Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Aug 14;74(Pt 9):1244–1249. doi: 10.1107/S2056989018011180

Two new Rb–Ga arsenates: RbGa(HAsO4)2 and RbGa2As(HAsO4)6

Karolina Schwendtner a,*, Uwe Kolitsch b
PMCID: PMC6127722  PMID: 30225109

The crystal structures of hydro­thermally synthesized RbGa(HAsO4)2 and RbGa2As(HAsO4)6 were solved by single-crystal X-ray diffraction. They both crystallize in related R Inline graphic c structure types, one of which contains AsO6 octa­hedra assuming the topological role of M 3+O6 octa­hedra.

Keywords: RbGa(HAsO4)2, RbGa2As(HAsO4)6, AsO6, arsenate, hydrogenarsenate, AsO6 octa­hedra, crystal structure

Abstract

The crystal structures of hydro­thermally synthesized (T = 493 K, 7–9 d) rubidium gallium bis­[hydrogenarsenate(V)], RbGa(HAsO4)2, and rubidium digallium arsenic(V) hexa­[hydrogenarsenate(V)], RbGa2As(HAsO4)6, were solved by single-crystal X-ray diffraction. Both compounds have tetra­hedral–octa­hedral framework topologies. The M + cations are located in channels of the respective framework. RbGa(HAsO4)2 crystallizes in the RbFe(HPO4)2 structure type (R Inline graphic c), while RbGa2As(HAsO4)6 adopts the structure type of RbAl2As(HAsO4)6 (R Inline graphic c), which represents a modification of the RbFe(HPO4)2 structure type. In this modification, one third of the M 3+O6 octa­hedra are replaced by AsO6 octa­hedra, and two thirds of the voids in the structure, which are usually filled by M + cations, remain empty to achieve charge balance.

Chemical context  

Compounds with mixed tetra­hedral–octa­hedral (T–O) framework structures feature a broad range of different atomic arrangements, resulting in topologies with various inter­esting properties, such as ion exchange (Masquelier et al., 1996) and ion conductivity (Chouchene et al., 2017), as well as unusual piezoelectric (Ren et al., 2015), magnetic (Ouerfelli et al., 2007) or nonlinear optical features (frequency doubling) (Sun et al., 2017). In order to further increase the insufficient knowledge about the crystal chemistry and structure types of arsenates, a comprehensive study of the system M +M 3+–O–(H)–As5+ (M + = Li, Na, K, Rb, Cs, Ag, Tl, NH4; M 3+ = Al, Ga, In, Sc, Fe, Cr, Tl) was undertaken, which led to a large number of new compounds, most of which have been published (Schwendtner & Kolitsch, 2007, 2017, 2018a ,b , and references therein).

Among the many different structure types found during our study, one atomic arrangement, i.e. the RbFe(HPO4)2 type (Lii & Wu, 1994; rhombohedral, R Inline graphic c), was found to show a large crystal–chemical flexibility which allows the incorporation of a wide variety of cations. A total of nine representatives of this structure type are presently known among M + M 3+(HTO4)2 (T = P, As) compounds containing Rb or Cs as the M + cation and Al, Ga, Fe or In as the M 3+ cation (Lesage et al., 2007; Lii & Wu, 1994; Schwendtner & Kolitsch, 2017, 2018a ,b ), including RbGa(HPO4)2 (Lesage et al., 2007). One of the title compounds, RbGa(HAsO4)2, is another new representative of the RbFe(HPO4)2 structure type. The second title compound, RbGa2As(HAsO4)6, is the third representative of a recently described variation of the RbFe(HPO4)2 type, the RbAl2As(HAsO4)6 type. It also crystallizes in R Inline graphic c and up to now members with RbAl and CsFe as M + M 3+ cation combinations are known (Schwendtner & Kolitsch, 2018b ). Inter­estingly, all presently known M + M 3+ combinations adopting this new structure type also have representatives adopting the RbFe(HPO4)2 type. It thus seems likely that more of the known RbFe(HPO4)2-type arsenates would also adopt the new RbAl2As(HAsO4)6-type atomic arrangement under formally ‘dry’ synthesis conditions (see §3). RbGa2As(HAsO4)6 is a rare example of a compound containing AsO6 octa­hedra. Out of all reported arsenates(V), only about 3% contain AsO6 polyhedra, according to our earlier review paper (Schwendtner & Kolitsch, 2007), which provides an overview of all known compounds containing AsO6 groups and their bond-length statistics. At present, 37 compounds containing As in an octa­hedral coordination are known (Schwendtner & Kolitsch, 2018b ); RbGa2As(HAsO4)6 represents the 38th member of this class of compounds. While 12 Rb- and Ga-containing phosphates are contained in the ICSD (FIZ, 2018), only one Rb–Ga arsenate, i.e. RbGaF3(H2AsO4) (Marshall et al., 2015), is known so far. Since submitting this paper, another paper dealing with isotypic M + M 3+ 2As(HAsO4)6 compounds (M + M 3+ = TlGa, CsGa, CsAl) has been published (Schwendtner & Kolitsch, 2018c ).

Structural commentary  

The two title compounds are very closely related to each other and are modifications of a basic tetra­hedral–octa­hedral framework structure featuring inter­penetrating channels, which host the M + cations (Fig. 1). The two structure types, first reported for RbFe(HPO4)2 (R Inline graphic c; Lii & Wu, 1994) and RbAl2As(HAsO4)6 (R Inline graphic c; Schwendtner & Kolitsch, 2018b ), are also related to the triclinic (NH4)Fe(HPO4)2 type (P Inline graphic; Yakubovich, 1993) and the RbAl(HAsO4)2 type (R32; Schwendtner & Kolitsch, 2018b ). The fundamental building unit in all these structure types contains M 3+O6 octa­hedra which are connected via their six corners to six protonated AsO4 tetra­hedra, thereby forming an M 3+As6O24 unit. These units are in turn connected via three corners to other M 3+O6 octa­hedra. The free protonated corner of each AsO4 tetra­hedron forms a hydrogen bond to the neighbouring M 3+As6O24 group (Fig. 2). The M 3+As6O24 units are arranged in layers perpendicular to the c hex axis (Fig. 1). The units within these layers are held together by medium–strong hydrogen bonds (Tables 1 and 2). Both title compounds invariably show a very similar crystal habit: strongly pseudohexa­gonal to pseudo-octa­hedral (cf. Fig. 3).

Figure 1.

Figure 1

Crystal structure drawings of (a) RbGa2As(HAsO4)6 and (b) RbGa(HAsO4)2 in views along the b axis. A part of the GaO6 octa­hedra is replaced by AsO6 octa­hedra in RbGa2As(HAsO4)6; the corresponding layers (see Figs. 2 and 3) are compressed along c and the corresponding void remains vacant of Rb atoms.

Figure 2.

Figure 2

Crystal structure drawings of (a) RbGa(HAsO4)2 and (b) RbGa2As(HAsO4)6 inequal layers, viewed along the c axis. In this layer, the GaO6 octa­hedra are replaced by AsO6 octa­hedra in RbGa2As(HAsO4)6 (b). Since the unit-cell dimensions in directions a and b are slightly longer in RbGa2As(HAsO4)6 and the AsO6 octa­hedra are smaller than the corresponding GaO6 octa­hedra, the (Ga/As)As6O24 units within this layer move further apart – leading to longer D—H⋯A distances and a compressed (along c) void that is too small for Rb atoms (compare Fig. 1).

Table 1. Hydrogen-bond geometry (Å, °) for RbGa(HAsO4)2 .

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H⋯O4xxi 0.85 (3) 1.76 (3) 2.598 (2) 168 (4)

Symmetry code: (xxi) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °) for RbGa2As(HAsO4)6 .

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H⋯O4xiv 0.80 (3) 1.98 (3) 2.7314 (17) 158 (3)

Symmetry code: (xiv) Inline graphic.

Figure 3.

Figure 3

SEM micrograph of the pseudohexa­gonal tabular crystals of RbGa(HAsO4)2.

The new compound RbGa2As(HAsO4)6 could only be grown by ‘dry’ hydro­thermal techniques (without the addition of water). The extreme abundance of As during the synthesis and the formation of a melt of arsenic acid promotes the formation of this novel structure type and endorses the octa­hedral coordination of As. The substitution of one third of all Ga3+ cations by As5+ requires that two thirds of all Rb+ cations are omitted to achieve charge balance (compare Figs. 1 a, 1b, 2 a and 2b). This substitution also has an effect on the unit-cell parameters (Table 3) and the pore diameter. Since GaO6 is only replaced by AsO6 in every second layer (perpendicular to the c axis), the a axis must remain long enough to still be able to house the GaO6 in the layers between. The effect of the smaller AsO6 octa­hedra is therefore mainly reflected by a strong compression of about 5% along the c axis, while the a axis becomes even slightly longer compared to RbGa(HAsO4)2. Due to the comparatively smaller AsO6 octa­hedra, the (Ga/As)As6O24 units are further apart in RbGa2As(HAsO4)6 and the encased void is compressed along c, making it too small to house Rb+ cations (Figs. 1 and 2). This effect is also reflected by the considerably elongated hydrogen bond in RbGa2As(HAsO4)6. While these bonds, which connect neighbouring (Ga/As)As6O24 groups, are very strong in RbGa(HAsO4)2 [D—H⋯A = 2.598 (2) Å], they are much longer in RbGa2As(HAsO4)6 [2.7314 (17) Å; compare Tables 1 and 2]. The second layer, in contrast, remains practically identical in both compounds and contains Rb atoms with a slight positional disorder (Fig. 4). In both compounds, the Rb atoms are 12-coordinated (Figs. 2 and 3), and the average Rb—O bond lengths in RbGa2As(HAsO4)6 (3.433 Å) are longer than the longest average bond length in RbO12 polyhedra of 3.410 Å reported so far (Gagné & Hawthorne, 2016), thus leading to rather low bond-valence sums (BVSs; Gagné & Hawthorne, 2015) of only 0.59 valence units (v.u.), whereas the corresponding BVSs are 0.82 and 0.84 v.u. for RbGa(HAsO4)2. These loose bondings lead to considerable positional disorder of the Rb+ cations in these voids, which were modelled with two Rb positions, between 0.41 (2) and 0.42 (4) Å apart. While position Rb1A in the centre of the large framework void in RbGa2As(HAsO4)6 has only 77% occupancy compared to the off-centre position Rb1B (with occupancy 23%), in RbGa(HAsO4)2, the central position Rb1A has 91% occupancy. Similar behaviour was observed for the isotypic CsFe and RbAl compounds (Schwendtner & Kolitsch, 2018b ), as well as isotypic phosphates (Lesage et al., 2007).

Table 3. Experimental details.

  RbGa(HAsO4)2 RbGa2As(HAsO4)6
Crystal data
Chemical formula RbGa(HAsO4)2 RbGa2As(HAsO4)6
M r 435.05 1139.40
Crystal system, space group Trigonal, R Inline graphic c:H Trigonal, R Inline graphic c:H
Temperature (K) 293 293
a, c (Å) 8.385 (1), 53.880 (11) 8.491 (1), 50.697 (11)
V3) 3280.7 (10) 3165.4 (10)
Z 18 6
Radiation type Mo Kα Mo Kα
μ (mm−1) 19.42 15.85
Crystal size (mm) 0.07 × 0.07 × 0.02 0.13 × 0.12 × 0.12
 
Data collection
Diffractometer Nonius KappaCCD single-crystal four-circle Nonius KappaCCD single-crystal four-circle
Absorption correction Multi-scan (SCALEPACK; Otwinowski et al., 2003) Multi-scan (SCALEPACK; Otwinowski et al., 2003)
T min, T max 0.343, 0.697 0.232, 0.252
No. of measured, independent and observed [I > 2σ(I)] reflections 3896, 1079, 1027 4684, 1287, 1196
R int 0.016 0.016
(sin θ/λ)max−1) 0.704 0.757
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.016, 0.040, 1.11 0.014, 0.034, 1.13
No. of reflections 1079 1287
No. of parameters 68 65
No. of restraints 2 2
H-atom treatment All H-atom parameters refined All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.79, −0.53 0.75, −0.84

Computer programs: COLLECT (Nonius, 2003), DENZO and SCALEPACK (Otwinowski et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL2016 (Sheldrick, 2015), DIAMOND (Brandenburg, 2005) and publCIF (Westrip, 2010).

Figure 4.

Figure 4

Crystal structure drawing of (a) RbGa(HAsO4)2 and (b) RbGa2As(HAsO4)6 equal layers, viewed along the a axis. In these topologically equivalent layers, there are no visible differences between the two structure types apart from very minor changes in the hydrogen-bond geometries. The Rb atoms in both compounds show a slight positional disorder and are 12-coordinated.

A further indirect effect of the substituting AsO6 octa­hedra is a distinct change in the As—O distances of the AsO4 tetra­hedra. The average As—O distance in the protonated AsO4 tetra­hedra, with values between 1.688 and 1.689 Å, is in both compounds very close to the statistical average of 1.686 (10) Å (Schwendtner, 2008). Also the BVSs (Gagné & Hawthorne, 2015) are close to ideal values (4.98–5.00 v.u.). In RbGa(HAsO4)2, the HAsO4 tetra­hedra show a typical distortion, with three short As—O distances to attached GaO6 octa­hedra and one elongated As—O bond length for the protonated O atom involved in the O—H bond. That bond length (Table 4) in RbGa(HAsO4)2 is slightly longer [1.7417 (17) Å] than the average distance of As—O⋯H bonds in HAsO4 groups [1.72 (3) Å; Schwendtner, 2008]. In contrast, RbGa2As(HAsO4)6 has two short [4]As—O bond lengths to neighbouring GaO6 octa­hedra, but the [4]As—O bond length of the O atom shared with the AsO6 octa­hedra is also elongated [1.7100 (11) Å] due to [4]As—O—[6]As repulsion. The [4]As—OH bond is therefore shortened to 1.7122 (13) Å (Table 5). The average As—O distances in the AsO6 octa­hedra are the shortest average distances of AsO6 octa­hedra found so far, i.e. 1.807 Å, leading to rather high BVSs of 5.33 v.u. (after Gagné & Hawthorne, 2015). The grand mean As—O bond distance in AsO6 octa­hedra in inorganic compounds is 1.830 (2) Å according to Schwendtner & Kolitsch (2007 a); this value was determined on 33 AsO6 octa­hedra of 31 compounds. Gagné & Hawthorne (2018) determined an identical, but less precise, value of 1.830 (28) Å, based on only 13 AsO6 octa­hedra in AsO6-containing compounds meeting all selection criteria as defined in Gagné & Hawthorne (2016). However, a larger number of compounds meeting these criteria were not used by Gagné & Hawthorne (2018) for unknown reasons. The average Ga—O bond lengths of the octa­hedrally coordinated Ga cations (1.962–1.964 Å) are slightly shorter than the grand mean average of 1.978 (17) Å (Gagné & Hawthorne, 2018), explaining the corresponding BVSs of 3.10 to 3.11 v.u.

Table 4. Selected bond lengths (Å) for RbGa(HAsO4)2 .

Rb1A—O3i 3.197 (2) Rb2—O4xi 3.4960 (16)
Rb1A—O3ii 3.197 (2) Rb2—O3xii 3.5327 (19)
Rb1A—O3iii 3.197 (2) Rb2—O3xiii 3.533 (2)
Rb1A—O3iv 3.197 (2) Rb2—O3xiv 3.5328 (19)
Rb1A—O3v 3.197 (2) Ga1—O2xv 1.9596 (14)
Rb1A—O3 3.197 (2) Ga1—O2iii 1.9597 (15)
Rb1A—O2ii 3.3698 (16) Ga1—O2xvi 1.9597 (15)
Rb1A—O2iii 3.3698 (16) Ga1—O4xvii 1.9690 (15)
Rb1A—O2v 3.3699 (16) Ga1—O4iv 1.9690 (15)
Rb1A—O2 3.3699 (16) Ga1—O4xviii 1.9690 (15)
Rb1A—O2i 3.3699 (15) Ga2—O1viii 1.9625 (15)
Rb1A—O2iv 3.3699 (15) Ga2—O1xiv 1.9625 (16)
Rb2—O3 2.9346 (17) Ga2—O1xix 1.9625 (15)
Rb2—O3iv 2.9347 (17) Ga2—O1iv 1.9626 (15)
Rb2—O3iii 2.9347 (17) Ga2—O1xviii 1.9626 (16)
Rb2—O1vi 3.3714 (16) Ga2—O1xvii 1.9626 (15)
Rb2—O1vii 3.3715 (16) As—O1xx 1.6576 (15)
Rb2—O1viii 3.3715 (17) As—O2 1.6724 (15)
Rb2—O4ix 3.4960 (16) As—O4ii 1.6805 (15)
Rb2—O4x 3.4960 (17) As—O3 1.7417 (17)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic; (ix) Inline graphic; (x) Inline graphic; (xi) Inline graphic; (xii) Inline graphic; (xiii) Inline graphic; (xiv) Inline graphic; (xv) Inline graphic; (xvi) Inline graphic; (xvii) Inline graphic; (xviii) Inline graphic; (xix) Inline graphic; (xx) Inline graphic.

Table 5. Selected bond lengths (Å) for RbGa2As(HAsO4)6 .

Rb1A—O3i 3.4212 (16) Ga1—O4vii 1.9623 (11)
Rb1A—O3ii 3.4212 (16) Ga1—O2viii 1.9625 (11)
Rb1A—O3iii 3.4212 (15) Ga1—O2iii 1.9625 (11)
Rb1A—O3iv 3.4212 (16) Ga1—O2ix 1.9625 (11)
Rb1A—O3v 3.4212 (15) As1—O1x 1.8067 (11)
Rb1A—O3 3.4213 (16) As1—O1xi 1.8068 (11)
Rb1A—O2ii 3.4438 (12) As1—O1xii 1.8068 (11)
Rb1A—O2iii 3.4438 (12) As1—O1v 1.8068 (11)
Rb1A—O2 3.4438 (12) As1—O1vii 1.8068 (11)
Rb1A—O2iv 3.4438 (12) As1—O1vi 1.8068 (11)
Rb1A—O2i 3.4438 (12) As2—O2 1.6658 (11)
Rb1A—O2v 3.4438 (12) As2—O4ii 1.6670 (11)
Ga1—O4vi 1.9623 (12) As2—O1xiii 1.7100 (11)
Ga1—O4v 1.9623 (11) As2—O3 1.7122 (13)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic; (ix) Inline graphic; (x) Inline graphic; (xi) Inline graphic; (xii) Inline graphic; (xiii) Inline graphic.

Synthesis and crystallization  

The compounds were grown by hydro­thermal synthesis at 493 K (7 d, autogeneous pressure, slow furnace cooling) using Teflon-lined stainless steel autoclaves with an approximate filling volume of 2 ml. Reagent-grade Rb2CO3, Ga2O3 and H3AsO4·0.5H2O were used as starting reagents in approximate volume ratios of Rb:Ga:As of 1:1:3 for both synthesis batches. For RbGa(HAsO4)2 the vessels were filled with distilled water to about 70% of their inner volumes, which led to initial and final pH values of 1.5. The reaction product was washed thoroughly with distilled water, filtered and dried at room temperature. RbGa(HAsO4)2 formed colourless pseudohexa­gonal platelets (Fig. 3) and is stable in air.

For RbGa2As(HAsO4)6, which contains As in both tetra­hedral and octa­hedral coordination, no additional water was added and arsenic acid was present in excess to promote the growth of crystals from a melt or even vapour of arsenic acid under extremely acidic conditions. RbGa2As(HAsO4)6 formed large colourless pseudo-octa­hedral crystals accompanied by small colourless twinned crystals of RbH3As4O12 (Schwendtner & Kolitsch, 2007). The crystals of RbGa2As(HAsO4)6 were extracted mechanically and not further washed; they are hygroscopic and decompose slowly over a period of several years to an amorphous gel and a new, strongly protonated diarsenate containing Rb and Ga (P321, publication in preparation). This slow partial alteration is illustrated in an X-ray powder diffraction pattern (Fig. 5).

Figure 5.

Figure 5

Graph of the Rietveld refinement (TOPAS; Bruker, 2009) of RbGa2As(HAsO4)6, showing the partial alteration of the pseudo-octa­hedral crystals after an 11-year storage in air. The crystals were hygroscopic and had partly transformed to an amorphous mass. The presence of the relics of the unaltered primary crystals are still visible (pink curve), but a newly crystallized overgrowth of extremely fine fibrous crystals could be attributed to a new strongly protonated Rb–Ga diarsenate with space group P321 (dark-red curve), which will be the subject of a future publication.

A measured X-ray powder diffraction diagram of RbGa(HAsO4)2 was deposited at the Inter­national Centre for Diffraction Data under PDF number 00-057-0239 (Wohl­schlaeger et al., 2006).

Experimental and refinement  

Crystal data, data collection and structure refinement are given in Table 3. For the refinement of RbGa(HAsO4)2, the coordinates of RbFe(HPO4)2 (Lii & Wu, 1994) were used for the final refinement steps. H atoms were then located from difference Fourier maps and added to the model. For the refinement of RbGa2As(HAsO4)6, the model for RbAl2As(HAsO4)6 (Schwendtner & Kolitsch, 2018b ) was used as a starting point. In both compounds, O—H bonds were restrained to 0.9±0.04 Å. During the last refinement steps, residual electron-density peaks of up to 3.83 and 1.16 e Å−3 were located 0.63 and 0.68 Å from the Rb sites in RbGa2As(HAsO4)6 and RbGa(HAsO4)2, respectively, suggesting irregular displacement parameters and split positions, similar to what was found for RbFe(HPO4)2-type RbAl(HPO4)2 (Lesage et al., 2007). Therefore, a further position, Rb1B, was included in both refinements, which refined to low occupancies and led to considerable decreases in the R factors and weight parameters for both compounds. The bulk occupancies of Rb1A + Rb1B were constrained to give a total occupancy of 1.00. The final residual electron densities in both compounds are < 1 e Å−3.

Supplementary Material

Crystal structure: contains datablock(s) RbGa2AsHAsO46, RbGaHAsO42, global. DOI: 10.1107/S2056989018011180/ff2155sup1.cif

e-74-01244-sup1.cif (403.9KB, cif)

Structure factors: contains datablock(s) RbGa2AsHAsO46. DOI: 10.1107/S2056989018011180/ff2155RbGa2AsHAsO46sup2.hkl

Structure factors: contains datablock(s) RbGaHAsO42. DOI: 10.1107/S2056989018011180/ff2155RbGaHAsO42sup3.hkl

CCDC references: 1860366, 1860365

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the TU Wien University Library for financial support through its Open Access Funding Program.

supplementary crystallographic information

Rubidium digallium arsenic(V) hexakis[hydrogen arsenate(V)] (RbGa2AsHAsO46). Crystal data

RbGa2As(HAsO4)6 Dx = 3.586 Mg m3
Mr = 1139.40 Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3c:H Cell parameters from 2570 reflections
a = 8.491 (1) Å θ = 2.0–32.6°
c = 50.697 (11) Å µ = 15.85 mm1
V = 3165.4 (10) Å3 T = 293 K
Z = 6 Large pseudo-octahedra, colourless
F(000) = 3168 0.13 × 0.12 × 0.12 mm

Rubidium digallium arsenic(V) hexakis[hydrogen arsenate(V)] (RbGa2AsHAsO46). Data collection

Nonius KappaCCD single-crystal four-circle diffractometer 1196 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.016
φ and ω scans θmax = 32.5°, θmin = 2.4°
Absorption correction: multi-scan (SCALEPACK; Otwinowski et al., 2003) h = −12→12
Tmin = 0.232, Tmax = 0.252 k = −10→10
4684 measured reflections l = −75→76
1287 independent reflections

Rubidium digallium arsenic(V) hexakis[hydrogen arsenate(V)] (RbGa2AsHAsO46). Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.014 All H-atom parameters refined
wR(F2) = 0.034 w = 1/[σ2(Fo2) + (0.0136P)2 + 10.4877P] where P = (Fo2 + 2Fc2)/3
S = 1.13 (Δ/σ)max = 0.008
1287 reflections Δρmax = 0.75 e Å3
65 parameters Δρmin = −0.83 e Å3
2 restraints Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.000271 (17)

Rubidium digallium arsenic(V) hexakis[hydrogen arsenate(V)] (RbGa2AsHAsO46). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Rubidium digallium arsenic(V) hexakis[hydrogen arsenate(V)] (RbGa2AsHAsO46). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Rb1A 0.000000 0.000000 0.750000 0.055 (3) 0.669 (3)
Rb1B 0.000000 −0.048 (2) 0.750000 0.0359 (11) 0.1103 (9)
Ga1 0.333333 0.666667 0.75604 (2) 0.00736 (6)
As1 0.333333 0.666667 0.666667 0.00627 (7)
As2 −0.44400 (2) −0.40772 (2) 0.71144 (2) 0.00735 (5)
O1 0.40249 (16) −0.46597 (15) 0.68629 (2) 0.01016 (19)
O2 −0.45254 (15) −0.27043 (15) 0.73416 (2) 0.01025 (19)
O3 −0.22887 (17) −0.28592 (18) 0.69874 (3) 0.0194 (3)
O4 0.48817 (15) −0.12495 (15) 0.77869 (2) 0.0108 (2)
H −0.176 (4) −0.337 (4) 0.7027 (6) 0.046 (9)*

Rubidium digallium arsenic(V) hexakis[hydrogen arsenate(V)] (RbGa2AsHAsO46). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Rb1A 0.050 (4) 0.050 (4) 0.066 (2) 0.0251 (18) 0.000 0.000
Rb1B 0.024 (4) 0.034 (4) 0.046 (4) 0.012 (2) 0.0044 (14) 0.0022 (7)
Ga1 0.00807 (8) 0.00807 (8) 0.00596 (12) 0.00403 (4) 0.000 0.000
As1 0.00747 (10) 0.00747 (10) 0.00389 (14) 0.00373 (5) 0.000 0.000
As2 0.00844 (7) 0.00803 (7) 0.00670 (7) 0.00495 (5) 0.00010 (5) 0.00053 (5)
O1 0.0138 (5) 0.0110 (5) 0.0078 (4) 0.0077 (4) −0.0031 (4) 0.0000 (4)
O2 0.0109 (5) 0.0099 (5) 0.0098 (5) 0.0051 (4) 0.0005 (4) −0.0022 (4)
O3 0.0121 (5) 0.0203 (6) 0.0264 (7) 0.0084 (5) 0.0076 (5) 0.0075 (5)
O4 0.0124 (5) 0.0095 (5) 0.0125 (5) 0.0070 (4) −0.0030 (4) −0.0042 (4)

Rubidium digallium arsenic(V) hexakis[hydrogen arsenate(V)] (RbGa2AsHAsO46). Geometric parameters (Å, º)

Rb1A—Rb1Bi 0.41 (2) Rb1B—O2 3.4234 (12)
Rb1A—Rb1Bii 0.41 (2) Rb1B—O2iv 3.4234 (12)
Rb1A—O3iii 3.4212 (16) Rb1B—O3iii 3.694 (14)
Rb1A—O3iv 3.4212 (16) Rb1B—O3ii 3.694 (14)
Rb1A—O3ii 3.4212 (15) Rb1B—O2ii 3.810 (18)
Rb1A—O3v 3.4212 (16) Rb1B—O2iii 3.810 (18)
Rb1A—O3i 3.4212 (15) Rb1B—O4vi 3.819 (18)
Rb1A—O3 3.4213 (16) Rb1B—O4vii 3.819 (18)
Rb1A—O2iv 3.4438 (12) Rb1B—As2v 3.934 (8)
Rb1A—O2ii 3.4438 (12) Rb1B—As2i 3.934 (8)
Rb1A—O2 3.4438 (12) Ga1—O4viii 1.9623 (12)
Rb1A—O2v 3.4438 (12) Ga1—O4i 1.9623 (11)
Rb1A—O2iii 3.4438 (12) Ga1—O4ix 1.9623 (11)
Rb1A—O2i 3.4438 (12) Ga1—O2x 1.9625 (11)
Rb1A—As2iv 4.1192 (5) Ga1—O2ii 1.9625 (11)
Rb1A—As2iii 4.1192 (5) Ga1—O2xi 1.9625 (11)
Rb1A—As2v 4.1192 (5) As1—O1xii 1.8067 (11)
Rb1A—As2ii 4.1192 (4) As1—O1xiii 1.8068 (11)
Rb1B—Rb1Bi 0.70 (3) As1—O1xiv 1.8068 (11)
Rb1B—Rb1Bii 0.70 (3) As1—O1i 1.8068 (11)
Rb1B—O2v 3.136 (14) As1—O1ix 1.8068 (11)
Rb1B—O2i 3.136 (14) As1—O1viii 1.8068 (11)
Rb1B—O3iv 3.269 (6) As2—O2 1.6658 (11)
Rb1B—O3 3.269 (6) As2—O4iv 1.6670 (11)
Rb1B—O3v 3.358 (2) As2—O1xv 1.7100 (11)
Rb1B—O3i 3.358 (2) As2—O3 1.7122 (13)
Rb1Bi—Rb1A—Rb1Bii 120.00 (7) Rb1Bii—Rb1B—O4vii 153.31 (7)
Rb1Bi—Rb1A—O3iii 64.81 (2) O2v—Rb1B—O4vii 53.4 (3)
Rb1Bii—Rb1A—O3iii 77.69 (5) O2i—Rb1B—O4vii 45.1 (2)
Rb1Bi—Rb1A—O3iv 77.69 (2) O3iv—Rb1B—O4vii 44.49 (19)
Rb1Bii—Rb1A—O3iv 129.70 (3) O3—Rb1B—O4vii 98.0 (5)
O3iii—Rb1A—O3iv 68.57 (4) O3v—Rb1B—O4vii 76.7 (3)
Rb1Bi—Rb1A—O3ii 77.69 (2) O3i—Rb1B—O4vii 93.3 (3)
Rb1Bii—Rb1A—O3ii 64.81 (5) O2—Rb1B—O4vii 109.4 (4)
O3iii—Rb1A—O3ii 100.59 (5) O2iv—Rb1B—O4vii 71.6 (2)
O3iv—Rb1A—O3ii 155.38 (5) O3iii—Rb1B—O4vii 109.34 (9)
Rb1Bi—Rb1A—O3v 129.70 (2) O3ii—Rb1B—O4vii 157.2 (3)
Rb1Bii—Rb1A—O3v 64.81 (5) O2ii—Rb1B—O4vii 144.11 (3)
O3iii—Rb1A—O3v 68.57 (4) O2iii—Rb1B—O4vii 144.95 (3)
O3iv—Rb1A—O3v 68.57 (4) O4vi—Rb1B—O4vii 53.5 (3)
O3ii—Rb1A—O3v 129.62 (5) Rb1Bi—Rb1B—As2v 137.8 (2)
Rb1Bi—Rb1A—O3i 64.81 (2) Rb1Bii—Rb1B—As2v 88.8 (3)
Rb1Bii—Rb1A—O3i 129.70 (3) O2v—Rb1B—As2v 24.03 (3)
O3iii—Rb1A—O3i 129.62 (5) O2i—Rb1B—As2v 107.9 (5)
O3iv—Rb1A—O3i 100.59 (5) O3iv—Rb1B—As2v 82.2 (2)
O3ii—Rb1A—O3i 68.57 (4) O3—Rb1B—As2v 82.5 (2)
O3v—Rb1A—O3i 155.38 (4) O3v—Rb1B—As2v 25.63 (7)
Rb1Bi—Rb1A—O3 129.70 (2) O3i—Rb1B—As2v 145.3 (5)
Rb1Bii—Rb1A—O3 77.69 (5) O2—Rb1B—As2v 51.65 (8)
O3iii—Rb1A—O3 155.38 (4) O2iv—Rb1B—As2v 128.9 (3)
O3iv—Rb1A—O3 129.62 (5) O3iii—Rb1B—As2v 91.62 (8)
O3ii—Rb1A—O3 68.57 (4) O3ii—Rb1B—As2v 123.66 (15)
O3v—Rb1A—O3 100.59 (5) O2ii—Rb1B—As2v 138.7 (4)
O3i—Rb1A—O3 68.57 (4) O2iii—Rb1B—As2v 90.34 (14)
Rb1Bi—Rb1A—O2iv 38.519 (18) O4vi—Rb1B—As2v 68.6 (3)
Rb1Bii—Rb1A—O2iv 153.03 (7) O4vii—Rb1B—As2v 67.9 (3)
O3iii—Rb1A—O2iv 76.93 (3) Rb1Bi—Rb1B—As2i 88.8 (2)
O3iv—Rb1A—O2iv 45.66 (3) Rb1Bii—Rb1B—As2i 137.8 (2)
O3ii—Rb1A—O2iv 111.42 (3) O2v—Rb1B—As2i 107.9 (5)
O3v—Rb1A—O2iv 113.17 (3) O2i—Rb1B—As2i 24.03 (3)
O3i—Rb1A—O2iv 63.90 (3) O3iv—Rb1B—As2i 82.5 (2)
O3—Rb1A—O2iv 127.31 (3) O3—Rb1B—As2i 82.2 (2)
Rb1Bi—Rb1A—O2ii 38.519 (18) O3v—Rb1B—As2i 145.3 (5)
Rb1Bii—Rb1A—O2ii 83.75 (7) O3i—Rb1B—As2i 25.63 (7)
O3iii—Rb1A—O2ii 63.90 (3) O2—Rb1B—As2i 128.9 (3)
O3iv—Rb1A—O2ii 111.42 (3) O2iv—Rb1B—As2i 51.65 (8)
O3ii—Rb1A—O2ii 45.66 (3) O3iii—Rb1B—As2i 123.66 (15)
O3v—Rb1A—O2ii 127.31 (3) O3ii—Rb1B—As2i 91.62 (8)
O3i—Rb1A—O2ii 76.93 (3) O2ii—Rb1B—As2i 90.34 (14)
O3—Rb1A—O2ii 113.17 (3) O2iii—Rb1B—As2i 138.7 (4)
O2iv—Rb1A—O2ii 77.04 (4) O4vi—Rb1B—As2i 67.9 (3)
Rb1Bi—Rb1A—O2 153.035 (19) O4vii—Rb1B—As2i 68.6 (3)
Rb1Bii—Rb1A—O2 38.52 (7) As2v—Rb1B—As2i 131.0 (5)
O3iii—Rb1A—O2 111.42 (3) O4viii—Ga1—O4i 89.24 (5)
O3iv—Rb1A—O2 127.31 (3) O4viii—Ga1—O4ix 89.24 (5)
O3ii—Rb1A—O2 76.93 (3) O4i—Ga1—O4ix 89.24 (5)
O3v—Rb1A—O2 63.90 (3) O4viii—Ga1—O2x 91.13 (5)
O3i—Rb1A—O2 113.17 (3) O4i—Ga1—O2x 88.49 (5)
O3—Rb1A—O2 45.67 (3) O4ix—Ga1—O2x 177.69 (5)
O2iv—Rb1A—O2 167.50 (4) O4viii—Ga1—O2ii 177.69 (5)
O2ii—Rb1A—O2 114.733 (13) O4i—Ga1—O2ii 91.13 (5)
Rb1Bi—Rb1A—O2v 153.03 (2) O4ix—Ga1—O2ii 88.48 (5)
Rb1Bii—Rb1A—O2v 83.75 (8) O2x—Ga1—O2ii 91.17 (5)
O3iii—Rb1A—O2v 113.17 (3) O4viii—Ga1—O2xi 88.48 (5)
O3iv—Rb1A—O2v 76.93 (3) O4i—Ga1—O2xi 177.69 (5)
O3ii—Rb1A—O2v 127.31 (3) O4ix—Ga1—O2xi 91.12 (5)
O3v—Rb1A—O2v 45.66 (3) O2x—Ga1—O2xi 91.16 (5)
O3i—Rb1A—O2v 111.42 (3) O2ii—Ga1—O2xi 91.16 (5)
O3—Rb1A—O2v 63.91 (3) O4viii—Ga1—Rb1Bviii 82.77 (12)
O2iv—Rb1A—O2v 114.733 (13) O4i—Ga1—Rb1Bviii 55.65 (8)
O2ii—Rb1A—O2v 167.50 (4) O4ix—Ga1—Rb1Bviii 143.89 (7)
O2—Rb1A—O2v 53.93 (4) O2x—Ga1—Rb1Bviii 33.99 (5)
Rb1Bi—Rb1A—O2iii 83.749 (19) O2ii—Ga1—Rb1Bviii 99.31 (13)
Rb1Bii—Rb1A—O2iii 38.52 (7) O2xi—Ga1—Rb1Bviii 123.61 (10)
O3iii—Rb1A—O2iii 45.66 (3) O4viii—Ga1—Rb1Bi 143.89 (6)
O3iv—Rb1A—O2iii 113.17 (3) O4i—Ga1—Rb1Bi 82.77 (12)
O3ii—Rb1A—O2iii 63.90 (3) O4ix—Ga1—Rb1Bi 55.65 (8)
O3v—Rb1A—O2iii 76.93 (3) O2x—Ga1—Rb1Bi 123.61 (9)
O3i—Rb1A—O2iii 127.31 (3) O2ii—Ga1—Rb1Bi 33.99 (5)
O3—Rb1A—O2iii 111.42 (3) O2xi—Ga1—Rb1Bi 99.31 (12)
O2iv—Rb1A—O2iii 114.732 (14) Rb1Bviii—Ga1—Rb1Bi 119.554 (12)
O2ii—Rb1A—O2iii 53.93 (4) O4viii—Ga1—Rb1Bix 55.65 (10)
O2—Rb1A—O2iii 77.04 (4) O4i—Ga1—Rb1Bix 143.89 (7)
O2v—Rb1A—O2iii 114.731 (14) O4ix—Ga1—Rb1Bix 82.77 (13)
Rb1Bi—Rb1A—O2i 83.749 (19) O2x—Ga1—Rb1Bix 99.31 (14)
Rb1Bii—Rb1A—O2i 153.03 (7) O2ii—Ga1—Rb1Bix 123.61 (9)
O3iii—Rb1A—O2i 127.31 (3) O2xi—Ga1—Rb1Bix 33.99 (6)
O3iv—Rb1A—O2i 63.90 (3) Rb1Bviii—Ga1—Rb1Bix 119.554 (7)
O3ii—Rb1A—O2i 113.17 (3) Rb1Bi—Ga1—Rb1Bix 119.554 (2)
O3v—Rb1A—O2i 111.42 (3) O4viii—Ga1—Rb1Aviii 80.57 (3)
O3i—Rb1A—O2i 45.66 (3) O4i—Ga1—Rb1Aviii 57.14 (3)
O3—Rb1A—O2i 76.93 (3) O4ix—Ga1—Rb1Aviii 144.67 (3)
O2iv—Rb1A—O2i 53.93 (4) O2x—Ga1—Rb1Aviii 33.28 (3)
O2ii—Rb1A—O2i 114.732 (13) O2ii—Ga1—Rb1Aviii 101.54 (3)
O2—Rb1A—O2i 114.732 (13) O2xi—Ga1—Rb1Aviii 122.02 (3)
O2v—Rb1A—O2i 77.04 (4) Rb1Bviii—Ga1—Rb1Aviii 2.56 (14)
O2iii—Rb1A—O2i 167.50 (4) Rb1Bi—Ga1—Rb1Aviii 122.12 (13)
Rb1Bi—Rb1A—As2iv 60.329 (4) Rb1Bix—Ga1—Rb1Aviii 117.05 (14)
Rb1Bii—Rb1A—As2iv 151.382 (12) O4viii—Ga1—Rb1A 144.67 (3)
O3iii—Rb1A—As2iv 77.70 (2) O4i—Ga1—Rb1A 80.57 (3)
O3iv—Rb1A—As2iv 24.04 (2) O4ix—Ga1—Rb1A 57.14 (3)
O3ii—Rb1A—As2iv 134.60 (2) O2x—Ga1—Rb1A 122.02 (3)
O3v—Rb1A—As2iv 92.58 (3) O2ii—Ga1—Rb1A 33.28 (3)
O3i—Rb1A—As2iv 77.98 (3) O2xi—Ga1—Rb1A 101.53 (3)
O3—Rb1A—As2iv 125.97 (2) Rb1Bviii—Ga1—Rb1A 117.05 (14)
O2iv—Rb1A—As2iv 23.324 (18) Rb1Bi—Ga1—Rb1A 2.56 (13)
O2ii—Rb1A—As2iv 98.261 (18) Rb1Bix—Ga1—Rb1A 122.12 (13)
O2—Rb1A—As2iv 146.607 (19) Rb1Aviii—Ga1—Rb1A 119.614 (1)
O2v—Rb1A—As2iv 92.721 (19) O4viii—Ga1—Rb1Axi 57.14 (3)
O2iii—Rb1A—As2iv 122.596 (19) O4i—Ga1—Rb1Axi 144.67 (4)
O2i—Rb1A—As2iv 49.72 (2) O4ix—Ga1—Rb1Axi 80.57 (3)
Rb1Bi—Rb1A—As2iii 67.492 (4) O2x—Ga1—Rb1Axi 101.53 (3)
Rb1Bii—Rb1A—As2iii 60.33 (6) O2ii—Ga1—Rb1Axi 122.02 (3)
O3iii—Rb1A—As2iii 24.04 (2) O2xi—Ga1—Rb1Axi 33.28 (3)
O3iv—Rb1A—As2iii 92.58 (3) Rb1Bviii—Ga1—Rb1Axi 122.12 (14)
O3ii—Rb1A—As2iii 77.98 (3) Rb1Bi—Ga1—Rb1Axi 117.05 (13)
O3v—Rb1A—As2iii 77.70 (2) Rb1Bix—Ga1—Rb1Axi 2.56 (14)
O3i—Rb1A—As2iii 125.97 (2) Rb1Aviii—Ga1—Rb1Axi 119.614 (1)
O3—Rb1A—As2iii 134.60 (2) Rb1A—Ga1—Rb1Axi 119.614 (1)
O2iv—Rb1A—As2iii 92.720 (19) O1xii—As1—O1xiii 92.59 (5)
O2ii—Rb1A—As2iii 49.72 (2) O1xii—As1—O1xiv 92.59 (5)
O2—Rb1A—As2iii 98.261 (18) O1xiii—As1—O1xiv 92.59 (5)
O2v—Rb1A—As2iii 122.595 (19) O1xii—As1—O1i 87.41 (5)
O2iii—Rb1A—As2iii 23.323 (18) O1xiii—As1—O1i 180.00 (9)
O2i—Rb1A—As2iii 146.608 (19) O1xiv—As1—O1i 87.41 (5)
As2iv—Rb1A—As2iii 99.334 (9) O1xii—As1—O1ix 180.0
Rb1Bi—Rb1A—As2v 151.382 (7) O1xiii—As1—O1ix 87.41 (5)
Rb1Bii—Rb1A—As2v 67.49 (6) O1xiv—As1—O1ix 87.41 (5)
O3iii—Rb1A—As2v 92.58 (3) O1i—As1—O1ix 92.58 (5)
O3iv—Rb1A—As2v 77.70 (2) O1xii—As1—O1viii 87.42 (5)
O3ii—Rb1A—As2v 125.97 (2) O1xiii—As1—O1viii 87.42 (5)
O3v—Rb1A—As2v 24.04 (2) O1xiv—As1—O1viii 180.00 (6)
O3i—Rb1A—As2v 134.60 (2) O1i—As1—O1viii 92.58 (5)
O3—Rb1A—As2v 77.98 (3) O1ix—As1—O1viii 92.58 (5)
O2iv—Rb1A—As2v 122.596 (19) O2—As2—O4iv 117.31 (6)
O2ii—Rb1A—As2v 146.608 (19) O2—As2—O1xv 115.10 (6)
O2—Rb1A—As2v 49.72 (2) O4iv—As2—O1xv 100.43 (5)
O2v—Rb1A—As2v 23.323 (17) O2—As2—O3 104.11 (6)
O2iii—Rb1A—As2v 92.72 (2) O4iv—As2—O3 111.03 (6)
O2i—Rb1A—As2v 98.261 (19) O1xv—As2—O3 108.86 (6)
As2iv—Rb1A—As2v 99.334 (9) O2—As2—Rb1Bii 50.1 (3)
As2iii—Rb1A—As2v 99.334 (9) O4iv—As2—Rb1Bii 114.68 (16)
Rb1Bi—Rb1A—As2ii 60.329 (3) O1xv—As2—Rb1Bii 144.86 (16)
Rb1Bii—Rb1A—As2ii 67.49 (6) O3—As2—Rb1Bii 58.0 (2)
O3iii—Rb1A—As2ii 77.98 (3) O2—As2—Rb1B 58.6 (2)
O3iv—Rb1A—As2ii 134.60 (2) O4iv—As2—Rb1B 106.7 (3)
O3ii—Rb1A—As2ii 24.04 (2) O1xv—As2—Rb1B 151.7 (2)
O3v—Rb1A—As2ii 125.97 (2) O3—As2—Rb1B 53.57 (7)
O3i—Rb1A—As2ii 77.70 (2) Rb1Bii—As2—Rb1B 10.2 (5)
O3—Rb1A—As2ii 92.58 (2) O2—As2—Rb1A 54.94 (4)
O2iv—Rb1A—As2ii 98.261 (18) O4iv—As2—Rb1A 111.68 (4)
O2ii—Rb1A—As2ii 23.324 (18) O1xv—As2—Rb1A 147.34 (4)
O2—Rb1A—As2ii 92.721 (19) O3—As2—Rb1A 54.48 (5)
O2v—Rb1A—As2ii 146.607 (19) Rb1Bii—As2—Rb1A 5.1 (3)
O2iii—Rb1A—As2ii 49.72 (2) Rb1B—As2—Rb1A 5.4 (3)
O2i—Rb1A—As2ii 122.596 (19) O2—As2—Rb1Bi 56.09 (6)
As2iv—Rb1A—As2ii 120.658 (6) O4iv—As2—Rb1Bi 113.41 (9)
As2iii—Rb1A—As2ii 57.236 (12) O1xv—As2—Rb1Bi 145.26 (10)
As2v—Rb1A—As2ii 134.983 (5) O3—As2—Rb1Bi 52.42 (10)
Rb1Bi—Rb1B—Rb1Bii 60.00 (2) Rb1Bii—As2—Rb1Bi 6.1 (3)
Rb1Bi—Rb1B—O2v 161.6 (2) Rb1B—As2—Rb1Bi 6.7 (3)
Rb1Bii—Rb1B—O2v 108.4 (3) Rb1A—As2—Rb1Bi 2.49 (11)
Rb1Bi—Rb1B—O2i 108.4 (2) O2—As2—Rb1Bxvi 93.36 (7)
Rb1Bii—Rb1B—O2i 161.60 (17) O4iv—As2—Rb1Bxvi 42.23 (4)
O2v—Rb1B—O2i 86.3 (5) O1xv—As2—Rb1Bxvi 80.78 (10)
Rb1Bi—Rb1B—O3iv 91.2 (3) O3—As2—Rb1Bxvi 153.23 (5)
Rb1Bii—Rb1B—O3iv 122.4 (3) Rb1Bii—As2—Rb1Bxvi 126.58 (16)
O2v—Rb1B—O3iv 83.6 (3) Rb1B—As2—Rb1Bxvi 125.4 (2)
O2i—Rb1B—O3iv 69.1 (3) Rb1A—As2—Rb1Bxvi 127.56 (9)
Rb1Bi—Rb1B—O3 122.4 (3) Rb1Bi—As2—Rb1Bxvi 130.05 (2)
Rb1Bii—Rb1B—O3 91.2 (3) O2—As2—Rb1Axvii 94.58 (4)
O2v—Rb1B—O3 69.1 (3) O4iv—As2—Rb1Axvii 42.53 (4)
O2i—Rb1B—O3 83.6 (3) O1xv—As2—Rb1Axvii 79.08 (4)
O3iv—Rb1B—O3 142.5 (7) O3—As2—Rb1Axvii 153.36 (5)
Rb1Bi—Rb1B—O3v 113.4 (3) Rb1Bii—As2—Rb1Axvii 128.36 (6)
Rb1Bii—Rb1B—O3v 76.7 (3) Rb1B—As2—Rb1Axvii 127.17 (12)
O2v—Rb1B—O3v 48.28 (11) Rb1A—As2—Rb1Axvii 129.347 (10)
O2i—Rb1B—O3v 121.7 (5) Rb1Bi—As2—Rb1Axvii 131.84 (12)
O3iv—Rb1B—O3v 71.12 (11) Rb1Bxvi—As2—Rb1Axvii 1.79 (10)
O3—Rb1B—O3v 105.18 (19) O2—As2—Rb1Bxviii 92.74 (11)
Rb1Bi—Rb1B—O3i 76.7 (3) O4iv—As2—Rb1Bxviii 46.4 (2)
Rb1Bii—Rb1B—O3i 113.4 (3) O1xv—As2—Rb1Bxviii 76.75 (13)
O2v—Rb1B—O3i 121.7 (5) O3—As2—Rb1Bxviii 157.05 (19)
O2i—Rb1B—O3i 48.28 (11) Rb1Bii—As2—Rb1Bxviii 129.10 (5)
O3iv—Rb1B—O3i 105.18 (19) Rb1B—As2—Rb1Bxviii 128.75 (3)
O3—Rb1B—O3i 71.12 (11) Rb1A—As2—Rb1Bxviii 130.52 (5)
O3v—Rb1B—O3i 169.0 (7) Rb1Bi—As2—Rb1Bxviii 132.99 (17)
Rb1Bi—Rb1B—O2 118.6 (3) Rb1Bxvi—As2—Rb1Bxviii 4.8 (2)
Rb1Bii—Rb1B—O2 60.4 (4) Rb1Axvii—As2—Rb1Bxviii 3.88 (18)
O2v—Rb1B—O2 56.66 (12) O2—As2—Rb1Bxvii 97.48 (15)
O2i—Rb1B—O2 124.3 (5) O4iv—As2—Rb1Bxvii 39.02 (18)
O3iv—Rb1B—O2 133.6 (2) O1xv—As2—Rb1Bxvii 79.91 (7)
O3—Rb1B—O2 46.84 (5) O3—As2—Rb1Bxvii 149.72 (18)
O3v—Rb1B—O2 64.78 (4) Rb1Bii—As2—Rb1Bxvii 129.012 (18)
O3i—Rb1B—O2 115.33 (5) Rb1B—As2—Rb1Bxvii 127.02 (15)
Rb1Bi—Rb1B—O2iv 60.4 (3) Rb1A—As2—Rb1Bxvii 129.587 (13)
Rb1Bii—Rb1B—O2iv 118.6 (3) Rb1Bi—As2—Rb1Bxvii 132.07 (12)
O2v—Rb1B—O2iv 124.3 (5) Rb1Bxvi—As2—Rb1Bxvii 4.2 (2)
O2i—Rb1B—O2iv 56.66 (12) Rb1Axvii—As2—Rb1Bxvii 3.66 (17)
O3iv—Rb1B—O2iv 46.84 (5) Rb1Bxviii—As2—Rb1Bxvii 7.4 (3)
O3—Rb1B—O2iv 133.6 (2) As2xix—O1—As1xx 131.96 (6)
O3v—Rb1B—O2iv 115.33 (5) As2xix—O1—Rb1Bvii 79.11 (18)
O3i—Rb1B—O2iv 64.78 (4) As1xx—O1—Rb1Bvii 129.23 (10)
O2—Rb1B—O2iv 179.0 (7) As2—O2—Ga1xvii 123.99 (6)
Rb1Bi—Rb1B—O3iii 48.36 (16) As2—O2—Rb1Bii 105.9 (2)
Rb1Bii—Rb1B—O3iii 56.58 (15) Ga1xvii—O2—Rb1Bii 125.54 (18)
O2v—Rb1B—O3iii 113.81 (3) As2—O2—Rb1B 96.8 (3)
O2i—Rb1B—O3iii 128.32 (3) Ga1xvii—O2—Rb1B 130.47 (10)
O3iv—Rb1B—O3iii 66.90 (12) Rb1Bii—O2—Rb1B 11.2 (6)
O3—Rb1B—O3iii 147.5 (4) As2—O2—Rb1A 101.74 (4)
O3v—Rb1B—O3iii 66.07 (15) Ga1xvii—O2—Rb1A 128.51 (4)
O3i—Rb1B—O3iii 122.7 (4) Rb1Bii—O2—Rb1A 4.6 (2)
O2—Rb1B—O3iii 105.6 (3) Rb1B—O2—Rb1A 6.8 (3)
O2iv—Rb1B—O3iii 73.63 (18) As2—O2—Rb1Bi 102.64 (6)
Rb1Bi—Rb1B—O3ii 56.58 (18) Ga1xvii—O2—Rb1Bi 128.80 (4)
Rb1Bii—Rb1B—O3ii 48.36 (15) Rb1Bii—O2—Rb1Bi 3.34 (18)
O2v—Rb1B—O3ii 128.32 (3) Rb1B—O2—Rb1Bi 9.3 (4)
O2i—Rb1B—O3ii 113.81 (3) Rb1A—O2—Rb1Bi 2.77 (12)
O3iv—Rb1B—O3ii 147.5 (4) As2—O3—Rb1B 101.51 (6)
O3—Rb1B—O3ii 66.90 (12) As2—O3—Rb1Bii 96.3 (3)
O3v—Rb1B—O3ii 122.7 (4) Rb1B—O3—Rb1Bii 12.1 (6)
O3i—Rb1B—O3ii 66.07 (15) As2—O3—Rb1A 101.48 (6)
O2—Rb1B—O3ii 73.63 (18) Rb1B—O3—Rb1A 6.5 (3)
O2iv—Rb1B—O3ii 105.6 (3) Rb1Bii—O3—Rb1A 6.8 (3)
O3iii—Rb1B—O3ii 90.9 (4) As2—O3—Rb1Bi 106.0 (2)
Rb1Bi—Rb1B—O2ii 15.05 (2) Rb1B—O3—Rb1Bi 9.3 (5)
Rb1Bii—Rb1B—O2ii 52.10 (7) Rb1Bii—O3—Rb1Bi 10.1 (5)
O2v—Rb1B—O2ii 160.5 (4) Rb1A—O3—Rb1Bi 4.9 (2)
O2i—Rb1B—O2ii 112.87 (12) As2iv—O4—Ga1xx 126.28 (6)
O3iv—Rb1B—O2ii 106.2 (3) As2iv—O4—Rb1Bxxi 120.71 (10)
O3—Rb1B—O2ii 107.8 (3) Ga1xx—O4—Rb1Bxxi 99.25 (5)
O3v—Rb1B—O2ii 118.1 (4) As2iv—O4—Rb1Axix 121.85 (5)
O3i—Rb1B—O2ii 72.8 (2) Ga1xx—O4—Rb1Axix 99.67 (4)
O2—Rb1B—O2ii 106.5 (4) Rb1Bxxi—O4—Rb1Axix 2.51 (13)
O2iv—Rb1B—O2ii 72.5 (2) As2iv—O4—Rb1Bxix 126.9 (3)
O3iii—Rb1B—O2ii 57.9 (3) Ga1xx—O4—Rb1Bxix 96.29 (16)
O3ii—Rb1B—O2ii 41.55 (19) Rb1Bxxi—O4—Rb1Bxix 7.1 (3)
Rb1Bi—Rb1B—O2iii 52.10 (12) Rb1Axix—O4—Rb1Bxix 5.2 (2)
Rb1Bii—Rb1B—O2iii 15.05 (5) As2iv—O4—Rb1Bxxii 117.91 (18)
O2v—Rb1B—O2iii 112.87 (12) Ga1xx—O4—Rb1Bxxii 103.25 (18)
O2i—Rb1B—O2iii 160.5 (4) Rb1Bxxi—O4—Rb1Bxxii 4.1 (2)
O3iv—Rb1B—O2iii 107.8 (3) Rb1Axix—O4—Rb1Bxxii 3.99 (18)
O3—Rb1B—O2iii 106.2 (3) Rb1Bxix—O4—Rb1Bxxii 9.0 (4)
O3v—Rb1B—O2iii 72.8 (2) As2iv—O4—Rb1B 53.63 (19)
O3i—Rb1B—O2iii 118.1 (4) Ga1xx—O4—Rb1B 72.96 (19)
O2—Rb1B—O2iii 72.5 (2) Rb1Bxxi—O4—Rb1B 134.20 (8)
O2iv—Rb1B—O2iii 106.5 (4) Rb1Axix—O4—Rb1B 136.70 (6)
O3iii—Rb1B—O2iii 41.55 (19) Rb1Bxix—O4—Rb1B 139.53 (16)
O3ii—Rb1B—O2iii 57.9 (3) Rb1Bxxii—O4—Rb1B 135.79 (4)
O2ii—Rb1B—O2iii 48.4 (2) As2iv—O4—Rb1Bi 47.20 (15)
Rb1Bi—Rb1B—O4vi 153.31 (5) Ga1xx—O4—Rb1Bi 80.09 (19)
Rb1Bii—Rb1B—O4vi 130.76 (15) Rb1Bxxi—O4—Rb1Bi 130.0 (3)
O2v—Rb1B—O4vi 45.1 (2) Rb1Axix—O4—Rb1Bi 132.53 (17)
O2i—Rb1B—O4vi 53.4 (3) Rb1Bxix—O4—Rb1Bi 136.12 (3)
O3iv—Rb1B—O4vi 98.0 (5) Rb1Bxxii—O4—Rb1Bi 131.0 (3)
O3—Rb1B—O4vi 44.50 (19) Rb1B—O4—Rb1Bi 8.2 (4)
O3v—Rb1B—O4vi 93.3 (3) As2iv—O4—Rb1A 50.21 (3)
O3i—Rb1B—O4vi 76.7 (3) Ga1xx—O4—Rb1A 76.56 (3)
O2—Rb1B—O4vi 71.6 (2) Rb1Bxxi—O4—Rb1A 133.03 (14)
O2iv—Rb1B—O4vi 109.4 (4) Rb1Axix—O4—Rb1A 135.53 (3)
O3iii—Rb1B—O4vi 157.2 (3) Rb1Bxix—O4—Rb1A 138.77 (15)
O3ii—Rb1B—O4vi 109.34 (9) Rb1Bxxii—O4—Rb1A 134.28 (7)
O2ii—Rb1B—O4vi 144.95 (3) Rb1B—O4—Rb1A 3.8 (2)
O2iii—Rb1B—O4vi 144.11 (3) Rb1Bi—O4—Rb1A 4.5 (2)
Rb1Bi—Rb1B—O4vii 130.76 (11)

Symmetry codes: (i) −y, xy, z; (ii) −x+y, −x, z; (iii) xy, −y, −z+3/2; (iv) −x, −x+y, −z+3/2; (v) y, x, −z+3/2; (vi) y, x−1, −z+3/2; (vii) −y, xy−1, z; (viii) x, y+1, z; (ix) −x+y+1, −x+1, z; (x) −y, xy+1, z; (xi) x+1, y+1, z; (xii) xy−1/3, x+1/3, −z+4/3; (xiii) y+2/3, −x+y+4/3, −z+4/3; (xiv) −x+2/3, −y+1/3, −z+4/3; (xv) x−1, y, z; (xvi) −y−1, xy−1, z; (xvii) x−1, y−1, z; (xviii) −x+y−1, −x−1, z; (xix) x+1, y, z; (xx) x, y−1, z; (xxi) −x+y+1, −x, z; (xxii) −y+1, xy, z.

Rubidium digallium arsenic(V) hexakis[hydrogen arsenate(V)] (RbGa2AsHAsO46). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H···O4vi 0.80 (3) 1.98 (3) 2.7314 (17) 158 (3)

Symmetry code: (vi) y, x−1, −z+3/2.

Rubidium gallium bis[hydrogen arsenate(V)] (RbGaHAsO42). Crystal data

RbGa(HAsO4)2 Dx = 3.964 Mg m3
Mr = 435.05 Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3c:H Cell parameters from 2663 reflections
a = 8.385 (1) Å θ = 2.3–30.0°
c = 53.880 (11) Å µ = 19.42 mm1
V = 3280.7 (10) Å3 T = 293 K
Z = 18 Hexagonal plate, colourless
F(000) = 3600 0.07 × 0.07 × 0.02 mm

Rubidium gallium bis[hydrogen arsenate(V)] (RbGaHAsO42). Data collection

Nonius KappaCCD single-crystal four-circle diffractometer 1027 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.016
φ and ω scans θmax = 30.0°, θmin = 2.3°
Absorption correction: multi-scan (SCALEPACK; Otwinowski et al., 2003) h = −11→11
Tmin = 0.343, Tmax = 0.697 k = −9→9
3896 measured reflections l = −75→75
1079 independent reflections

Rubidium gallium bis[hydrogen arsenate(V)] (RbGaHAsO42). Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016 All H-atom parameters refined
wR(F2) = 0.040 w = 1/[σ2(Fo2) + (0.0168P)2 + 20.8962P] where P = (Fo2 + 2Fc2)/3
S = 1.11 (Δ/σ)max = 0.014
1079 reflections Δρmax = 0.79 e Å3
68 parameters Δρmin = −0.52 e Å3
2 restraints Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.000092 (13)

Rubidium gallium bis[hydrogen arsenate(V)] (RbGaHAsO42). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Rubidium gallium bis[hydrogen arsenate(V)] (RbGaHAsO42). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Rb1A 0.000000 0.000000 0.750000 0.0297 (12) 0.909 (3)
Rb1B 0.000000 −0.050 (5) 0.750000 0.011 (3) 0.0304 (9)
Rb2 0.000000 0.000000 0.66714 (2) 0.02912 (12)
Ga1 0.333333 0.666667 0.75374 (2) 0.00733 (9)
Ga2 0.333333 0.666667 0.666667 0.00817 (11)
As −0.43059 (3) −0.39514 (3) 0.71280 (2) 0.00799 (7)
O1 0.4536 (2) −0.4402 (2) 0.68636 (3) 0.0159 (3)
O2 −0.4459 (2) −0.2541 (2) 0.73338 (3) 0.0106 (3)
O3 −0.1974 (2) −0.2813 (2) 0.70523 (3) 0.0178 (3)
O4 0.4789 (2) −0.1223 (2) 0.77582 (3) 0.0103 (3)
H −0.161 (5) −0.354 (5) 0.7099 (6) 0.035 (10)*

Rubidium gallium bis[hydrogen arsenate(V)] (RbGaHAsO42). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Rb1A 0.0333 (16) 0.0333 (16) 0.0225 (9) 0.0166 (8) 0.000 0.000
Rb1B 0.023 (11) 0.012 (7) 0.004 (7) 0.011 (5) −0.002 (4) −0.001 (2)
Rb2 0.03481 (17) 0.03481 (17) 0.0177 (2) 0.01740 (9) 0.000 0.000
Ga1 0.00785 (12) 0.00785 (12) 0.00629 (16) 0.00393 (6) 0.000 0.000
Ga2 0.00943 (15) 0.00943 (15) 0.0057 (2) 0.00472 (8) 0.000 0.000
As 0.00991 (11) 0.00839 (10) 0.00729 (10) 0.00580 (8) 0.00068 (7) 0.00083 (7)
O1 0.0246 (8) 0.0212 (8) 0.0087 (6) 0.0164 (7) −0.0050 (6) −0.0011 (6)
O2 0.0105 (7) 0.0106 (6) 0.0104 (6) 0.0049 (5) 0.0026 (5) −0.0016 (5)
O3 0.0129 (7) 0.0173 (8) 0.0257 (9) 0.0093 (7) 0.0085 (6) 0.0093 (6)
O4 0.0116 (6) 0.0092 (6) 0.0120 (6) 0.0066 (6) −0.0019 (5) −0.0038 (5)

Rubidium gallium bis[hydrogen arsenate(V)] (RbGaHAsO42). Geometric parameters (Å, º)

Rb1A—Rb1Bi 0.42 (4) Rb2—O3ii 2.9347 (17)
Rb1A—Rb1Bii 0.42 (4) Rb2—O1vi 3.3714 (16)
Rb1A—O3iii 3.197 (2) Rb2—O1vii 3.3715 (16)
Rb1A—O3iv 3.197 (2) Rb2—O1viii 3.3715 (17)
Rb1A—O3ii 3.197 (2) Rb2—O4ix 3.4960 (16)
Rb1A—O3i 3.197 (2) Rb2—O4x 3.4960 (17)
Rb1A—O3v 3.197 (2) Rb2—O4xi 3.4960 (16)
Rb1A—O3 3.197 (2) Rb2—O3xii 3.5327 (19)
Rb1A—O2iv 3.3698 (16) Rb2—O3xiii 3.533 (2)
Rb1A—O2ii 3.3698 (16) Rb2—O3xiv 3.5328 (19)
Rb1A—O2v 3.3699 (16) Rb2—Asxiv 3.7432 (5)
Rb1A—O2 3.3699 (16) Rb2—Asxii 3.7432 (5)
Rb1A—O2iii 3.3699 (15) Rb2—Asxiii 3.7432 (5)
Rb1A—O2i 3.3699 (15) Ga1—O2xv 1.9596 (14)
Rb1A—Asiv 4.0083 (5) Ga1—O2ii 1.9597 (15)
Rb1B—Rb1Bi 0.72 (7) Ga1—O2xvi 1.9597 (15)
Rb1B—Rb1Bii 0.72 (7) Ga1—O4xvii 1.9690 (15)
Rb1B—O3iv 3.019 (15) Ga1—O4i 1.9690 (15)
Rb1B—O3 3.019 (15) Ga1—O4xviii 1.9690 (15)
Rb1B—O2v 3.05 (3) Ga2—O1viii 1.9625 (15)
Rb1B—O2i 3.05 (3) Ga2—O1xiv 1.9625 (16)
Rb1B—O3i 3.161 (2) Ga2—O1xix 1.9625 (15)
Rb1B—O3v 3.161 (2) Ga2—O1i 1.9626 (15)
Rb1B—O2iv 3.363 (2) Ga2—O1xviii 1.9626 (16)
Rb1B—O2 3.363 (2) Ga2—O1xvii 1.9626 (15)
Rb1B—O3iii 3.47 (3) As—O1xx 1.6576 (15)
Rb1B—O3ii 3.47 (3) As—O2 1.6724 (15)
Rb2—O3 2.9346 (17) As—O4iv 1.6805 (15)
Rb2—O3i 2.9347 (17) As—O3 1.7417 (17)
Rb1Bi—Rb1A—Rb1Bii 120.00 (15) O1vi—Rb2—Asxii 26.29 (3)
Rb1Bi—Rb1A—O3iii 61.38 (3) O1vii—Rb2—Asxii 88.53 (3)
Rb1Bii—Rb1A—O3iii 81.43 (11) O1viii—Rb2—Asxii 105.88 (3)
Rb1Bi—Rb1A—O3iv 81.43 (3) O4ix—Rb2—Asxii 26.56 (2)
Rb1Bii—Rb1A—O3iv 128.90 (5) O4x—Rb2—Asxii 54.15 (3)
O3iii—Rb1A—O3iv 69.26 (5) O4xi—Rb2—Asxii 71.43 (3)
Rb1Bi—Rb1A—O3ii 81.43 (3) O3xii—Rb2—Asxii 27.50 (3)
Rb1Bii—Rb1A—O3ii 61.38 (9) O3xiii—Rb2—Asxii 63.12 (3)
O3iii—Rb1A—O3ii 102.21 (6) O3xiv—Rb2—Asxii 98.11 (3)
O3iv—Rb1A—O3ii 162.87 (7) Asxiv—Rb2—Asxii 79.914 (13)
Rb1Bi—Rb1A—O3i 61.38 (3) O3—Rb2—Asxiii 177.27 (4)
Rb1Bii—Rb1A—O3i 128.90 (5) O3i—Rb2—Asxiii 100.79 (4)
O3iii—Rb1A—O3i 122.76 (7) O3ii—Rb2—Asxiii 102.80 (4)
O3iv—Rb1A—O3i 102.21 (6) O1vi—Rb2—Asxiii 88.53 (3)
O3ii—Rb1A—O3i 69.26 (5) O1vii—Rb2—Asxiii 105.88 (3)
Rb1Bi—Rb1A—O3v 128.90 (3) O1viii—Rb2—Asxiii 26.29 (3)
Rb1Bii—Rb1A—O3v 61.38 (9) O4ix—Rb2—Asxiii 54.15 (3)
O3iii—Rb1A—O3v 69.26 (5) O4x—Rb2—Asxiii 71.43 (3)
O3iv—Rb1A—O3v 69.26 (5) O4xi—Rb2—Asxiii 26.56 (3)
O3ii—Rb1A—O3v 122.76 (6) O3xii—Rb2—Asxiii 98.11 (3)
O3i—Rb1A—O3v 162.87 (6) O3xiii—Rb2—Asxiii 27.50 (3)
Rb1Bi—Rb1A—O3 128.90 (3) O3xiv—Rb2—Asxiii 63.12 (3)
Rb1Bii—Rb1A—O3 81.43 (11) Asxiv—Rb2—Asxiii 79.914 (13)
O3iii—Rb1A—O3 162.87 (6) Asxii—Rb2—Asxiii 79.914 (13)
O3iv—Rb1A—O3 122.76 (6) O2xv—Ga1—O2ii 91.72 (6)
O3ii—Rb1A—O3 69.26 (5) O2xv—Ga1—O2xvi 91.72 (6)
O3i—Rb1A—O3 69.26 (5) O2ii—Ga1—O2xvi 91.72 (6)
O3v—Rb1A—O3 102.21 (6) O2xv—Ga1—O4xvii 92.25 (6)
Rb1Bi—Rb1A—O2iv 37.49 (3) O2ii—Ga1—O4xvii 175.98 (6)
Rb1Bii—Rb1A—O2iv 150.57 (13) O2xvi—Ga1—O4xvii 88.72 (6)
O3iii—Rb1A—O2iv 70.43 (4) O2xv—Ga1—O4i 88.72 (6)
O3iv—Rb1A—O2iv 48.04 (4) O2ii—Ga1—O4i 92.25 (6)
O3ii—Rb1A—O2iv 115.61 (4) O2xvi—Ga1—O4i 175.98 (7)
O3i—Rb1A—O2iv 64.84 (4) O4xvii—Ga1—O4i 87.28 (6)
O3v—Rb1A—O2iv 113.71 (4) O2xv—Ga1—O4xviii 175.98 (6)
O3—Rb1A—O2iv 126.47 (4) O2ii—Ga1—O4xviii 88.71 (6)
Rb1Bi—Rb1A—O2ii 37.49 (3) O2xvi—Ga1—O4xviii 92.25 (6)
Rb1Bii—Rb1A—O2ii 85.56 (15) O4xvii—Ga1—O4xviii 87.28 (7)
O3iii—Rb1A—O2ii 64.84 (4) O4i—Ga1—O4xviii 87.28 (7)
O3iv—Rb1A—O2ii 115.61 (4) O2xv—Ga1—Rb2xxi 124.04 (4)
O3ii—Rb1A—O2ii 48.04 (4) O2ii—Ga1—Rb2xxi 124.04 (4)
O3i—Rb1A—O2ii 70.43 (4) O2xvi—Ga1—Rb2xxi 124.04 (4)
O3v—Rb1A—O2ii 126.47 (4) O4xvii—Ga1—Rb2xxi 52.83 (5)
O3—Rb1A—O2ii 113.71 (4) O4i—Ga1—Rb2xxi 52.83 (5)
O2iv—Rb1A—O2ii 74.98 (5) O4xviii—Ga1—Rb2xxi 52.83 (4)
Rb1Bi—Rb1A—O2v 150.57 (3) O2xv—Ga1—Rb1Axvii 32.81 (4)
Rb1Bii—Rb1A—O2v 85.56 (15) O2ii—Ga1—Rb1Axvii 105.67 (4)
O3iii—Rb1A—O2v 113.71 (4) O2xvi—Ga1—Rb1Axvii 120.04 (5)
O3iv—Rb1A—O2v 70.43 (4) O4xvii—Ga1—Rb1Axvii 77.51 (4)
O3ii—Rb1A—O2v 126.47 (4) O4i—Ga1—Rb1Axvii 59.26 (4)
O3i—Rb1A—O2v 115.61 (4) O4xviii—Ga1—Rb1Axvii 143.41 (5)
O3v—Rb1A—O2v 48.04 (4) Rb2xxi—Ga1—Rb1Axvii 92.384 (4)
O3—Rb1A—O2v 64.84 (4) O2xv—Ga1—Rb1A 120.04 (5)
O2iv—Rb1A—O2v 113.21 (2) O2ii—Ga1—Rb1A 32.81 (4)
O2ii—Rb1A—O2v 171.11 (5) O2xvi—Ga1—Rb1A 105.67 (4)
Rb1Bi—Rb1A—O2 150.57 (3) O4xvii—Ga1—Rb1A 143.41 (5)
Rb1Bii—Rb1A—O2 37.49 (14) O4i—Ga1—Rb1A 77.51 (4)
O3iii—Rb1A—O2 115.61 (4) O4xviii—Ga1—Rb1A 59.26 (5)
O3iv—Rb1A—O2 126.47 (4) Rb2xxi—Ga1—Rb1A 92.384 (4)
O3ii—Rb1A—O2 70.43 (4) Rb1Axvii—Ga1—Rb1A 119.828 (1)
O3i—Rb1A—O2 113.71 (4) O2xv—Ga1—Rb1Axvi 105.67 (5)
O3v—Rb1A—O2 64.84 (4) O2ii—Ga1—Rb1Axvi 120.04 (5)
O3—Rb1A—O2 48.04 (4) O2xvi—Ga1—Rb1Axvi 32.81 (4)
O2iv—Rb1A—O2 171.11 (5) O4xvii—Ga1—Rb1Axvi 59.26 (4)
O2ii—Rb1A—O2 113.21 (2) O4i—Ga1—Rb1Axvi 143.41 (5)
O2v—Rb1A—O2 58.86 (5) O4xviii—Ga1—Rb1Axvi 77.51 (5)
Rb1Bi—Rb1A—O2iii 85.56 (3) Rb2xxi—Ga1—Rb1Axvi 92.384 (4)
Rb1Bii—Rb1A—O2iii 37.49 (14) Rb1Axvii—Ga1—Rb1Axvi 119.828 (1)
O3iii—Rb1A—O2iii 48.04 (4) Rb1A—Ga1—Rb1Axvi 119.828 (1)
O3iv—Rb1A—O2iii 113.71 (4) O1viii—Ga2—O1xiv 93.53 (6)
O3ii—Rb1A—O2iii 64.84 (4) O1viii—Ga2—O1xix 93.53 (6)
O3i—Rb1A—O2iii 126.47 (4) O1xiv—Ga2—O1xix 93.53 (6)
O3v—Rb1A—O2iii 70.43 (4) O1viii—Ga2—O1i 180.0
O3—Rb1A—O2iii 115.61 (4) O1xiv—Ga2—O1i 86.48 (6)
O2iv—Rb1A—O2iii 113.21 (2) O1xix—Ga2—O1i 86.48 (6)
O2ii—Rb1A—O2iii 58.87 (5) O1viii—Ga2—O1xviii 86.48 (6)
O2v—Rb1A—O2iii 113.21 (2) O1xiv—Ga2—O1xviii 180.0
O2—Rb1A—O2iii 74.98 (5) O1xix—Ga2—O1xviii 86.48 (6)
Rb1Bi—Rb1A—O2i 85.56 (3) O1i—Ga2—O1xviii 93.52 (6)
Rb1Bii—Rb1A—O2i 150.57 (14) O1viii—Ga2—O1xvii 86.48 (6)
O3iii—Rb1A—O2i 126.47 (4) O1xiv—Ga2—O1xvii 86.48 (6)
O3iv—Rb1A—O2i 64.84 (4) O1xix—Ga2—O1xvii 180.0
O3ii—Rb1A—O2i 113.71 (4) O1i—Ga2—O1xvii 93.52 (6)
O3i—Rb1A—O2i 48.04 (4) O1xviii—Ga2—O1xvii 93.52 (6)
O3v—Rb1A—O2i 115.61 (4) O1viii—Ga2—Rb2xix 63.39 (5)
O3—Rb1A—O2i 70.43 (4) O1xiv—Ga2—Rb2xix 66.53 (5)
O2iv—Rb1A—O2i 58.87 (5) O1xix—Ga2—Rb2xix 146.92 (4)
O2ii—Rb1A—O2i 113.21 (2) O1i—Ga2—Rb2xix 116.61 (5)
O2v—Rb1A—O2i 74.98 (5) O1xviii—Ga2—Rb2xix 113.47 (5)
O2—Rb1A—O2i 113.21 (2) O1xvii—Ga2—Rb2xix 33.08 (4)
O2iii—Rb1A—O2i 171.11 (6) O1viii—Ga2—Rb2xvii 116.62 (5)
Rb1Bi—Rb1A—Asiv 60.827 (6) O1xiv—Ga2—Rb2xvii 113.48 (5)
Rb1Bii—Rb1A—Asiv 149.73 (2) O1xix—Ga2—Rb2xvii 33.08 (4)
O3iii—Rb1A—Asiv 73.16 (3) O1i—Ga2—Rb2xvii 63.38 (5)
O3iv—Rb1A—Asiv 24.86 (3) O1xviii—Ga2—Rb2xvii 66.52 (5)
O3ii—Rb1A—Asiv 139.65 (3) O1xvii—Ga2—Rb2xvii 146.92 (4)
O3i—Rb1A—Asiv 79.79 (3) Rb2xix—Ga2—Rb2xvii 180.0
O3v—Rb1A—Asiv 93.74 (3) O1viii—Ga2—Rb2xvi 113.48 (5)
O3—Rb1A—Asiv 123.16 (3) O1xiv—Ga2—Rb2xvi 33.08 (4)
O2iv—Rb1A—Asiv 24.28 (2) O1xix—Ga2—Rb2xvi 116.62 (6)
O2ii—Rb1A—Asiv 97.93 (3) O1i—Ga2—Rb2xvi 66.52 (5)
O2v—Rb1A—Asiv 89.76 (3) O1xviii—Ga2—Rb2xvi 146.92 (4)
O2—Rb1A—Asiv 148.57 (3) O1xvii—Ga2—Rb2xvi 63.38 (6)
O2iii—Rb1A—Asiv 121.15 (3) Rb2xix—Ga2—Rb2xvi 60.0
O2i—Rb1A—Asiv 53.64 (3) Rb2xvii—Ga2—Rb2xvi 120.0
Rb1Bi—Rb1B—Rb1Bii 60.00 (4) O1viii—Ga2—Rb2 33.08 (5)
Rb1Bi—Rb1B—O3iv 94.7 (6) O1xiv—Ga2—Rb2 116.62 (5)
Rb1Bii—Rb1B—O3iv 123.8 (6) O1xix—Ga2—Rb2 113.48 (5)
Rb1Bi—Rb1B—O3 123.8 (6) O1i—Ga2—Rb2 146.92 (5)
Rb1Bii—Rb1B—O3 94.7 (7) O1xviii—Ga2—Rb2 63.38 (5)
O3iv—Rb1B—O3 136.7 (14) O1xvii—Ga2—Rb2 66.52 (5)
Rb1Bi—Rb1B—O2v 160.6 (4) Rb2xix—Ga2—Rb2 60.0
Rb1Bii—Rb1B—O2v 109.8 (6) Rb2xvii—Ga2—Rb2 120.0
O3iv—Rb1B—O2v 77.3 (7) Rb2xvi—Ga2—Rb2 120.0
O3—Rb1B—O2v 71.0 (6) O1viii—Ga2—Rb2xxii 66.52 (5)
Rb1Bi—Rb1B—O2i 109.8 (5) O1xiv—Ga2—Rb2xxii 146.92 (4)
Rb1Bii—Rb1B—O2i 160.6 (3) O1xix—Ga2—Rb2xxii 63.38 (6)
O3iv—Rb1B—O2i 71.0 (6) O1i—Ga2—Rb2xxii 113.47 (5)
O3—Rb1B—O2i 77.3 (7) O1xviii—Ga2—Rb2xxii 33.08 (4)
O2v—Rb1B—O2i 84.6 (10) O1xvii—Ga2—Rb2xxii 116.62 (6)
Rb1Bi—Rb1B—O3i 72.1 (6) Rb2xix—Ga2—Rb2xxii 120.0
Rb1Bii—Rb1B—O3i 109.8 (6) Rb2xvii—Ga2—Rb2xxii 60.0
O3iv—Rb1B—O3i 107.2 (4) Rb2xvi—Ga2—Rb2xxii 180.0
O3—Rb1B—O3i 72.0 (2) Rb2—Ga2—Rb2xxii 60.0
O2v—Rb1B—O3i 127.0 (11) O1viii—Ga2—Rb2xxiii 146.92 (5)
O2i—Rb1B—O3i 51.0 (2) O1xiv—Ga2—Rb2xxiii 63.38 (5)
Rb1Bi—Rb1B—O3v 109.8 (7) O1xix—Ga2—Rb2xxiii 66.52 (5)
Rb1Bii—Rb1B—O3v 72.1 (7) O1i—Ga2—Rb2xxiii 33.08 (5)
O3iv—Rb1B—O3v 72.0 (2) O1xviii—Ga2—Rb2xxiii 116.61 (5)
O3—Rb1B—O3v 107.2 (4) O1xvii—Ga2—Rb2xxiii 113.47 (5)
O2v—Rb1B—O3v 51.0 (2) Rb2xix—Ga2—Rb2xxiii 120.0
O2i—Rb1B—O3v 127.0 (11) Rb2xvii—Ga2—Rb2xxiii 60.0
O3i—Rb1B—O3v 177.9 (14) Rb2xvi—Ga2—Rb2xxiii 60.0
Rb1Bi—Rb1B—O2iv 58.5 (7) Rb2—Ga2—Rb2xxiii 180.0
Rb1Bii—Rb1B—O2iv 116.2 (6) Rb2xxii—Ga2—Rb2xxiii 119.997 (1)
O3iv—Rb1B—O2iv 49.25 (8) O1xx—As—O2 119.20 (8)
O3—Rb1B—O2iv 133.4 (5) O1xx—As—O4iv 105.45 (8)
O2v—Rb1B—O2iv 122.6 (9) O2—As—O4iv 114.88 (7)
O2i—Rb1B—O2iv 62.0 (3) O1xx—As—O3 107.00 (9)
O3i—Rb1B—O2iv 65.28 (4) O2—As—O3 103.30 (8)
O3v—Rb1B—O2iv 114.83 (5) O4iv—As—O3 106.04 (8)
Rb1Bi—Rb1B—O2 116.2 (7) O1xx—As—Rb2xii 64.25 (6)
Rb1Bii—Rb1B—O2 58.5 (8) O2—As—Rb2xii 172.80 (5)
O3iv—Rb1B—O2 133.4 (5) O4iv—As—Rb2xii 68.49 (5)
O3—Rb1B—O2 49.25 (8) O3—As—Rb2xii 69.51 (6)
O2v—Rb1B—O2 62.0 (3) O1xx—As—Rb1Bii 142.0 (2)
O2i—Rb1B—O2 122.6 (9) O2—As—Rb1Bii 50.6 (6)
O3i—Rb1B—O2 114.83 (5) O4iv—As—Rb1Bii 111.5 (3)
O3v—Rb1B—O2 65.28 (4) O3—As—Rb1Bii 54.9 (5)
O2iv—Rb1B—O2 174.7 (13) Rb2xii—As—Rb1Bii 122.5 (5)
Rb1Bi—Rb1B—O3iii 46.2 (3) O1xx—As—Rb1B 146.8 (4)
Rb1Bii—Rb1B—O3iii 58.9 (3) O2—As—Rb1B 60.0 (4)
O3iv—Rb1B—O3iii 67.6 (2) O4iv—As—Rb1B 103.6 (5)
O3—Rb1B—O3iii 153.6 (10) O3—As—Rb1B 48.68 (19)
O2v—Rb1B—O3iii 114.75 (4) Rb2xii—As—Rb1B 113.4 (4)
O2i—Rb1B—O3iii 127.90 (5) Rb1Bii—As—Rb1B 10.8 (11)
O3i—Rb1B—O3iii 115.4 (7) O1xx—As—Rb1A 143.22 (6)
O3v—Rb1B—O3iii 66.2 (3) O2—As—Rb1A 55.94 (5)
O2iv—Rb1B—O3iii 67.3 (3) O4iv—As—Rb1A 108.77 (5)
O2—Rb1B—O3iii 108.7 (7) O3—As—Rb1A 50.50 (6)
Rb1Bi—Rb1B—O3ii 58.9 (4) Rb2xii—As—Rb1A 117.262 (8)
Rb1Bii—Rb1B—O3ii 46.2 (3) Rb1Bii—As—Rb1A 5.5 (5)
O3iv—Rb1B—O3ii 153.6 (10) Rb1B—As—Rb1A 5.7 (6)
O3—Rb1B—O3ii 67.6 (2) O1xx—As—Rb2 81.53 (7)
O2v—Rb1B—O3ii 127.90 (5) O2—As—Rb2 99.68 (5)
O2i—Rb1B—O3ii 114.75 (4) O4iv—As—Rb2 133.31 (5)
O3i—Rb1B—O3ii 66.2 (3) O3—As—Rb2 32.31 (6)
O3v—Rb1B—O3ii 115.4 (7) Rb2xii—As—Rb2 74.193 (8)
O2iv—Rb1B—O3ii 108.7 (7) Rb1Bii—As—Rb2 67.2 (2)
O2—Rb1B—O3ii 67.3 (3) Rb1B—As—Rb2 66.79 (16)
O3iii—Rb1B—O3ii 91.5 (9) Rb1A—As—Rb2 65.327 (14)
O3—Rb2—O3i 76.48 (6) O1xx—As—Rb1Axxiv 87.84 (7)
O3—Rb2—O3ii 76.48 (6) O2—As—Rb1Axxiv 94.28 (5)
O3i—Rb2—O3ii 76.48 (6) O4iv—As—Rb1Axxiv 40.78 (5)
O3—Rb2—O1vi 91.00 (4) O3—As—Rb1Axxiv 146.81 (6)
O3i—Rb2—O1vi 76.80 (4) Rb2xii—As—Rb1Axxiv 92.146 (8)
O3ii—Rb2—O1vi 152.49 (5) Rb1Bii—As—Rb1Axxiv 126.24 (14)
O3—Rb2—O1vii 76.80 (5) Rb1B—As—Rb1Axxiv 125.1 (3)
O3i—Rb2—O1vii 152.49 (5) Rb1A—As—Rb1Axxiv 127.415 (12)
O3ii—Rb2—O1vii 91.00 (4) Rb2—As—Rb1Axxiv 165.357 (7)
O1vi—Rb2—O1vii 110.14 (3) O1xx—As—Rb2xxiv 42.87 (6)
O3—Rb2—O1viii 152.49 (5) O2—As—Rb2xxiv 127.54 (5)
O3i—Rb2—O1viii 91.00 (5) O4iv—As—Rb2xxiv 64.16 (5)
O3ii—Rb2—O1viii 76.80 (5) O3—As—Rb2xxiv 128.20 (6)
O1vi—Rb2—O1viii 110.14 (3) Rb2xii—As—Rb2xxiv 59.507 (5)
O1vii—Rb2—O1viii 110.13 (2) Rb1Bii—As—Rb2xxiv 174.80 (5)
O3—Rb2—O4ix 126.84 (4) Rb1B—As—Rb2xxiv 167.1 (6)
O3i—Rb2—O4ix 111.15 (5) Rb1A—As—Rb2xxiv 172.736 (5)
O3ii—Rb2—O4ix 156.15 (4) Rb2—As—Rb2xxiv 117.769 (15)
O1vi—Rb2—O4ix 45.47 (4) Rb1Axxiv—As—Rb2xxiv 48.647 (11)
O1vii—Rb2—O4ix 90.21 (4) Asxxv—O1—Ga2xxvi 137.45 (10)
O1viii—Rb2—O4ix 80.43 (4) Asxxv—O1—Rb2vi 89.47 (6)
O3—Rb2—O4x 111.15 (5) Ga2xxvi—O1—Rb2vi 128.38 (6)
O3i—Rb2—O4x 156.15 (4) Asxxv—O1—Rb2xxv 76.24 (6)
O3ii—Rb2—O4x 126.84 (4) Ga2xxvi—O1—Rb2xxv 92.73 (6)
O1vi—Rb2—O4x 80.43 (4) Rb2vi—O1—Rb2xxv 76.74 (3)
O1vii—Rb2—O4x 45.46 (4) Asxxv—O1—Rb2xxvi 122.41 (7)
O1viii—Rb2—O4x 90.21 (4) Ga2xxvi—O1—Rb2xxvi 89.56 (6)
O4ix—Rb2—O4x 45.74 (4) Rb2vi—O1—Rb2xxvi 75.20 (3)
O3—Rb2—O4xi 156.15 (5) Rb2xxv—O1—Rb2xxvi 145.76 (4)
O3i—Rb2—O4xi 126.84 (5) As—O2—Ga1xxiv 121.66 (8)
O3ii—Rb2—O4xi 111.15 (5) As—O2—Rb1Bii 104.3 (5)
O1vi—Rb2—O4xi 90.21 (4) Ga1xxiv—O2—Rb1Bii 125.9 (3)
O1vii—Rb2—O4xi 80.43 (4) As—O2—Rb1B 94.4 (5)
O1viii—Rb2—O4xi 45.46 (4) Ga1xxiv—O2—Rb1B 130.14 (12)
O4ix—Rb2—O4xi 45.74 (4) Rb1Bii—O2—Rb1B 11.7 (11)
O4x—Rb2—O4xi 45.74 (4) As—O2—Rb1A 99.78 (6)
O3—Rb2—O3xii 83.50 (5) Ga1xxiv—O2—Rb1A 128.83 (6)
O3i—Rb2—O3xii 119.25 (6) Rb1Bii—O2—Rb1A 4.8 (5)
O3ii—Rb2—O3xii 150.88 (6) Rb1B—O2—Rb1A 7.1 (7)
O1vi—Rb2—O3xii 46.57 (4) As—O2—Rb2 60.35 (4)
O1vii—Rb2—O3xii 63.66 (4) Ga1xxiv—O2—Rb2 162.84 (6)
O1viii—Rb2—O3xii 123.76 (4) Rb1Bii—O2—Rb2 64.9 (2)
O4ix—Rb2—O3xii 45.78 (4) Rb1B—O2—Rb2 63.47 (7)
O4x—Rb2—O3xii 43.39 (4) Rb1A—O2—Rb2 63.10 (2)
O4xi—Rb2—O3xii 80.11 (4) As—O3—Rb2 129.19 (8)
O3—Rb2—O3xiii 150.89 (6) As—O3—Rb1B 105.64 (12)
O3i—Rb2—O3xiii 83.50 (5) Rb2—O3—Rb1B 97.7 (5)
O3ii—Rb2—O3xiii 119.25 (6) As—O3—Rb1Bii 98.2 (6)
O1vi—Rb2—O3xiii 63.66 (4) Rb2—O3—Rb1Bii 94.64 (16)
O1vii—Rb2—O3xiii 123.75 (4) Rb1B—O3—Rb1Bii 13.2 (13)
O1viii—Rb2—O3xiii 46.57 (4) As—O3—Rb1A 104.65 (8)
O4ix—Rb2—O3xiii 43.39 (4) Rb2—O3—Rb1A 93.37 (5)
O4x—Rb2—O3xiii 80.11 (4) Rb1B—O3—Rb1A 7.0 (7)
O4xi—Rb2—O3xiii 45.78 (4) Rb1Bii—O3—Rb1A 7.5 (7)
O3xii—Rb2—O3xiii 88.19 (4) As—O3—Rb1Bi 109.5 (4)
O3—Rb2—O3xiv 119.25 (6) Rb2—O3—Rb1Bi 88.4 (5)
O3i—Rb2—O3xiv 150.88 (6) Rb1B—O3—Rb1Bi 10.0 (9)
O3ii—Rb2—O3xiv 83.50 (5) Rb1Bii—O3—Rb1Bi 11.3 (10)
O1vi—Rb2—O3xiv 123.76 (4) Rb1A—O3—Rb1Bi 5.4 (5)
O1vii—Rb2—O3xiv 46.57 (4) As—O3—Rb2xii 82.99 (7)
O1viii—Rb2—O3xiv 63.66 (4) Rb2—O3—Rb2xii 96.50 (5)
O4ix—Rb2—O3xiv 80.11 (4) Rb1B—O3—Rb2xii 152.4 (7)
O4x—Rb2—O3xiv 45.78 (4) Rb1Bii—O3—Rb2xii 164.5 (4)
O4xi—Rb2—O3xiv 43.38 (4) Rb1A—O3—Rb2xii 159.28 (6)
O3xii—Rb2—O3xiv 88.19 (4) Rb1Bi—O3—Rb2xii 159.23 (8)
O3xiii—Rb2—O3xiv 88.19 (4) Asiv—O4—Ga1xxvi 130.00 (8)
O3—Rb2—Asxiv 102.80 (4) Asiv—O4—Rb2xxvii 84.95 (5)
O3i—Rb2—Asxiv 177.27 (4) Ga1xxvi—O4—Rb2xxvii 100.50 (6)
O3ii—Rb2—Asxiv 100.79 (4) Asiv—O4—Rb1Axxv 124.06 (6)
O1vi—Rb2—Asxiv 105.88 (3) Ga1xxvi—O4—Rb1Axxv 96.95 (5)
O1vii—Rb2—Asxiv 26.29 (3) Rb2xxvii—O4—Rb1Axxv 118.51 (4)
O1viii—Rb2—Asxiv 88.53 (3) Asiv—O4—Rb1A 51.95 (4)
O4ix—Rb2—Asxiv 71.43 (3) Ga1xxvi—O4—Rb1A 78.99 (4)
O4x—Rb2—Asxiv 26.56 (2) Rb2xxvii—O4—Rb1A 104.39 (3)
O4xi—Rb2—Asxiv 54.15 (3) Rb1Axxv—O4—Rb1A 136.81 (4)
O3xii—Rb2—Asxiv 63.12 (3) Asiv—O4—Rb2xxviii 98.27 (5)
O3xiii—Rb2—Asxiv 98.10 (3) Ga1xxvi—O4—Rb2xxviii 129.76 (6)
O3xiv—Rb2—Asxiv 27.50 (3) Rb2xxvii—O4—Rb2xxviii 66.64 (2)
O3—Rb2—Asxii 100.79 (4) Rb1Axxv—O4—Rb2xxviii 57.20 (2)
O3i—Rb2—Asxii 102.80 (4) Rb1A—O4—Rb2xxviii 150.18 (3)
O3ii—Rb2—Asxii 177.27 (4)

Symmetry codes: (i) −y, xy, z; (ii) −x+y, −x, z; (iii) xy, −y, −z+3/2; (iv) −x, −x+y, −z+3/2; (v) y, x, −z+3/2; (vi) −x+2/3, −y−2/3, −z+4/3; (vii) xy−4/3, x−2/3, −z+4/3; (viii) y+2/3, −x+y+4/3, −z+4/3; (ix) x−1/3, xy−2/3, z−1/6; (x) −y−1/3, −x+1/3, z−1/6; (xi) −x+y+2/3, y+1/3, z−1/6; (xii) −x−1/3, −y−2/3, −z+4/3; (xiii) y+2/3, −x+y+1/3, −z+4/3; (xiv) xy−1/3, x+1/3, −z+4/3; (xv) −y, xy+1, z; (xvi) x+1, y+1, z; (xvii) x, y+1, z; (xviii) −x+y+1, −x+1, z; (xix) −x+2/3, −y+1/3, −z+4/3; (xx) x−1, y, z; (xxi) −y+1/3, −x+2/3, z+1/6; (xxii) −x−1/3, −y+1/3, −z+4/3; (xxiii) −x+2/3, −y+4/3, −z+4/3; (xxiv) x−1, y−1, z; (xxv) x+1, y, z; (xxvi) x, y−1, z; (xxvii) −y+1/3, −x−1/3, z+1/6; (xxviii) y+1, x, −z+3/2.

Rubidium gallium bis[hydrogen arsenate(V)] (RbGaHAsO42). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H···O4xxix 0.85 (3) 1.76 (3) 2.598 (2) 168 (4)

Symmetry code: (xxix) y, x−1, −z+3/2.

Funding Statement

This work was funded by Doc fForte Fellowship of the Austrian Academy of Sciences to K. Schwendtner grant .

References

  1. Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2009). TOPAS. Bruker AXS, Karlsruhe, Germany.
  3. Chouchene, S., Jaouadi, K., Mhiri, T. & Zouari, N. (2017). Solid State Ionics, 301, 78–85.
  4. FIZ (2018). Inorganic Crystal Structure Database. Version build 20180504-0745, 2018.1. Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany.
  5. Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578. [DOI] [PMC free article] [PubMed]
  6. Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602–625. [DOI] [PMC free article] [PubMed]
  7. Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63–78.
  8. Lesage, J., Adam, L., Guesdon, A. & Raveau, B. (2007). J. Solid State Chem. 180, 1799–1808.
  9. Lii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577–1580.
  10. Marshall, K. L., Armstrong, J. A. & Weller, M. T. (2015). Dalton Trans. 44, 12804–12811. [DOI] [PubMed]
  11. Masquelier, C., Padhi, A. K., Nanjundaswamy, K. S., Okada, S. & Goodenough, J. B. (1996). Proceedings of the 37th Power Sources Conference, June 17–20, 1996, pp. 188–191. Cherry Hill, New Jersey. Fort Monmouth, NJ: US Army Research Laboratory.
  12. Nonius (2003). COLLECT. Nonius BV, Delft, The Netherlands.
  13. Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234. [DOI] [PubMed]
  14. Ouerfelli, N., Guesmi, A., Molinie, P., Mazza, D., Madani, A., Zid, M. F. & Driss, A. (2007). J. Solid State Chem. 180, 2942–2949.
  15. Ren, J., Ma, Z., He, C., Sa, R., Li, Q. & Wu, K. (2015). Comput. Mater. Sci. 106, 1–4.
  16. Schwendtner, K. (2008). PhD thesis, Universität Wien, Austria.
  17. Schwendtner, K. & Kolitsch, U. (2007). Acta Cryst. B63, 205–215. [DOI] [PubMed]
  18. Schwendtner, K. & Kolitsch, U. (2017). Acta Cryst. E73, 1580–1586. [DOI] [PMC free article] [PubMed]
  19. Schwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. E74, 766–771. [DOI] [PMC free article] [PubMed]
  20. Schwendtner, K. & Kolitsch, U. (2018b). Acta Cryst. C74, 721–727. [DOI] [PubMed]
  21. Schwendtner, K. & Kolitsch, U. (2018c). Acta Cryst. E74, 1163–1167. [DOI] [PMC free article] [PubMed]
  22. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  23. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  24. Sun, Y., Yang, Z., Hou, D. & Pan, S. (2017). RSC Adv. 7, 2804–2809.
  25. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  26. Wohlschlaeger, A., Lengauer, C. & Tillmanns, E. (2006). ICDD Grant-in-Aid. University of Vienna, Austria.
  27. Yakubovich, O. V. (1993). Kristallografiya, 38, 43–48.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) RbGa2AsHAsO46, RbGaHAsO42, global. DOI: 10.1107/S2056989018011180/ff2155sup1.cif

e-74-01244-sup1.cif (403.9KB, cif)

Structure factors: contains datablock(s) RbGa2AsHAsO46. DOI: 10.1107/S2056989018011180/ff2155RbGa2AsHAsO46sup2.hkl

Structure factors: contains datablock(s) RbGaHAsO42. DOI: 10.1107/S2056989018011180/ff2155RbGaHAsO42sup3.hkl

CCDC references: 1860366, 1860365

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES