—C34B −179.0 (3)
C29A—C30A—C35A—C34A 175.7 (3) C21B—N1B—C35B—C34B −1.7 (4)
C31A—C30A—C35A—N1A −179.2 (2) C24B—N1B—C35B—C30B −0.6 (3)
C29A—C30A—C35A—N1A −0.9 (3) C21B—N1B—C35B—C30B 176.6 (2)

(E)-1-(Anthracen-9-yl)-3-[4-(9H-carbazol-9-yl)phenyl]prop-2-en-1-one (mo_DA21e_0m) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C12B—H12B···O1Bi 0.93 2.51 3.266 (4) 138
C5B—H5BA···Cg6ii 0.93 2.79 3.585 (4) 144
C27—H27B···Cg7 0.93 2.85 3.577 (4) 136
C28—H28B···Cg8 0.93 2.70 3.382 (4) 130
C11—H11A···Cg9iii 0.93 2.85 3.742 (4) 161
C7—H7BA···Cg10ii 0.93 2.90 3.704 (3) 145

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, −y, −z; (iii) x, y, z+1.

Funding Statement

This work was funded by Universiti Sains Malaysia, Fundamental Research Grant Scheme (FRGS) grant 203/PFIZIK/6711606. Universiti Sains MalaysiaShort Term Grant Scheme, Short Term Grant Scheme grant 304/PFIZIK/6313336.

References

  1. Abdullah, A. A., Hassan, N. H. H., Arshad, S., Khalib, N. C. & Razak, I. A. (2016). Acta Cryst. E72, 648–651. [DOI] [PMC free article] [PubMed]
  2. Agrahari, A., Wagers, P. O., Schildcrout, S. M., Masnovi, J. & Youngs, W. J. (2015). Acta Cryst. E71, 357–359. [DOI] [PMC free article] [PubMed]
  3. Arshad, S., Zainuri, D. A., Khalib, N. C., Thanigaimani, K., Rosli, M. M., Razak, I. A., Sulaiman, S. F., Hashim, N. S. & Ooi, K. L. (2018). Mol. Cryst. Liq. Cryst. 664, 218–240.
  4. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cicogna, F., Ingrosso, G., Ladato, F., Marchetti, F. & Zandomeneghi, M. (2004). Tetrahedron, 60, 11959–11968.
  6. Frisch, M. J., et al. (2009). GAUSSIAN09. Revision A.1. Gaussian Inc., Wallingford, CT, USA.
  7. Girisha, M., Yathirajan, H. S., Jasinski, J. P. & Glidewell, C. (2016). Acta Cryst. E72, 1153–1158. [DOI] [PMC free article] [PubMed]
  8. Glidewell, C. & Lloyd, D. (1984). Tetrahedron, 40, 4455–4472.
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Harlow, R. L., Loghry, R. A., Williams, H. J. & Simonsen, S. H. (1975). Acta Cryst. B31, 1344–1350.
  11. Konkol, K. L., Schwiderski, R. L. & Rasmussen, S. C. (2016). Materials, 9, 404–420. [DOI] [PMC free article] [PubMed]
  12. Li, X. C., Wang, C. Y., Lai, W. Y. & Huang, W. (2016). J. Mater. Chem. C, 4, 10574–10587.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Tejkiran, P. J., Teja, M. S. B., Kumar, P. S. S., Sankar, P., Philip, R., Naveen, S., Lokanath, N. K. & Rao, G. N. (2016). J. Photochem. Photobiol. A, 324, 233–239.
  17. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia, Perth.
  18. Zainuri, D. A., Arshad, S., Khalib, N. C., Razak, A. I., Pillai, R. R., Sulaiman, F., Hashim, N. S., Ooi, K. L., Armaković, S., Armakoviće, S. J., Panicker, Y. & Alsenoy, C. V. (2017). J. Mol. Struct. 1128, 520–533.
  19. Zainuri, D. A., Razak, I. A. & Arshad, S. (2018a). Acta Cryst. E74, 492–496. [DOI] [PMC free article] [PubMed]
  20. Zainuri, D. A., Razak, I. A. & Arshad, S. (2018b). Acta Cryst. E74, 650–655. [DOI] [PMC free article] [PubMed]
  21. Zainuri, D. A., Razak, I. A. & Arshad, S. (2018c). Acta Cryst. E74, 780–785. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) mo_DA20_0m, mo_DA21e_0m, global. DOI: 10.1107/S2056989018011131/lh5878sup1.cif

e-74-01302-sup1.cif (3.6MB, cif)

Structure factors: contains datablock(s) mo_DA20_0m. DOI: 10.1107/S2056989018011131/lh5878mo_DA20_0msup2.hkl

Supporting information file. DOI: 10.1107/S2056989018011131/lh5878mo_DA20_0msup4.cml

Structure factors: contains datablock(s) mo_DA21e_0m. DOI: 10.1107/S2056989018011131/lh5878mo_DA21e_0msup3.hkl

Supporting information file. DOI: 10.1107/S2056989018011131/lh5878sup5.pdf

e-74-01302-sup5.pdf (166.8KB, pdf)

CCDC references: 1827021, 1827019

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES